

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wldafa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/L13

1.3 Pin Configuration (Top View)

<R> 1.3.1 64-pin products

- 64-pin plastic LQFP (12 \times 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

(2/2)

	Item	64-pin	80-pin				
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)				
Clock output	/buzzer output controller		2				
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 (Main system clock: fmain = 20 MHz operation 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09 (Subsystem clock: fsub = 32.768 kHz operation) 	5 MHz, 5 MHz, 10 MHz n) 6 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz on)				
8/10-bit reso	lution A/D converter	9 channels	12 channels				
Comparator		2 channels					
Serial interfa	ce	 [64-pin] CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel UART: 1 channel [80-pin] 					
		 CSI: 1 channel/UART (UART supporting LIN- CSI: 1 channel/UART: 1 channel/simplified l²(UART: 2 channels 	 CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel UART: 2 channels 				
	I ² C bus	1 channel	channel				
LCD controll	er/driver	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.					
S	egment signal output	36 (32) ^{Note 1}	51 (47) ^{Note 1}				
C	ommon signal output	4 (8	Note 1				
Multiplier and divider/multiply-		• 16 bits × 16 bits = 32 bits (Unsigned or signed	()				
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)					
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)					
DMA control	ler	4 channels					
Vectored	Internal	32	35				
interrupt sou	rces External	11	11				
Key interrupt		5	8				
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-rea	set circuit	 Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.) 					
Voltage dete	ctor	 Rising edge: 1.67 V to 4.06 V (14 steps) Falling edge: 1.63 V to 3.98 V (14 steps) 					
On-chip deb	ug function	Provided					
Power suppl	y voltage	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (TA = -40 \text{ to } +85^{\circ}\text{C})$					
Operation	nhight tomporcture	$v_{DD} = 2.4 \text{ to } 5.5 \text{ v} (1\text{A} = -40 \text{ to } +105^{\circ}\text{C})$					
Operating ar	noient temperature	Consumer applications: $T_A = -40$ to +85°C Industrial applications: $T_A = -40$ to +105°C					

Notes 1. The values in parentheses are the number of signal outputs when 8 com is used.

2. This reset occurs when instruction code FFH is executed.

This reset does not occur during emulation using an in-circuit emulator or an on-chip debugging emulator.

AC Timing Test Points

(4) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions	HS (hig main)	HS (high-speed main) Mode		v-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 50 \; pF, \; R_{\text{b}} = 2.7 \; k\Omega \end{array}$		1000 ^{Note} 1		400 ^{Note 1}		400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \mbox{ (2.4 V}^{\mbox{Note 3}}) \leq V_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$		400 ^{Note 1}		400 ^{Note 1}		400 ^{Note 1}	kHz
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 5 \ k\Omega \end{array}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-		-		250 ^{Note 1}	kHz
Hold time when SCLr = "L"	t LOW	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	475		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \ (2.4 \mbox{ V}^{\mbox{Note 3}}) \leq V_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	1150		1150		1150		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	_		_		1850		ns
Hold time when SCLr = "H"	tніgн	$\label{eq:def_def_def} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1150		1150		ns
			1150		1150		1150		ns
			1550		1550		1550		ns
		$\label{eq:DD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		1850		ns
Data setup time (reception)	tsu:dat	$\label{eq:def_def_def} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1/f _{МСК} + 85 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \ (2.4 \mbox{ V}^{\mbox{Note 3}}) \leq V_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$	1/f _{МСК} + 145 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		ns
			1/f _{мск} + 230 ^{Note 2}		1/fмск+ 230 ^{Note 2}		1/f _{MCK} + 230 ^{Note 2}		ns
		$\label{eq:DD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		1/f _{MCK} + 290 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array} \end{array} \label{eq:eq:constraint}$	0	305	0	305	0	305	ns
		$\label{eq:VDD} \hline \begin{array}{ c c c c c } 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:VDD} \hline $ $ 1.8 \ V \ (2.4 \ V^{\mbox{Note 3}}) \le V_{\mbox{DD}} < 2.7 \ V, $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	0	405	0	405	0	405	ns
		1.6 $V \le V_{DD} <$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_	_	_	_	0	405	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

- Notes 1. The value must also be equal to or less than $f_{MCK}/4$.
 - 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
 - 3. Condition in the HS (high-speed main) mode
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)

<R>

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

Parameter	Symbol		Conditions			h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	on $4.0 V \le V_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			2.7 2.3	$V \le V_{DD} < 4.0 V$, $V \le V_b \le 2.7 V$		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps
			Theoretical value of t maximum transfer rat f _{MCK} = f _{CLK} ^{Note 3}			4.0		1.3		0.6	Mbps
			1.8 V, 1.6	$3 V (2.4 V^{Note 4}) \le V_{DD} < 3.3$ $3 V \le V_b \le 2.0 V$		fмск/6 Note s1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			The test of the test of test o	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in SNOOZE mode is 4800 bps only.

 $\textbf{2. Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode:	24 MHz (2.7 V \leq V _{DD} \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

- 4. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Vb[V]: Communication line voltage
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		HS (higl main)	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 2 /fc∟к		200		1150		1150		ns
			$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array} \end{array}$	tксү1/2 — 50		tксү1/2 — 50		tксү1/2 — 50		ns	
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns	
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiĸ1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	58		479		479		ns	
		$\label{eq:VD} \begin{split} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$				479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	$\begin{array}{c} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$				10		10		ns
1		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array} \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	23		110		110		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.$ C _b = 20 pF, R _b =	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
2		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b =	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ p\text{F}, \ R_{\text{b}} = \end{array} \end{array}$		10		10		10	ns	
SOp output ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution and Remarks are listed on the next page.)

(1) I²C standard mode (2/2)

(T _A = −40 to +85°C,	$1.6 V \le V_{DD} \le 5.5$	V, Vss = 0 V)
---------------------------------	----------------------------	---------------

Parameter	Symbol	Conditions	Conditions HS (high-speed main) Mode		LS (low main)	-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	250		250		250		ns
(reception)		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	250		250		250		ns
		$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	-	-	-	-	250		ns
Data hold time thd:dat (transmission) ^{Note 2}	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \le V_{DD} \le 5.5~V$	Ι	-	-	_	0	3.45	μs
Setup time of stop	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.0		4.0		4.0		μs
condition		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.6~V \le V_{DD} \le 5.5~V$	Ι	-	-	_	4.0		μs
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-	_	_	-	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- 3. Condition in HS (high-speed main) mode
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

<R> 2.8 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

<R> Caution Data in RAM are not retained if the CPU operates outside the specified operating voltage range. Therefore, place the CPU in STOP mode before the operating voltage drops below the specified range.

2.9 Flash Memory Programming Characteristics

1	T∧	= -40	to	+85°	c ·	18	V <	Vnn	< 5 5	v	Vss =	0 V)
١			10	TUJ	υ,	1.0	v _2	V DD	- 0.0	۰,	v 33 -	•••

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclĸ	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	1		24	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years T _A = 85°C	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 year $T_A = 25^{\circ}C$		1,000,000		
		Retained for 5 years T _A = 85° C	100,000			
		Retained for 20 years $T_{A} = 85^{\circ}C$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol Conditions		MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

Note Specification under conditions where the duty factor is 50%.

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points

External System Clock Timing

Parameter	Symbol	Cone	ditions	HS (high-spee	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time ^{Note 5}	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 20 MHz	16/fмск		ns
		fмск ≤ 20 MHz		12/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	2.7 V ≤ V _{DD} ≤ 5.5 V f _{MCK} > 16 MHz			ns
		$f_{MCK} \le 16 \text{ MHz}$ 2.4 V \le V_{DD} \le 5.5 V		12/fмск		ns
				12/fмск and 1000		ns
SCKp high-/low-level width	tkh2, tkl2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–14		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–16		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–36		ns
SIp setup time	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+40		ns
(to SCKp↑) ^{Note 1}		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+62		ns
Delay time from SCKp \downarrow to	tkso2	C = 30 pF ^{Note 4}	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	2/fмск+66		ns
SOp output ^{Note 3}			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+113	ns

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the SOp output lines.
- 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

Parameter	Symbol	Conditions	HS (high-spe	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsiĸ1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	220		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksii		38		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		50	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		50	ns
		$\label{eq:VDD} \hline $2.4~V \le V_{DD}$ < $3.3~V$, $1.6~V \le V_{b}$ \le $2.0~V$,} \\ C_{b}$ = $30~pF$, R_{b} = $5.5~k\Omega$ }$		50	ns

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

CSI mode connection diagram (during communication at different potential)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02),
 g: PIM and POM number (g = 0, 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)

3.5.2 Serial interface IICA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	HS (high-speed main) Mode		ode	Unit
			Standar	d Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fc⊥κ≥ 3.5 MHz	_	_	0	400	kHz
		Normal mode: fc⊥κ≥ 1 MHz	0	100	_	-	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0 ^{Note 3}	3.45	0 ^{Note 3}	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ R}_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (–) = AV _{REFM}
ANIO, ANI1	_	See 3.6.1 (2) .	See 3.6.1 (3) .
ANI16 to ANI25	See 3.6.1 (1) .		
Internal reference voltage Temperature sensor output voltage	See 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$	Vss = 0 V, Reference voltage	(+) = AVREFP, Refere	nce voltage (–) = AVREFM =
0 V)			

Parameter	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	t _{CONV}	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI16 to ANI25	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI25		0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode))		V _{BGR} Note 4			V
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode))			VTMPS25 ^{Note 4}	L	V

(Notes are listed on the next page.)

(3) When reference voltage (+) = internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error ^{Note 1}	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGRNote 3	V

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, TA = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр				5	μs

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} = 0.47 µF		2 V _{L1} -0.10	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 μF		3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F ± 30%

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} -0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} = 0.47 μ F		4 V _{L1} -0.16	4 VL1	4 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND
- C1 = C2 = C3 = C4 = C5 = 0.47 μ F ± 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.7.3 Capacitor split method

(1) 1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_D \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 VL4 -	2/3 VL4	2/3 VL4 +	V
			0.1		0.1	
VL1 voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 VL4 -	1/3 VL4	1/3 VL4 +	V
			0.1		0.1	
Capacitor split wait time ^{Note 1}	tvwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND
- C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 pF±30 %

Revision History

RL78/L13 Data Sheet

			Description
Rev.	Date	Page	Summary
0.01	Apr 13, 2012	-	First Edition issued
0.02	Oct 31, 2012	-	Change of the number of segment pins
			• 64-pin products: 36 pins
			• 80-pin products: 51 pins
2.10	Aug 12, 2016	1	Modification of features of 16-bit timer and 16-bit timer KB20 (IH) in 1.1 Features
		5	Addition of product name (RL78/L13) and description (Top View) in 1.3.1 64-pin products
		6	Addition of product name (RL78/L13) and description (Top View) in 1.3.2 80-pin products
		10	Modification of functional overview of main system clock in 1.6 Outline of Functions
		15	Modification of description in Absolute Maximum Ratings (3/3)
		17, 18	Modification of description in 2.3.1 Pin characteristics
		38	Modification of remark 3 in 2.5.1 (4) During communication at same potential (simplified I ² C mode)
		68	Modification of the title and note, and addition of caution in 2.8 RAM Data Retention Characteristics
		70	Addition of Remark
		74	Modification of description in Absolute Maximum Ratings ($T_A = 25 \text{ °C}$) (3/3)
		76	Modification of description in 3.3.1 Pin characteristics
		95	Modification of remark 3 in 3.5.1 (4) During communication at same potential (simplified I ² C mode)
		118	Modification of the title and note, and addition of caution in 3.8 RAM Data Retention Characteristics

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.