

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlcgfb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	VL1	V∟1 voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	VL2	VL2 voltage ^{Note 1}		–0.3 to $V_{\rm L4}$ +0.3 $^{\rm Note\ 2}$	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to $V_{\rm L4}$ +0.3 $^{\rm Note\ 2}$	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to $V_{\rm L4}$ +0.3 $^{\rm Note\ 2}$	V
	Vout	COM0 to COM7	External resistance division method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	SEG0 to SEG50	Capacitor split method	–0.3 to V_DD +0.3 $^{\text{Note 2}}$	V	
		output voltage	Internal voltage boosting method	-0.3 to VL4 +0.3 ^{Note 2}	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

	Parameter	Symbol		Conditions	Ratings	Unit
<r> <r></r></r>	Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
			Total of all pins -170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
<r></r>		Іон2	Per pin	P20, P21	-0.5	mA
<r></r>			Total of all pins		-1	mA
<r></r>	Output current, low	lol1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
			Total of all pins	P40 to P47, P130	70	mA
<r></r>			170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
<r></r>		IOL2	Per pin	P20, P21	1	mA
<r></r>			Total of all pins		2	mA
	Operating ambient	TA	In normal operation	on mode	-40 to +85	°C
	temperature		In flash memory p	programming mode		
	Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (3/3)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot}$ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot} 1 \text{ MHz}$ to 4 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Condition	าร		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	I _{FIL} Note 1						0.20		μA
RTC2 operating current	_{RTC} ^{Notes 1, 2,} 3	fsuв = 32.768 kHz					0.02		μA
12-bit interval timer operating current	_{TMKA} Notes 1, 2, 4						0.04		μA
Watchdog timer operating current	Notes 1, 2, 5	f⊩ = 15 kHz					0.22		μA
A/D converter operating current	ADC ^{Notes 1, 6}	When conversion at maximum speed	Normal mode		D = 5.0 V = V _{DD} = 3.0 V		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	ADREF ^{Note 1}						75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}						75.0		μA
LVD operating current	LVD ^{Notes 1, 7}						0.08		μA
Comparator	ICMP ^{Notes 1, 11}	V _{DD} = 5.0 V,	Window mode	Э			12.5		μA
operating current		Regulator output	Comparator h	igh-speed mo	ode		6.5		μA
		voltage = 2.1 V	Comparator lo	ow-speed mo	de		1.7		μA
		V _{DD} = 5.0 V,	Window mode	e			8.0		μA
		Regulator output voltage = 1.8 V	Comparator high-speed mode				4.0		μA
		Vollage – 1.6 V	Comparator lo	ow-speed mo	de		1.3		μA
Self- programming operating current	FSP ^{Notes 1, 9}						2.00	12.20	mA
BGO operating current	BGO ^{Notes 1, 8}						2.00	12.20	mA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	While the mo	de is shifting ^N	ote 10		0.50	0.60	mA
operating current			During A/D co mode, AVREFF		0		1.20	1.44	mA
		CSI/UART operation	1				0.70	0.84	mA
LCD operating current	_{LCD1} Notes 1, 12, 13	External resistance division method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	$V_{DD} = 5.0 V,$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	I _{LCD2} Note 1, 12	LCD2 ^{Note 1, 12} Internal voltage boosting method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	$V_{DD} = 3.0 V,$ $V_{L4} = 3.0 V$ $(V_{LCD} = 04H)$		0.85	2.20	μA
					$V_{DD} = 5.0 V,$ $V_{L4} = 5.1 V$ $(V_{LCD} = 12H)$		1.55	3.70	μA
	I _{LCD3} Note 1, 12	Capacitor split method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20	0.50	μA

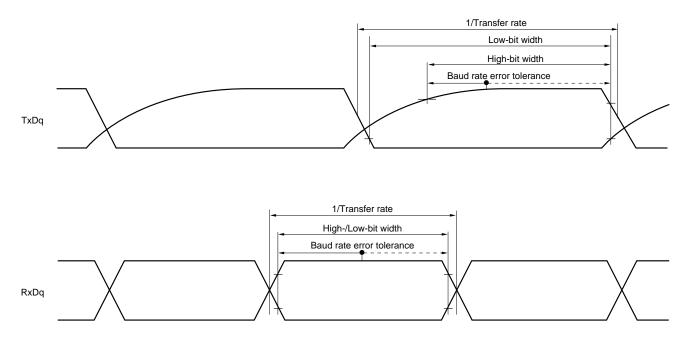
(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 6. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
 - 10. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode in the RL78/L13 User's Manual.
- **11.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
- 12. Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsuB for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
- **13.** Not including the current flowing into the external division resistor when using the external resistance division method.

Remarks 1. fiL: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fcLK: CPU/peripheral hardware clock frequency
- **4.** The temperature condition for the TYP. value is $T_A = 25^{\circ}C$.



(4) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions		h-speed Mode		/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		400 ^{Note 1}		400 ^{Note 1}	kHz
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 3 \; \text{k}\Omega \end{array}$		400 ^{Note 1}		400 ^{Note 1}		400 ^{Note 1}	kHz
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\label{eq:def-loss} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{\scriptsize DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-		_		250 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	475		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \mbox{ (2.4 V}^{\mbox{Note 3}}) \leq V_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, R_{\mbox{b}} = 3 k\Omega \end{array}$	1150		1150		1150		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:def-loss} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_		1850		ns
Hold time when SCLr = "H"	t high	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	1150		1150		1150		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5 \; \text{k}\Omega \end{array}$	1550		1550		1550		ns
		$\begin{array}{l} 1.6 \; V \leq V_{DD} < 1.8 \; V, \\ C_b = 100 \; pF, \; R_b = 5 \; k\Omega \end{array}$	_		_		1850		ns
Data setup time (reception)	tsu:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq V_{\text{DD}} \leq 5.5 \mbox{ V}, \\ C_{\text{b}} = 50 \mbox{ pF}, \mbox{ R}_{\text{b}} = 2.7 \mbox{ k}\Omega \end{array}$	1/f _{МСК} + 85 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	1/f _{МСК} + 145 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 230 ^{Note 2}		1/fмск+ 230 ^{Note 2}		1/f _{MCK} + 230 ^{Note 2}		ns
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_		1/f _{MCK} + 290 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	0	405	0	405	0	405	ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-	_	_	_	0	405	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

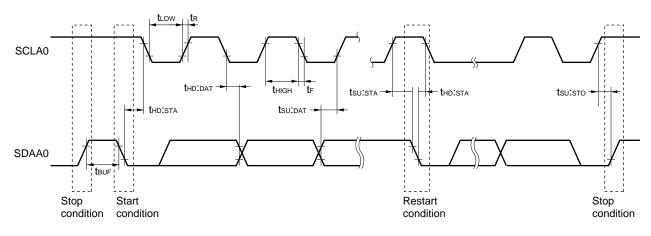
UART mode bit width (during communication at different potential) (reference)

- Remarks 1.
 R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(3) I²C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions		h-speed Mode		/-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fc⊥ĸ ≥ 10 MHz	$2.7 V \le V_{DD} \le$ 5.5 V	0	1000	-	-	-	-	kHz
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		0.26		-		-	-	μs
Hold time ^{Note 1}	thd:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.26		_		-		μs
Hold time when SCLA0 ="L"	t LOW	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.5		-		-		μs
Hold time when SCLA0 ="H"	tніgн	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≦5.5 V	0.26		-		-		μs
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≦5.5 V	50		-	-	-	-	ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≤5.5 V	0	0.45	-	-	-	-	μs
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≤5.5 V	0.26		-	-	-	-	μs
Bus-free time	t BUF	$2.7 \text{ V} \leq V_{\text{DD}} \leq$	≤5.5 V	0.5		-	-	-	-	μs


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

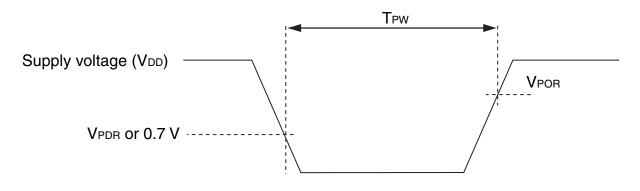
Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing

2.6.3 Comparator characteristics

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		V _{DD} – 1.4	V
	lvcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V_{DD} = 3.0 V Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mod window mode	e,	0.66VDD	0.76Vdd	0.86Vdd	V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mod window mode	e,	0.14Vdd	0.24VDD	0.34Vdd	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	Vbgr	2.4 V \leq V_{DD} \leq 5.5 V, HS (high	n-speed main) mode	1.38	1.45	1.50	V

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)


Note Cannot be used in LS (low-speed main) mode, LV (low-voltage main) mode, subsystem clock operation, and STOP mode.

2.6.4 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	When power supply rises	1.47	1.51	1.55	V
	VPDR	When power supply falls	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

2.7 LCD Characteristics

2.7.1 External resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

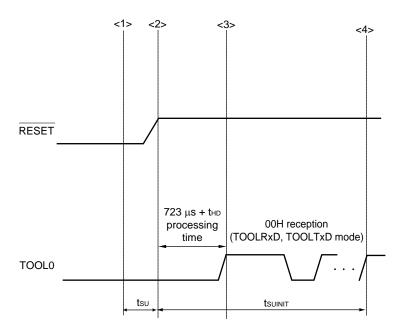
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V



RL78/L13

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{su:}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	VL2	VL2 voltage ^{Note 1}		–0.3 to VL4 +0.3 $^{\rm Note\ 2}$	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	Vout	COM0 to COM7	External resistance division method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
		SEG0 to SEG50	Capacitor split method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
		output voltage	Internal voltage boosting method	–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130				8.5 ^{Note 2}	mA
		Per pin for P60 and P61				15.0 ^{Note 2}	mA
		Total of P40 to P47, P130	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
		(When duty = 70% ^{Note 3}) Total of P00 to P07, P10 to P17,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
			$2.4~V \leq V_{\text{DD}} < 2.7~V$			9.0	mA
			$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			60.0	mA
		P22 to P27, P30 to P35, P50 to P57, P70 to P77, P125 to P127	$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
		(When duty = $70\%^{\text{Note 3}}$)	$2.4~V \leq V_{\text{DD}} < 2.7~V$			20.0	mA
		Total of all pins (When duty = 70% ^{Note 3})				100.0	mA
	IOL2	Per pin for P20 and P21				0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			0.8	mA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Notes 1. Value of the current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 40.0 mA

Total output current of pins = $(40.0 \times 0.7)/(80 \times 0.01) = 35.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	$V_{\text{DD}} - 0.7$			V
		P70 to P77, P125 to P127, P130	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ I_OH1 = -2.0 mA	V _{DD} - 0.6			V
			$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -1.5 mA	V _{DD} - 0.5			V
	Voh2	P20 and P21	2.4 V \leq V _{DD} \leq 5.5 V, I _{OH2} = -100 μ A	V _{DD} - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:VDD}$			0.7	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL1}} = 3.0 \ \text{mA} \end{array}$			0.6	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL1}} = 1.5 \ \text{mA} \end{array}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
	Vol2	P20 and P21	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{I}_{\text{OL2}} = 400 \ \mu\text{A}$			0.4	V
	Vol3	P60 and P61	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol3 = 15.0 mA			2.0	V
			$\begin{array}{l} 4.0 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL3}} = 5.0 \ \text{mA} \end{array}$			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

									(=)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply IDD2 ^{Note 2}	DD2Note 2	HALT	HS (high-	f _{HOCO} = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	2.55	mA
current Note 1		mode	speed main) mode ^{Note 7}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	2.55	mA
				fHOCO = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.95	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.95	mA
				fHOCO = 16 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.43	1.50	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.50	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.76	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	1.92	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.76	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.92	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.20	0.96	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	1.07	mA
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.96	mA	
				V _{DD} = 3.0 V	Resonator connection		0.28	1.07	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5} , T _A = -40°C	Square wave input		0.34	0.62	μA
			clock operation		Resonator connection		0.51	0.80	μA
				fsub = 32.768 kHz ^{Note 5} , T _A = +25°C	Square wave input		0.38	0.62	μA
					Resonator connection		0.57	0.80	μA
				fsub = 32.768 kHz ^{Note 5} , T _A = +50°C	Square wave input		0.46	2.30	μA
					Resonator connection		0.67	2.49	μA
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μA
				T _A = +70°C	Resonator connection		0.91	4.22	μA
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μA
				T _A = +85°C	Resonator connection		1.31	8.23	μA
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		3.05	27.00	μA
				T _A = +105°C	Resonator connection		3.24	27.00	μA
	DD3 ^{Note 6}	STOP	T _A = −40°C				0.18	0.52	μA
		mode ^{Note 8}	T _A = +25°C	T _A = +25°C			0.24	0.52	μA
			T _A = +50°C				0.33	2.21	μA
			T _A = +70°C				0.53	3.94	μA
			T _A = +85°C				0.93	7.95	μA
			T _A = +105°C				2.91	25.00	μA

(Notes and Remarks are listed on the next page.)

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
	(T _A = −40 to +105°C, 2.4 V ≤ V _{DD} ≤ 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	24/f мск		ns
		$2.7 \ V {\leq} V_b {\leq} 4.0 \ V$	8 MHz < fмск ≤ 20 MHz	20/fмск		ns
			4 MHz < fмск ≤ 8 MHz	16/ f мск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$	20 MHz < fмск	32/fмск		ns
		$2.3 \ V \le V_b \le 2.7 \ V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < $f_{MCK} \le 16$ MHz	24/ f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$	20 MHz < fмск	72/fмск		ns
			16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/fмск		ns
			fмск ≤ 4 MHz	20/f мск		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0~V \le V_{\text{DD}} \le 5.5~V_{\text{PD}}$, 2.7 V \leq V $_{b}$ \leq 4.0 V	tkcy2/2 - 24		ns
		$2.7 \text{ V} \leq V_{\text{DD}} < 4.0 \text{ V}$, 2.3 V \leq V $_{b}$ \leq 2.7 V	tkcy2/2 – 36		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V$, 1.6 V \leq V_b \leq 2.0 V	tkcy2/2 - 100		ns
SIp setup time	tsik2	$4.0~V \le V_{\text{DD}} \le 5.5~V_{\text{PD}}$, 2.7 V \leq V $_{b}$ \leq 4.0 V	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < $4.0 \text{ V}_{\text{DD}}$, 2.3 V \leq V $_{b}$ \leq 2.7 V	1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V$, 1.6 V \leq V_b \leq 2.0 V	1/fмск + 60		ns
SIp hold time	tksi2	$4.0~V \le V_{\text{DD}} \le 5.5~V_{\text{PD}}$, 2.7 V \leq V $_{b}$ \leq 4.0 V	1/fмск + 62		ns
(from SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} \leq 4.0~V_{\text{PD}}$	$2.3~V \leq V_b \leq 2.7~V$	1/fмск + 62		ns
		$2.4~V \le V_{\text{DD}} \le 3.3~V_{\text{PD}}$, 1.6 V \leq V_b \leq 2.0 V	1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V_{,} \\ C_{b} = 30 \ pF, \ R_{b} = 1.4 \end{array}$			2/fмск + 240	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{D}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ c}$			2/fмск + 428	ns
		$2.4 V \le V_{DD} < 3.3 V_{Cb}$ $C_b = 30 \text{ pF}, R_b = 5.8$			2/fмск + 1146	ns

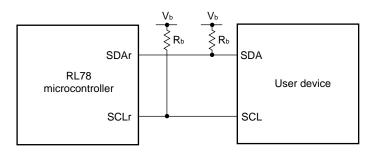
(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Parameter	Symbol	Conditions	HS (high-spee	HS (high-speed main) Mode		
			MIN.	MAX.		
Data setup time (reception)	tsu:dat		1/f _{MCK} + 340 ^{Note 2}		ns	
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{мск} + 340 ^{Note 2}		ns	
			1/f _{мск} + 760 ^{Note 2}		ns	
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{мск} + 760 ^{Note 2}		ns	
		$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	1/f _{мск} + 570 ^{Note 2}		ns	
Data hold time (transmission)	thd:dat	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; \text{V}, \; 2.7 \; \text{V} \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ C_{\text{b}} = 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{array}$	0	770	ns	
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	770	ns	
			0	1420	ns	
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	1420	ns	
		$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V , \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	0	1215	ns	

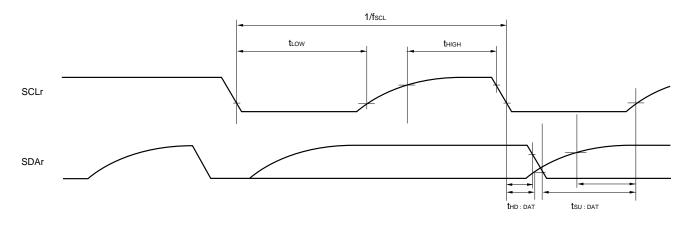
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.


2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)

(2) 1/4 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} -0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND
- C1 = C2 = C3 = C4 = C5 = 0.47 μ F ± 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.7.3 Capacitor split method

(1) 1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_D \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V₋₄ voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
V _{L1} voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} – 0.1	1/3 VL4	1/3 V _{L4} + 0.1	V
Capacitor split wait time ^{Note 1}	t vwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND
- C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 pF±30 %

Revision History

RL78/L13 Data Sheet

		Description			
Rev.	Date	Page	Summary		
0.01	Apr 13, 2012	-	First Edition issued		
0.02	Oct 31, 2012	-	Change of the number of segment pins		
			64-pin products: 36 pins		
			• 80-pin products: 51 pins		
2.10	Aug 12, 2016	1	Modification of features of 16-bit timer and 16-bit timer KB20 (IH) in 1.1 Features		
		5	Addition of product name (RL78/L13) and description (Top View) in 1.3.1 64-pin products		
		6	Addition of product name (RL78/L13) and description (Top View) in 1.3.2 80-pin products		
		10	Modification of functional overview of main system clock in 1.6 Outline of Functions		
		15	Modification of description in Absolute Maximum Ratings (3/3)		
		17, 18	Modification of description in 2.3.1 Pin characteristics		
		38	Modification of remark 3 in 2.5.1 (4) During communication at same potential (simplified I ² C mode)		
		68	Modification of the title and note, and addition of caution in 2.8 RAM Data Retention Characteristics		
		70	Addition of Remark		
		74	Modification of description in Absolute Maximum Ratings ($T_A = 25 \text{ °C}$) (3/3)		
		76	Modification of description in 3.3.1 Pin characteristics		
		95	Modification of remark 3 in 3.5.1 (4) During communication at same potential (simplified I ² C mode)		
		118	Modification of the title and note, and addition of caution in 3.8 RAM Data Retention Characteristics		

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.