

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wleafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Count	Package	Data Flash	Fields of	Ordering Part Number
			Application ^{Note}	
64 pins	64-pin plastic LQFP	Mounted	A	R5F10WLAAFA#30, R5F10WLAAFA#50, R5F10WLCAFA#30,
	$(12 \times 12 \text{ mm}, 0.65)$			R5F10WLCAFA#50, R5F10WLDAFA#30, R5F10WLDAFA#50,
	mm pitch)			R5F10WLEAFA#30, R5F10WLEAFA#50, R5F10WLFAFA#30,
				R5F10WLFAFA#50, R5F10WLGAFA#30, R5F10WLGAFA#50
	64-pin plastic LFQFP	Mounted	А	R5F10WLAAFB#30, R5F10WLAAFB#50, R5F10WLCAFB#30,
	(10 $ imes$ 10 mm, 0.5			R5F10WLCAFB#50, R5F10WLDAFB#30, R5F10WLDAFB#50,
	mm pitch)			R5F10WLEAFB#30, R5F10WLEAFB#50, R5F10WLFAFB#30,
				R5F10WLFAFB#50, R5F10WLGAFB#30, R5F10WLGAFB#50,
			G	R5F10WLAGFB#30, R5F10WLAGFB#50, R5F10WLCGFB#30,
				R5F10WLCGFB#50, R5F10WLDGFB#30, R5F10WLDGFB#50,
				R5F10WLEGFB#30, R5F10WLEGFB#50, R5F10WLFGFB#30,
				R5F10WLFGFB#50, R5F10WLGGFB#30, R5F10WLGGFB#50
80 pins	80-pin plastic LQFP	Mounted	А	R5F10WMAAFA#30, R5F10WMAAFA#50, R5F10WMCAFA#30,
	(14 $ imes$ 14 mm, 0.65			R5F10WMCAFA#50, R5F10WMDAFA#30, R5F10WMDAFA#50,
	mm pitch)			R5F10WMEAFA#30, R5F10WMEAFA#50, R5F10WMFAFA#30,
				R5F10WMFAFA#50, R5F10WMGAFA#30, R5F10WMGAFA#50
	80-pin plastic LFQFP	Mounted	А	R5F10WMAAFB#30, R5F10WMAAFB#50, R5F10WMCAFB#30,
	$(12 \times 12 \text{ mm}, 0.5$			R5F10WMCAFB#50, R5F10WMDAFB#30, R5F10WMDAFB#50,
	mm pitch)			R5F10WMEAFB#30, R5F10WMEAFB#50, R5F10WMFAFB#30,
				R5F10WMFAFB#50, R5F10WMGAFB#30, R5F10WMGAFB#50,
			G	R5F10WMAGFB#30, R5F10WMAGFB#50, R5F10WMCGFB#30,
				R5F10WMCGFB#50, R5F10WMDGFB#30, R5F10WMDGFB#50,
				R5F10WMEGFB#30, R5F10WMEGFB#50, R5F10WMFGFB#30,
				R5F10WMFGFB#50, R5F10WMGGFB#30, R5F10WMGGFB#50

Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/L13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.4 Pin Identification

ANIO, ANI1,		PCLBUZ0, PCLBUZ1:	Programmable Clock Output/
ANI16 to ANI25:	Analog Input		Buzzer Output
AVREFM:	Analog Reference Voltage	REGC:	Regulator Capacitance
	Minus	REMOOUT:	Remote control Output
AVREFP:	Analog Reference Voltage	RESET:	Reset
	Plus	RTC1HZ:	Real-time Clock 2 Correction Clock
CAPH, CAPL:	Capacitor for LCD		(1 Hz) Output
COM0 to COM7:	LCD Common Output	RxD0 to RxD3:	Receive Data
EXCLK:	External Clock Input	SCK00, SCK10, SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL10:	Serial Clock Output
EXCLKS:	External Clock Input	SDAA0, SDA00, SDA10:	Serial Data Input/Output
	(Subsystem Clock)	SEG0 to SEG50:	LCD Segment Output
INTP0 to INTP7:	External Interrupt Input	SI00, SI10:	Serial Data Input
IVCMP0, IVCMP1:	Comparator Input	SO00, SO10:	Serial Data Output
IVREF0, IVREF1:	Comparator Reference Input	TI00 to TI07:	Timer Input
KR0 to KR7:	Key Return	TO00 to TO07,	
P00 to P07:	Port 0	TKBO00, TKBO01-0,	
P10 to P17:	Port 1	TKBO01-1, TKBO01-2:	Timer Output
P20 to P27:	Port 2	TOOL0:	Data Input/Output for Tool
P30 to P35:	Port 3	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P40 to P47:	Port 4	TxD0 to TxD3:	Transmit Data
P50 to P57:	Port 5	VCOUT0, VCOUT1:	Comparator Output
P60, P61:	Port 6	Vdd:	Power Supply
P70 to P77:	Port 7	VL1 to VL4:	LCD Power Supply
P121 to P127:	Port 12	Vss:	Ground
P130, P137:	Port 13	X1, X2:	Crystal Oscillator (Main System Clock)
		XT1, XT2:	Crystal Oscillator (Subsystem Clock)

2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

Target productsA: Consumer applications; TA = -40 to +85°CR5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA,R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA,R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB,R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB,R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA,R5F10WMEAFA, R5F10WMCAFA, R5F10WMGAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFA,R5F10WMEAFA, R5F10WMCAFB, R5F10WMGAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB,R5F10WMEAFB, R5F10WMCAFB, R5F10WMDAFB,

G: Industrial applications; when using T_A = -40 to +105°C specification products at T_A = -40 to +85°C R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WEGFB, R5F10WEGFB,

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	VL1	V _{L1} voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V∟₄ +0.3	V
	VL2	VL2 voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to VL4 +0.3Note 2	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	Vout	COM0 to COM7	External resistance division method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
		SEG0 to SEG50	Capacitor split method	-0.3 to V_DD +0.3 $^{\rm Note\ 2}$	V
		output voltage	Internal voltage boosting method	–0.3 to VL4 +0.3 $^{\rm Note\ 2}$	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2Note 2	HALT	HS (high-speed	fHOCO = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	1.95	mA
current ^{Note 1}		mode	main) mode ^{note} 7	fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	1.95	
				fносо = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.64	mA
				fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.64	
				fносо = 16 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.43	1.11	mA
				fı⊢ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.11	
			LS (low-speed	fносо = 8 MHz ^{Note 4} ,	V _{DD} = 3.0 V		280	770	μA
			main) mode ^{note} 7	fiH = 8 MHz Note 4	V _{DD} = 2.0 V		280	770	
			LV (low-voltage	f _{HOCO} = 4 MHz ^{Note 4} ,	V _{DD} = 3.0 V		430	700	μA
			main) mode ^{Note 7}	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 2.0 V		430	700	
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.42	mA
			main) mode ^{Note} 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.42	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.26	0.86	mA
				V _{DD} = 5.0 V	Resonator connection		0.45	1.15	
			f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.25	0.86	mA	
				V _{DD} = 3.0 V	Resonator connection		0.44	1.15	
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.63	mA	
			V _{DD} = 5.0 V	Resonator connection		0.28	0.71		
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.63	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71	
			LS (low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
			main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	560	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
				V _{DD} = 2.0 V	Resonator connection		160	560	
			Subsystem	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μA
			clock operation	T _A = -40°C	Resonator connection		0.51	0.80	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μA
				T _A = +25°C	Resonator connection		0.57	0.80	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μA
				T _A = +50°C	Resonator connection		0.67	2.49	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μA
				TA = +70°C	Resonator connection		0.91	4.22	
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μA
				TA - +03 C	Resonator connection		1.31	8.23	
	DD3 ^{Note 6}	STOP	T _A = -40°C				0.18	0.52	μA
	mode	mode ^{Note 8} $T_A = +25^{\circ}C$					0.24	0.52	
			$T_{A} = +50^{\circ}C$				0.33	2.21	
			$I_A = +70^{\circ}C$				0.53	3.94	
			I _A = +85°C				0.93	7.95	

(Notes and Remarks are listed on the next page.)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Cor	iditions	HS (hig main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	t ксү2	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5$	5 V fмск > 20 MHz	8/f мск		-		-		ns
time ^{Note 5}			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$, V fмск > 16 MHz	8/f мск		_		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5$	$4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			6/fмск		6/fмск		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5$	-		6/fмск		6/fмск		ns	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5$	_		_		6/fмск		ns	
SCKp high-/low- tkH2, $4.0 V \le V_{DD} \le 5.5$		V	tксү2/2-7		tксү2/2-7		tксү2/2-7		ns	
level width	tĸ∟2	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5$	V	tксү2/2-8		tксү2/2-8		tксү2/2-8		ns
		$2.4~V \le V_{\text{DD}} \le 5.5$	V	tксү2/2–18		tксү2/2–18		tксү2/2–18		ns
		$1.8 \text{ V} \leq V_{\text{DD}} \leq 5.5$	-		tксү2/2–18		tксү2/2–18		ns	
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	i V	_		-		tксү2/2–66		ns
SIp setup time	tsik2	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5$	5 V	1/fмск+20		1/fмск+30		1/fмск+30		ns
(to SCKp↑) ^{Note 1}		$2.4~V \le V_{\text{DD}} \le 5.5$	1/fмск+30		1/fмск+30		1/fмск+30		ns	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	i V	-		1/fмск+30		1/fмск+30		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	ν	-		_		1/fмск+40		ns
SIp hold time	tksi2	$2.4~V \le V_{\text{DD}} \le 5.5$	i V	1/fмск+31		1/fмск+31		1/fмск+31		ns
(from		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5$	5 V	-		1/fмск+31		1/fмск+31		ns
SCKp1).002		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	ν	-		_		1/fмск+250		ns
Delay time from	tĸso2	C = 30 pF ^{Note 4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+44		2/fмск+110		2/fмск+110	ns
SCKp↓ to SOp		2	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+75		2/fмск+110		2/fмск+110	ns
output			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		2/fмск+110		2/fмск+110	ns
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$		-		-		2/fмск+220	ns

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +85°C, 1.6 V ≤ V_{DD} ≤ 5.5 V, V_{SS} = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

<u> </u>										
Parameter	Symbol		Conditions	HS (hig main)	h-speed Mode	LS (lov main)	v-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Trans mission			Note 1		Note 1		Note 1	bps
			$\label{eq:transfer} \begin{array}{l} Theoretical value of the maximum \\ transfer rate \\ (C_b = 50 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega, \mbox{ V}_b = 2.7 \mbox{ V}) \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3		Note 3		Note 3	bps
			$\label{eq:transfer} \begin{array}{l} \mbox{Theoretical value of the maximum} \\ \mbox{transfer rate} \\ \mbox{(C}_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega, \mbox{ V}_b = 2.3 \mbox{ V}) \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
			$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 8}}) \leq V_{\text{DD}} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $(C_{b} = 50 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega, V_{b} = 1.6 \text{ V})$		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

- RL78/L13
- **Notes 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V (2.4 V^{Note 8}) \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

2.5.2 Serial interface IICA

(1) I²C standard mode (1/2)

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fsc∟	Normal	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	kHz
frequency		mode: fc∟к ≥ 1 MHz	$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq \\ V_{\text{DD}} \leq 5.5 \ V \end{array}$	0	100	0	100	0	100	kHz
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	Ι	_	Ι	-	0	100	kHz
Setup time of	tsu:sta	$2.7 V \leq V_{DD} \leq$	4.7		4.7		4.7		μs	
restart condition		1.8 V (2.4 V ^{Note 3}) \leq VDD \leq 5.5 V		4.7		4.7		4.7		μs
		$1.6 V \le V_{DD} \le$	≦5.5 V	1	_	1	_	4.7		μs
Hold time ^{Note 1} thd:STA		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.0		4.0		4.0		μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$		-	-	-	-	4.0		μs
Hold time when	t LOW	$2.7 V \le V_{DD} \le$	≤5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V (2.4 V	Note 3) \leq VDD \leq 5.5 V	4.7		4.7		4.7		μs
		$1.6 V \le V_{DD} \le$	≤5.5 V	-	-	-	-	4.7		μs
Hold time when	t high	$2.7 V \le V_{DD} \le$	≤5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		1.8 V (2.4 V	Note 3) \leq VDD \leq 5.5 V	4.0		4.0		4.0		μs
		$1.6 V \le V_{DD} \le$	5.5 V	_	_	-	_	4.0		μs

(Notes, Caution and Remark are listed on the next page.)

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}^{Note 3},$ Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGRNote 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor /internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

2.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	When power supply rises	3.98	4.06	4.14	V
voltage			When power supply falls	3.90	3.98	4.06	V
		VLVD1	When power supply rises	3.68	3.75	3.82	V
			When power supply falls	3.60	3.67	3.74	V
		VLVD2	When power supply rises	3.07	3.13	3.19	V
			When power supply falls	3.00	3.06	3.12	V
		VLVD3	When power supply rises	2.96	3.02	3.08	V
			When power supply falls	2.90	2.96	3.02	V
		VLVD4	When power supply rises	2.86	2.92	2.97	V
			When power supply falls	2.80	2.86	2.91	V
		VLVD5	When power supply rises	2.76	2.81	2.87	V
			When power supply falls	2.70	2.75	2.81	V
		VLVD6	When power supply rises	2.66	2.71	2.76	V
			When power supply falls	2.60	2.65	2.70	V
		Vlvd7	When power supply rises	2.56	2.61	2.66	V
			When power supply falls	2.50	2.55	2.60	V
		VLVD8	When power supply rises	2.45	2.50	2.55	V
			When power supply falls	2.40	2.45	2.50	V
		VLVD9	When power supply rises	2.05	2.09	2.13	V
			When power supply falls	2.00	2.04	2.08	V
		VLVD10	When power supply rises	1.94	1.98	2.02	V
			When power supply falls	1.90	1.94	1.98	V
		VLVD11	When power supply rises	1.84	1.88	1.91	V
			When power supply falls	1.80	1.84	1.87	V
		VLVD12	When power supply rises	1.74	1.77	1.81	V
			When power supply falls	1.70	1.73	1.77	V
		VLVD13	When power supply rises	1.64	1.67	1.70	V
			When power supply falls	1.60	1.63	1.66	V
Minimum puls	se width	tLW		300			μs
Detection del	ay time					300	μs

RL78/L13

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

Fields of Application	A: Consumer applications	G: Industrial applications
Operating ambient temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$	TA = -40 to +105°C
Operation mode operating voltage range	HS (high-speed main) mode: 2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 24 MHz 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V \leq V _{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V _{DD} \leq 5.5 V@1 MHz to 4 MHz	HS (high-speed main) mode only: 2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 24 MHz 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	$\begin{array}{l} 1.8 \ V \leq V_{DD} \leq 5.5 \ V: \\ \pm 1.0 \ \% \ @ \ Ta = -20 \ to \ +85^{\circ}C \\ \pm 1.5 \ \% \ @ \ Ta = -40 \ to \ -20^{\circ}C \\ 1.6 \ V \leq V_{DD} < 1.8 \ V: \\ \pm 5.0 \ \% \ @ \ Ta = -20 \ to \ +85^{\circ}C \\ \pm 5.5 \ \% \ @ \ Ta = -40 \ to \ -20^{\circ}C \end{array}$	2.4 V \leq V _{DD} \leq 5.5 V: ±2.0 % @ T _A = +85 to +105°C ±1.0 % @ T _A = -20 to +85°C ±1.5 % @ T _A = -40 to -20°C
Serial array unit	UART CSI: fclk/2 (16 Mbps supported), fClk/4 Simplified I ² C	UART CSI: fc⊥k/4 Simplified I ² C
IICA	Standard mode Fast mode Fast mode plus	Standard mode Fase mode
Voltage detector	 Rising: 1.67 V to 4.06 V (14 levels) Falling: 1.63 V to 3.98 V (14 levels) 	 Rising: 2.61 V to 4.06 V (8 levels) Falling: 2.55 V to 3.98 V (8 levels)

"G: Industrial applications (T_A = -40 to +105°C) differ from "A: Consumer applications" in function as follows:

Remark Electrical specifications of G: Industrial applications (T_A = -40 to +105°C) differ from "A: Consumer applications". For details, see **3.1** to **3.11** below.

3.1 Absolute Maximum Ratings

Absolute	Maximum	Ratings	(1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	–0.3 to +2.8 and –0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	–0.3 to V_{DD} +0.3 ^{Note 2}	V
	Vı2	P60 and P61 (N-ch open-drain)	–0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	–0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	–0.3 to V_{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANIO, ANI1, ANI16 to ANI26	-0.3 to V_{DD} +0.3 and -0.3 to $AV_{\text{REF}(+)}$ +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 24 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 16 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)

frequency)

- 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
- **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.

 Overall error:
 Add ±4 LSB to the MAX. value when AV_{REFP} = V_{DD}.

 Zero-scale error/Full-scale error:
 Add ±0.2%FSR to the MAX. value when AV_{REFP} = V_{DD}.

 Integral linearity error/ Differential linearity error:
 Add ±2 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. See 3.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pins: ANI0, ANI1, ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin:	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
		ANIU, ANIT, ANITO TO ANIZO	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
	10-bit resolution	$3.6~V \le V_{\text{DD}} \le 5.5~V$	2.375		39	μs	
		Target pin: Internal reference	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		(HS (high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±4.0	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANIO, ANI1, ANI16 to ANI25		0		Vdd	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)) Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode))		V _{BGR} Note 3			V
				,	VTMPS25 ^{Note 3}	3	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

RL78/L13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

3.6.3 Comparator

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		V _{DD} – 1.4	V
	lvcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V_{DD} = 3.0 V Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
		Comparator high-speed mode, window mode			2.0	μs	
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode, window mode	,	0.66Vdd	0.76Vdd	0.86Vdd	V
Low-electric-potential reference voltage	VTW–	Comparator high-speed mode, window mode	,	0.14Vdd	0.24V _{DD}	0.34Vdd	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	VBGR	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ HS}$ (high-s	1.38	1.45	1.50	V	

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Note Cannot be used in subsystem clock operation and STOP mode.

3.6.4 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	When power supply rises	1.45	1.51	1.57	V
	VPDR	When power supply falls	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

3.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{SU}:}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

