

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wleafa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(2/2)

[]							
	Item	64-pin	80-pin				
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)				
Clock output	/buzzer output controller		2				
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: f_{MAIN} = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: f_{SUB} = 32.768 kHz operation) 					
8/10-bit reso	lution A/D converter	9 channels	12 channels				
Comparator		2 channels					
Serial interfa	ce	 [64-pin] CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel UART: 1 channel 					
 CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 ch CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel UART: 2 channels 							
	I ² C bus	1 channel					
LCD controll	er/driver	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.					
S	egment signal output	36 (32) ^{Note 1}	51 (47) ^{Note 1}				
C	ommon signal output	4 (8	Note 1				
Multiplier and divider/multiply-		• 16 bits × 16 bits = 32 bits (Unsigned or signed	()				
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)					
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)					
DMA control	ler	4 channels					
Vectored	Internal	32	35				
interrupt sou	rces External	11	11				
Key interrupt		5	8				
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-rea	set circuit	 Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.) 					
Voltage dete	ctor	 Rising edge: 1.67 V to 4.06 V (14 steps) Falling edge: 1.63 V to 3.98 V (14 steps) 					
On-chip deb	ug function	Provided					
Power suppl	y voltage	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (TA = -40 \text{ to } +85^{\circ}\text{C})$					
Operation	nhight tomporations	$v_{DD} = 2.4 \text{ to } 5.5 \text{ v} (1\text{A} = -40 \text{ to } +105^{\circ}\text{C})$					
Operating ar	noient temperature	Consumer applications: $T_A = -40$ to +85°C Industrial applications: $T_A = -40$ to +105°C					

Notes 1. The values in parentheses are the number of signal outputs when 8 com is used.

2. This reset occurs when instruction code FFH is executed.

This reset does not occur during emulation using an in-circuit emulator or an on-chip debugging emulator.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{Note\ 1}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	VI2	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	-0.3 to V_DD +0.3 Note 2	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI0, ANI1, ANI16 to ANI26	-0.3 to V_{DD} +0.3 and -0.3 to $AV_{\text{REF}(+)}$ +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2Note 2	HALT	HS (high-speed	fHOCO = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	1.95	mA
current ^{Note 1}		mode	main) mode ^{note} 7	fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	1.95	
				fносо = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.64	mA
				fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.64	
				fносо = 16 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.43	1.11	mA
				fı⊢ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.11	
			LS (low-speed	fносо = 8 MHz ^{Note 4} ,	V _{DD} = 3.0 V		280	770	μA
			main) mode ^{note} 7	fiH = 8 MHz Note 4	V _{DD} = 2.0 V		280	770	
			LV (low-voltage	f _{HOCO} = 4 MHz ^{Note 4} ,	V _{DD} = 3.0 V		430	700	μA
			main) mode ^{Note 7}	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 2.0 V		430	700	
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.42	mA
			main) mode ^{Note} 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.42	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.26	0.86	mA
			V _{DD} = 5.0 V	Resonator connection		0.45	1.15		
				f _{MX} = 16 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.25	0.86	mA
					Resonator connection		0.44	1.15	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.63	mA
			V _{DD} = 5.0 V	Resonator connection		0.28	0.71		
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.19	0.63	mA
					Resonator connection		0.28	0.71	
			LS (low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
			main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	560	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
				V _{DD} = 2.0 V	Resonator connection		160	560	
			Subsystem	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μA
			clock operation	T _A = -40°C	Resonator connection		0.51	0.80	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μA
				T _A = +25°C	Resonator connection		0.57	0.80	
				fsuв = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μA
				T _A = +50°C	Resonator connection		0.67	2.49	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μA
				TA = +70°C	Resonator connection		0.91	4.22	
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μA
				TA - +03 C	Resonator connection		1.31	8.23	
	DD3 ^{Note 6}	STOP	T _A = -40°C				0.18	0.52	μA
		mode	T _A = +25°C				0.24	0.52	
			$T_A = +50^{\circ}C$				0.33	2.21	
			$I_A = +70^{\circ}C$				0.53	3.94	
			I _A = +85°C				0.93	7.95	

(Notes and Remarks are listed on the next page.)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

	1	[T	T		(
Parameter	Symbol	ļ	Conditior	ns		MIN.	TYP.	MAX.	Unit
Low-speed on-	FILNote 1						0.20		μA
chip oscillator									
operating current	Notice 1 2			<u> </u>			<u> </u>		
RTC2 operating current	IRTC ^{Notes 1, 2,} 3	fsuв = 32.768 kHz					0.02		μA
12-bit interval	ITMKA ^{Notes 1, 2,}						0.04		μA
timer operating	4								
current									
Watchdog timer	WDT ^{Notes 1, 2, 5}	fı∟ = 15 kHz					0.22		μA
operating current		ļ							
A/D converter	ADC ^{Notes 1, 6}	When conversion	Normal mode	e, AV _{REFP} = V _{DI}	D = 5.0 V		1.3	1.7	mA
operating current		at maximum speed	Low voltage r	node, AV _{REFP}	= V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter	ADREF ^{Note 1}						75.0		μA
reference voltage									
Tomperature	ITMOO Note 1						75.0		Δ
sensor operating	TIMPS						10.0		μη
current		l							
LVD operating	LVDNotes 1, 7						0.08		μA
current		<u> </u>							
Comparator	ICMP ^{Notes 1, 11}	V _{DD} = 5.0 V,	Window mode	е			12.5		μA
operating current		Regulator output	Comparator h	igh-speed mo	ode	<u> </u>	6.5		μA
			Comparator lo	ow-speed mod	de		1.7		μA
		V _{DD} = 5.0 V,	Window mode	e			8.0		μA
		Regulator output	Comparator h	igh-speed mo	ode	Γ	4.0		μA
	!	Voltage = 1.0 v	Comparator lo	ow-speed mod	de		1.3		μA
Self-	FSPNotes 1, 9						2.00	12.20	mA
programming									
operating current	Notes 1.9		<u> </u>						
BGO operating current	BGO ^{Notes 1, 6}						2.00	12.20	MA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	While the more	de is shifting ^N	ote 10		0.50	0.60	mA
operating current			During A/D cc	onversion, in le	ow voltage		1.20	1.44	mA
			mode, AVREFP	· = V _{DD} = 3.0 V	/				
		CSI/UART operation	1	-			0.70	0.84	mA
LCD operating	LCD1 Notes 1, 12,	External resistance	fLCD = fSUB	1/3 bias,	V _{DD} = 5.0 V,		0.04	0.20	μA
current	13	division method	LCD clock =	four time	V _{L4} = 5.0 V				
			128 Hz	slices					<u> </u>
	LCD2 ^{Note 1, 12}	Internal voltage	fLCD = fSUB	1/3 bias,	V _{DD} = 3.0 V,		0.85	2.20	μA
		boosting method	LCD clock =	four time	V _{L4} = 3.0 V				
			128 Hz	slices	(V _{LCD} = 04H)				
					$V_{DD} = 5.0 V,$		1.55	3.70	μA
			ļ		$V_{L4} = 5.1 V$				
	· Note 1 12				$(VLCD = 12\Pi)$				
	LCD3	Capacitor split	fLCD = fsuB	1/3 blas,	$V_{DD} = 3.0 V,$		0.20	0.50	μA
		method	128 Hz	$128 \text{ Hz} \qquad \text{slices} \qquad \text{VL4} = 3.0 \text{ V}$					

(Notes and Remarks are listed on the next page.)

Note Operation is not possible if 1.6 V ≤ V_{DD} < 1.8 V in LV (low-voltage main) mode while the system is operating on the subsystem clock.

Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (T_A = -40 to +85°C, 1.6 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note}		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		fмск/6		fмск/6		f мск/6	bps
1		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		4.0		1.3		0.6	Mbps
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		fмск/6		f мск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		-		1.3		0.6	Mbps
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		-		-		f мск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		_		_		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode:	24 MHz (2.7 V \leq V _{DD} \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V _{DD} \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM
ANIO, ANI1	_	See 2.6.1 (2).	See 2.6.1 (3).
ANI16 to ANI25	See 2.6.1 (1).		
Internal reference voltage Temperature sensor output voltage	See 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall errorNote 1	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$		1.2	±8.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI16 to ANI25	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	57		95	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
			$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±6.0	LSB
Differential linearity errorNote 1	DLE	10-bit resolution	$1.8~V \le AV_{\text{REFP}} \le 5.5~V$			±2.0	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI25		0		AVREFP	V
		Internal reference vol (2.4 V \leq V _{DD} \leq 5.5 V,	V _{BGR} Note 5			V	
		Temperature sensor (2.4 V \leq V _{DD} \leq 5.5 V,	V _{TMPS25} Note 5			V	

(TA = -40 to +85°C	$4, 1.6 V \le V_{DD} \le 5.5 V,$	Vss = 0 V, Reference	voltage (+) = AVREFP,	, Reference voltage (–) = AVREFM = 0 V)
--------------------	----------------------------------	----------------------	-----------------------	-----------------------	--------------------

(Notes are listed on the next page.)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- When AV_{REFP} < V_{DD}, the MAX. values are as follows.
 Overall error: Add ±4 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 Zero-scale error/Full-scale error: Add ±0.2%FSR to the MAX. value when AV_{REFP} = V_{DD}.
 Integral linearity error/ Differential linearity error: Add ±2 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. See 2.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pins: ANI0, ANI1, ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution Target pin:	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
		ANIU, ANI1, ANI16 to ANI25 ^{Note 3}	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±0.85	%FSR
Full-scale errorNotes 1, 2	Efs	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±6.5	LSB
Differential linearity error Note	DLE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
1			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±2.5	LSB
Analog input voltage	VAIN	ANI0, ANI1, ANI16 to A	NI25	0		Vdd	V
		Internal reference voltation (2.4 V \leq V _{DD} \leq 5.5 V, HS	VBGR ^{Note 4}			V	
		Temperature sensor ou (2.4 V \leq V _{DD} \leq 5.5 V, HS	V _{TMPS25} Note 4			V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$

R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB

- Cautions 1. The RL78/L13 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.
 - Consult Renesas salesperson and distributor for derating when the product is used at T_A = +85°C to +105°C. Note that derating means "systematically lowering the load from the rated value to improve reliability".
- Remark When RL78/L13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 24 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 16 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock
 - **2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)

frequency)

- 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
- **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Со	nditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (high	n-speed	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
instruction execution time)		clock (fmain) operation	main) mode		$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μs
		Subsystem clo operation	осk (fsuв)		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self	HS (high	n-speed	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
		programming mode	main) m	ode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μs
External system clock	f _{EX}	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5$	5.5 V			1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2$	2.7 V			1.0		16.0	MHz
	fexs					32		35	kHz
External system clock input	texн, texL	$2.7~V \le V_{\text{DD}} \le 5$	5.5 V			24			ns
high-level width, low-level		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$				30			ns
wiath	texns, texls		13.7			μs			
TI00 to TI07 input high-level width, low-level width	t⊤ıн, t⊤ı∟					1/fмск+ 10			ns
TO00 to TO07, TKBO00 ^{Note} ,	fто	HS (high-speed main) mode		4.0 V ≤	$V_{\text{DD}} \leq 5.5 \text{ V}$			12	MHz
TKBO01-0 to TKBO01-2 ^{Note}				2.7 V ≤	V _{DD} < 4.0 V			8	MHz
output frequency				$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$				4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spee	d main)	4.0 V ≤	$V_{\text{DD}} \leq 5.5 \text{ V}$			16	MHz
frequency		mode		$2.7~V \leq V_{\text{DD}} < 4.0~V$				8	MHz
				$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$				4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTP	7	2.4 V ≤	$V_{\text{DD}} \leq 5.5 \; V$	1			μs
Key interrupt input high-level width, low-level width	tkrh, tkrl	KR0 to KR7		2.4 V ≤	$V_{\text{DD}} \leq 5.5 \; V$	250			ns
IH-PWM output restart input high-level width	tihr	INTP0 to INTP	7			2			fсık
TMKB2 forced output stop input high-level width	tihr	INTP0 to INTP	2			2			fclk
RESET low-level width	trsl					10			μs

(Note and Remark are listed on the next page.)

Parameter	Symbol	Cone	ditions	HS (high-spee	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time ^{Note 5}	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 20 MHz	16/fмск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 16 MHz	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		12/fмск and 1000		ns
SCKp high-/low-level width	tkh2, tkl2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–14		ns
		$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		tксү2/2–16		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–36		ns
SIp setup time	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+40		ns
(to SCKp↑) ^{Note 1}		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+62		ns
Delay time from SCKp \downarrow to	tkso2	C = 30 pF ^{Note 4}	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		2/fмск+66	ns
SOp output ^{Note 3}			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+113	ns

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the SOp output lines.
- 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

Parameter	Symbol	Conditions	HS (high-spee	HS (high-speed main) Mode		
			MIN.	MAX.		
SCLr clock frequency	fsc∟	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		400 ^{Note 1}	kHz	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$		100 ^{Note 1}	kHz	
Hold time when SCLr = "L"	t∟ow	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	4600		ns	
Hold time when SCLr = "H"	tніgн	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ p\text{F}, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	1200		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	4600		ns	
Data setup time (reception)	tsu:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1/f _{MCK} + 220 ^{Note 2}		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	1/f _{MCK} + 580 ^{Note 2}		ns	
Data hold time (transmission)	thd:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	770	ns	
		$\label{eq:def_def_def} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	0	1420	ns	

(4) During communication at same potential (simplified I²C mode)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
- <R>
- 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	HS (high-speed main) Mode		
				MIN.	MAX.		
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к		600		ns	
			$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns	
			$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 1.8 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	2300		ns	
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}, $ R _b = 1.4 kΩ	tĸcy1/2 – 150		ns	
		$2.7 V \le V_{DD} < C_b = 30 pF, F$: 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Rb = 2.7 k\Omega	tkcy1/2 – 340		ns	
		$2.4 V \le V_{DD} < C_b = 30 pF, F$	3.3 V, 1.6 V \leq V _b \leq 2.0 V, R _b = 5.5 kΩ	tkcy1/2 – 916		ns	
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 V, 2.7 V \le V_b \le 4.0 V, $ R _b = 1.4 kΩ	tkcy1/2 - 24		ns	
		$2.7 \text{ V} \le \text{V}_{\text{DD}} <$ C _b = 30 pF, F	: 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V, R_b = 2.7 kΩ	tксү1/2 — 36		ns	
		$2.4 V \le V_{DD} < C_b = 30 \text{ pF}, \text{ F}$	3.3 V , 1.6 V \leq V _b \leq 2.0 V, R _b = 5.5 kΩ	tксү1/2 — 100		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}, $ R _b = 1.4 kΩ	162		ns	
		$2.7 V \le V_{DD} < C_b = 30 pF, F$: 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Rb = 2.7 k\Omega	354		ns	
		$2.4 V \le V_{DD} \le C_b = 30 pF, F$	2.4 V \leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, C _b = 30 pF, R _b = 5.5 kΩ			ns	
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}, $ R _b = 1.4 kΩ	38		ns	
		$2.7 V \le V_{DD} \le C_b = 30 pF, F$	$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$			ns	
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		38		ns	
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 V, 2.7 V \le V_b \le 4.0 V, $ R _b = 1.4 kΩ		200	ns	
		$2.7 V \le V_{DD} < C_b = 30 pF, F$: 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V, R _b = 2.7 kΩ		390	ns	
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} <$ C_{b} = 30 pF, F	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ		966	ns	

(Note, Caution and Remark are listed on the next page.)

RL78/L13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

3.6.3 Comparator

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		V _{DD} – 1.4	V
	lvcmp		-0.3		V _{DD} + 0.3	V	
Output delay	td	V_{DD} = 3.0 V Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode, window mode	Comparator high-speed mode, window mode			0.86Vdd	V
Low-electric-potential reference voltage	VTW–	Comparator high-speed mode, window mode	Comparator high-speed mode, window mode			0.34Vdd	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	VBGR	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ HS}$ (high-s	speed main) mode	1.38	1.45	1.50	V

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Note Cannot be used in subsystem clock operation and STOP mode.

3.6.4 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	When power supply rises		1.51	1.57	V
	VPDR	When power supply falls	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

3.7 LCD Characteristics

3.7.1 External resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		VDD	V

(2) 1/2 bias method, 1/4 bias method

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) 1/3 bias method

(T_A = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} -0.10	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F ± 30%

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB, R5F10WLAGFB, R5F10WLCGFB, R5F10

