

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlegfb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Identification

ANIO, ANI1,		PCLBUZ0, PCLBUZ1:	Programmable Clock Output/
ANI16 to ANI25:	Analog Input		Buzzer Output
AVREFM:	Analog Reference Voltage	REGC:	Regulator Capacitance
	Minus	REMOOUT:	Remote control Output
AVREFP:	Analog Reference Voltage	RESET:	Reset
	Plus	RTC1HZ:	Real-time Clock 2 Correction Clock
CAPH, CAPL:	Capacitor for LCD		(1 Hz) Output
COM0 to COM7:	LCD Common Output	RxD0 to RxD3:	Receive Data
EXCLK:	External Clock Input	SCK00, SCK10, SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL10:	Serial Clock Output
EXCLKS:	External Clock Input	SDAA0, SDA00, SDA10:	Serial Data Input/Output
	(Subsystem Clock)	SEG0 to SEG50:	LCD Segment Output
INTP0 to INTP7:	External Interrupt Input	SI00, SI10:	Serial Data Input
IVCMP0, IVCMP1:	Comparator Input	SO00, SO10:	Serial Data Output
IVREF0, IVREF1:	Comparator Reference Input	TI00 to TI07:	Timer Input
KR0 to KR7:	Key Return	TO00 to TO07,	
P00 to P07:	Port 0	TKBO00, TKBO01-0,	
P10 to P17:	Port 1	TKBO01-1, TKBO01-2:	Timer Output
P20 to P27:	Port 2	TOOL0:	Data Input/Output for Tool
P30 to P35:	Port 3	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P40 to P47:	Port 4	TxD0 to TxD3:	Transmit Data
P50 to P57:	Port 5	VCOUT0, VCOUT1:	Comparator Output
P60, P61:	Port 6	Vdd:	Power Supply
P70 to P77:	Port 7	VL1 to VL4:	LCD Power Supply
P121 to P127:	Port 12	Vss:	Ground
P130, P137:	Port 13	X1, X2:	Crystal Oscillator (Main System Clock)
		XT1, XT2:	Crystal Oscillator (Subsystem Clock)

1.6 Outline of Functions

			(1/2)			
	Item	64-pin	80-pin			
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)			
Code flash m	emory (KB)	16 to 128	16 to 128			
Data flash me	emory (KB)	4	4			
RAM (KB)		1 to 8 ^{Note 1}	1 to 8 ^{Note 1}			
Address space	ce	1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main s HS (High-speed main) mode: 1 to 20 MHz (Voc HS (High-speed main) mode: 1 to 16 MHz (Voc LS (Low-speed main) mode: 1 to 8 MHz (Voc LV (Low-voltage main) mode: 1 to 4 MHz (Voc	system clock input (EXCLK) = 2.7 to 5.5 V), = 2.4 to 5.5 V), 1.8 to 5.5 V), = 1.6 to 5.5 V)			
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 to 24 MHz (VDD = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)				
Clock for 16-	bit timer KB20	48 MHz (TYP.): VDD = 2.7 to 5.5 V				
Subsystem c	lock	XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): V_{DD} = 1.6 to 5.5 V				
Low-speed o	n-chip oscillator	15 kHz (TYP.)				
General-purp	ose register	(8-bit register \times 8) \times 4 banks				
Minimum inst	ruction execution time	0.04167 μ s (High-speed on-chip oscillator: f _H = 24 MHz operation)				
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)				
		30.5 μs (Subsystem clock: fsuв = 32.768 kHz operation)				
Instruction se	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate barrel shift and bit manipulation (Set reset test and Boolean operation) etc. 				
I/O port	Total	49	65			
	CMOS I/O	42 (N-ch O.D. I/O [V₀₀ withstand voltage]: 12)	58 (N-ch O.D. I/O [V⊳⊳ withstand voltage]: 18)			
	CMOS input	5	5			
	CMOS output	_	-			
	N-ch O.D I/O (withstand voltage: 6 V)	2	2			
Timer	16-bit timer TAU	8 cha	nnels			
	16-bit timer KB20	1 cha	annel			
	Watchdog timer	1 cha	annel			
	12-bit interval timer (IT)	1 cha	annel			
	Real-time clock 2	1 cha	annel			
	RTC2 output	1 • 1 Hz (subsystem clock: fsue = 32.768 kHz)				
	Timer output	8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)				
	Remote control output function	1 (TAU used)				

Notes 1. In the case of the 8 KB, this is about 7 KB when the self-programming function and data flash function are used.

2. The number of outputs varies depending on the setting of the channels in use and the number of master channels (see 6.9.3 Operation as multiple PWM output function in the RL78/L13 User's Manual.).

2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

Target productsA: Consumer applications; TA = -40 to +85°CR5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA,R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA,R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB,R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB,R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA,R5F10WMEAFA, R5F10WMCAFA, R5F10WMGAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFA,R5F10WMEAFA, R5F10WMCAFB, R5F10WMGAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB,R5F10WMEAFB, R5F10WMCAFB, R5F10WMDAFB,

G: Industrial applications; when using T_A = -40 to +105°C specification products at T_A = -40 to +85°C R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WEGFB, R5F10WEGFB,

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{Note\ 1}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	VI2	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	-0.3 to V_DD +0.3 Note 2	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI0, ANI1, ANI16 to ANI26	-0.3 to V_{DD} +0.3 and -0.3 to $AV_{\text{REF}(+)}$ +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

- Notes 1. The value must also be equal to or less than $f_{MCK}/4$.
 - 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
 - 3. Condition in the HS (high-speed main) mode
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)

<R>

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к		300		1150		1150		ns
			$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$ \begin{split} & 1.8 \; \text{V} \; (2.4 \; \text{V}^{\text{Note 1}}) \leq \text{V}_{\text{DD}} < 3.3 \\ & \text{V}, \\ & 1.6 \; \text{V} \leq \text{V}_{\text{b}} \leq 1.8 \; \text{V}^{\text{Note 2}}, \\ & \text{C}_{\text{b}} = 30 \; \text{pF}, \; \text{R}_{\text{b}} = 5.5 \; \text{k}\Omega \end{split} $	1150		1150		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 kΩ	tксү1/2 — 75		tксү1/2 — 75		tксү1/2 — 75		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h = 2.7 kΩ	tксү1/2 — 170		tксү1/2 — 170		tксү1/2 — 170		ns
		$1.8 V (2.4 V^{No})$ $1.6 V \le V_b \le 2$ $C_b = 30 \text{ pF, R}$	$(10^{10} + 3.3 \text{ V})$ $(2.0 \text{ V}^{\text{Note 2}})$ $(2.0 \text{ V}^{\text{Note 2}})$	tксү1/2 — 458		tксү1/2 — 458		tксү1/2 — 458		ns
SCKp low-level width	tĸ∟1	$4.0 V \le V_{DD} \le C_b = 30 pF, R$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, h = 1.4 kΩ	tксү1/2 — 12		tксү1/2 — 50		tксү1/2 — 50		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h = 2.7 kΩ	tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
		1.8 V (2.4 V ^{NG} 1.6 V \leq V _b \leq 2 C _b = 30 pF, R	$V^{\text{te 1}}) \le V_{\text{DD}} < 3.3 \text{ V},$ 2.0 V ^{Note 2} , $V_{\text{b}} = 5.5 \text{ k}\Omega$	tксү1/2 — 50		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsik1	$4.0 V \le V_{DD} \le C_b = 30 pF, R$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 kΩ	81		479		479		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, R$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h _b = 2.7 kΩ	177		479		479		ns
		$1.8 V (2.4 V^{NG})$ $1.6 V \le V_b \le 2$ $C_b = 30 \text{ pF, R}$	$V^{\text{tot 1}}) \le V_{\text{DD}} < 3.3 \text{ V},$ 2.0 V ^{Note 2} , $V_{\text{b}} = 5.5 \text{ k}\Omega$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	$4.0 V \le V_{DD} \le C_b = 30 pF, R$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 kΩ	19		19		19		ns
3		$2.7 V \le V_{DD} < C_b = 30 pF, R$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h _b = 2.7 kΩ	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{No} \\ 1.6 \ V \leq V_b \leq 2 \\ C_b = 30 \ pF, \ R \end{array}$	$V_{DD}^{\text{te 1}} = V_{DD} < 3.3 \text{ V},$ 2.0 V ^{Note 2} , $V_{b} = 5.5 \text{ k}\Omega$	19		19		19		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, hb = 1.4 k Ω		100		100		100	ns
SOp output ^{Note 3}		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h _b = 2.7 kΩ		195		195		195	ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{No} \\ 1.6 \ V \leq V_b \leq 2 \\ C_b = 30 \ pF, \ R \end{array}$	$\frac{(1)}{100000000000000000000000000000000000$		483		483		483	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(2) I²C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$ 5.5 V	0	400	0	400	0	400	kHz
		≥ 3.5 MHz	$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}})$ $\leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	400	0	400	0	400	kHz
Setup time of	tsu:sta	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
restart condition		1.8 V (2.4 V	Note ³) \leq VDD \leq 5.5 V	0.6		0.6		0.6		μs
Hold time ^{Note 1}	thd:STA	$2.7 \text{ V} \leq V_{\text{DD}}$	≤5.5 V	0.6		0.6		0.6		μs
		1.8 V (2.4 V	$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			0.6		0.6		μs
Hold time when	t LOW	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			1.3		1.3		μs
SCLA0 ="L"		1.8 V (2.4 V	Note ³) \leq VDD \leq 5.5 V	1.3		1.3		1.3		μs
Hold time when	t high	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤5.5 V	0.6		0.6		0.6		μs
SCLA0 ="H"		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		0.6		0.6		0.6		μs
Data setup time	tsu:dat	$2.7 \text{ V} \leq V_{\text{DD}}$	≤5.5 V	100		100		100		ns
(reception)		1.8 V (2.4 V	Note ³) \leq VDD \leq 5.5 V	100		100		100		ns
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μs
(transmission) ^{Note 2}		1.8 V (2.4 V	Note ³) \leq VDD \leq 5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤5.5 V	0.6		0.6		0.6		μs
condition		1.8 V (2.4 V	Note 3) \leq VDD \leq 5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 V \leq V_{DD}$	≤ 5.5 V	1.3		1.3		1.3		μs
		1.8 V (2.4 V	Note 3) \leq VDD \leq 5.5 V	1.3		1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- **3.** Condition in HS (high-speed main) mode
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

2.7 LCD Characteristics

2.7.1 External resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 24 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 16 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)

frequency)

- 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
- **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 6. The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 24 MHz

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Devenueter	Currente e l		Canaditi			MINI			Linit
Parameter	Symbol		Conditio	ons		MIIN.	TYP.	MAX.	Unit
Low-speed on-	FIL Note 1						0.20		μA
operating current									
BTC2 operating	IntroNotes 1, 2, 3	feur = 32 768 kHz					0.02		Δ
current	IRIC	TSUB = 32.768 KHZ					0.02		μΑ
12-bit interval	ITMKA Notes 1, 2, 4						0.04		μA
timer operating									
current									
Watchdog timer	WDT ^{Notes 1, 2, 5}	f⊾ = 15 kHz					0.22		μA
operating current	I Notos 1 6		<u> </u>					<u> </u>	<u> </u>
A/D converter	ADC Notes 1, 6	When conversion	Normal mode	e, AVREFP = VE	DD = 5.0 V		1.3	1.7	mA
		at maximum speed	Low voltage	mode, AVREFP	= V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter	ADREF ^{Note 1}						75.0		μA
voltage current									
Temperature	ITMPS ^{Note 1}						75.0		μA
sensor operating	1111110						10.0		ματ
current									
LVD operating	LVD ^{Notes 1, 7}						0.08		μA
current									
Comparator	ICMP ^{Notes 1, 11}	V _{DD} = 5.0 V,	Window mod	le			12.5		μA
operating current		Regulator output	Comparator I	Comparator high-speed mode			6.5		μA
		vollage – 2.1 v	Comparator I	Comparator low-speed mode			1.7		μA
		V _{DD} = 5.0 V,	Window mod	le			8.0		μA
		Regulator output	Comparator I	high-speed m	ode		4.0		μA
		voltage = 1.8 v	Comparator I	low-speed mo	de		1.3		μA
Self-	IFSP ^{Notes 1, 9}						2.00	12.20	mA
programming									
operating current									
BGO operating current	BGO ^{Notes 1, 8}						2.00	12.20	mA
SNOOZE	Isnoz ^{Note 1}	ADC operation	While the mc	ode is shifting [*]	Note 10		0.50	0.60	mA
operating current			During A/D c	onversion, in	low voltage		1.20	1.44	mA
			mode, AV _{REF}	$_{\rm P} = V_{\rm DD} = 3.0$	v				
		CSI/UART operation					0.70	0.84	mA
LCD operating	LCD1 Notes 1, 12,	External resistance	fico = fsug	1/3 bias.	V _{DD} = 5.0 V.		0.04	0.20.	μA
current	13	division method	LCD clock	four time	$V_{L4} = 5.0 V$,
			= 128 Hz	slices					
	LCD2Note 1, 12	Internal voltage	flcd = fsub	1/3 bias,	V _{DD} = 3.0 V,		0.85	2.20	μA
		boosting method	LCD clock	four time	V _{L4} = 3.0 V				
			= 128 Hz	slices	(V _{LCD} = 04H)				
					V _{DD} = 5.0 V,		1.55	3.70	μA
					V _{L4} = 5.1 V				
					(V _{LCD} = 12H)				-
	LCD3 ^{Note 1, 12}	Capacitor split	flcd = fsub	1/3 bias,	V _{DD} = 3.0 V,		0.20	0.50	μA
		method	LCD clock	four time	$V_{L4} = 3.0 V$				
1			120112	511003	1	1	1		1

(Notes and Remarks are listed on the next page.)

Note Specification under conditions where the duty factor is 50%.

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points

External System Clock Timing

TI/TO Timing

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	24/f мск		ns
		Con 4.0 $\lor \le \lor_{DD} \le 5.5 \lor$, 21 2.7 $\lor \le \lor_b \le 4.0 \lor$ 8 4 2.7 $\lor \le \lor_b \le 4.0 \lor$, 21 2.3 $\lor \le \lor_b \le 2.7 \lor$ 11 8 4 4 7 2.3 $\lor \le \lor_b \le 2.7 \lor$ 11 8 4 7 2.4 $\lor \le \lor_b \le 2.7 \lor$ 11 8 4 7 1.6 $\lor \le \lor_b \le 2.0 \lor$ 11 8 4 7 1.6 $\lor \lor_b \le 2.0 \lor$ 11 8 4 4 7 1.6 $\lor \lor_b \le 2.0 \lor$ 11 8 4 4 7 1.6 $\lor \lor_b \le 2.0 \lor$ 11 8 4 4 1.0 $\lor \lor_b \le 5.5 \lor$, 2. 2.7 $\lor \lor \lor_{DD} < 4.0 \lor$, 2. 2.7 $\lor \lor \lor_{DD} < 3.3 \lor$, 1. 4.0 $\lor \lor_{DD} \le 5.5 \lor$, 2. 2.7 $\lor \lor \lor_{DD} \le 4.0 \lor$, 2. 2.4 $\lor \lor \lor_{DD} \le 5.5 \lor$, 2. 2.7 $\lor \lor \lor_{DD} \le 4.0 \lor$, 2. 2.4 $\lor \lor \lor_{DD} \le 5.5 \lor$, 2. 2.7 $\lor \lor \lor_{DD} \le 4.0 \lor$, 2. 2.4 $\lor \lor \lor_{DD} \le 5.5 \lor$, 2. 2.7 $\lor \lor \lor_{DD} \le 4.0 \lor$, 2. 2.4 $\lor \lor_{DD} \le 5.5 \lor$, 2. C _b = 30 pF, R _b = 1.4 k; 2.7 $\lor \lor_{DD} < 3.3 \lor$, 1. 2.4 $\lor \lor_{DD} < 3.3 \lor$, 1. 2.5 $\lor \lor_{DD} < 3.3 \lor$, 1. 2.5 $\lor \lor_{DD} < 3.3 \lor$, 1. 2.5 $\lor \lor_{DD} < 3.3 \lor$, 1. 2.4 $\lor \lor_{DD} < 3.3 \lor$, 1. 2. 2.4 $\lor \lor_{DD} < 3.3 \lor$, 1. 2. 2. 2.4 $\lor \lor_{DD} < 3.3 \lor$, 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$	20 MHz < fмск	32/f мск		ns
		$2.3 V {\leq} V_b {\leq} 2.7 V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24/f мск		ns	
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	20 MHz < fмск	72/fмск		ns
			16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			8 MHz < fмск ≤ 16 MHz	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/f мск		ns
			fмск ≤ 4 MHz	20/ f мск		ns
SCKp high-/low-level width	tkh2, tkl2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 24		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{PD}}$	$2.3~V \leq V_{b} \leq 2.7~V$	tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}_{\text{PD}}$	$1.6~V \leq V_b \leq 2.0~V$	tkcy2/2 – 100		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{PD}}$	$2.3~V \leq V_{b} \leq 2.7~V$	1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V$	1/fмск + 60		ns
SIp hold time	tksi2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 62		ns
(from SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} \leq 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	1/fмск + 62		ns
		$2.4~V \leq V_{\text{DD}} \leq 3.3~V,$	$1.6~V \leq V_b \leq 2.0~V$	1/fмск + 62		ns
Delay time from SCKp \downarrow to	tkso2	$4.0~V \le V_{\text{DD}} \le 5.5~V,$	$2.7~V \leq V_{b} \leq 4.0~V,$		2/fмск + 240	ns
SOp output ^{Note 4}		C _b = 30 pF, R _b = 1.4	ŧkΩ			
		$2.7 V \le V_{DD} < 4.0 V$, $C_b = 30 pF$, $R_b = 2.7$, 2.3 V \leq V _b \leq 2.7 V, 7 k Ω		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ s}$	$1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ 5 kΩ		2/fмск + 1146	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)

3.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	When power supply rises	3.90	4.06	4.22	V
voltage			When power supply falls	3.83	3.98	4.13	V
		VLVD1	When power supply rises	3.60	3.75	3.90	V
			When power supply falls	3.53	3.67	3.81	V
		VLVD2	When power supply rises	3.01	3.13	3.25	V
			When power supply falls	2.94	3.06	3.18	V
		VLVD3	When power supply rises	2.90	3.02	3.14	V
			When power supply falls	2.85	2.96	3.07	V
		VLVD4	When power supply rises	2.81	2.92	3.03	V
			When power supply falls	2.75	2.86	2.97	V
		VLVD5	When power supply rises	2.71	2.81	2.92	V
			When power supply falls	2.64	2.75	2.86	V
		VLVD6	When power supply rises	2.61	2.71	2.81	V
			When power supply falls	2.55	2.65	2.75	V
		VLVD7	When power supply rises	2.51	2.61	2.71	V
			When power supply falls	2.45	2.55	2.65	V
Minimum pulse width		t∟w		300			μs
Detection delay time						300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt and reset VLVD5 VP0 mode VLVD4		Vpoc2,	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.75	2.86	V
			LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
VLVD3			LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVD0		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.6 Supply voltage rise time

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rise slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Ievel the the Time to hold the TOOL0 pin at the the POF Iow level after the external reset is the the released (excluding the processing time of the firmware to control the flash memory) the the		POR and LVD reset must be released before the external reset is released.	1			ms

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{SU}:}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4. PACKAGE DRAWINGS

4.1 64-pin Products

R5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA, R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA

NOTE

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ZE

1.125

4.2 80-pin Products

R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMEAFA, R5F10WMFAFA, R5F10WMGAFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

detail of lead end

Referance	Dimension in Millimeters					
Symbol	Min	Nom	Max			
D	13.80	14.00	14.20			
E	13.80	14.00	14.20			
HD	17.00	17.20	17.40			
HE	17.00	17.20	17.40			
А			1.70			
A1	0.05	0.125	0.20			
A2	1.35	1.40	1.45			
A3		0.25				
bp	0.26	0.32	0.38			
С	0.10	0.145	0.20			
L		0.80				
Lp	0.736	0.886	1.036			
L1	1.40	1.60	1.80			
	0°	3°	8°			
е		0.65				
х			0.13			
У			0.10			
ZD		0.825				
ZE		0.825				

Lp

R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB, R5F10WMEAFB, R5F10WMFAFB, R5F10WMGAFB, R5F10WMCGFB, R5F10WMCGAFB, R5W10WCGAFB, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10W

