

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlfafa-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Parameter	Symbol		Conditions	Ratings	Unit
<r> <r></r></r>	Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
			Total of all pins -170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
<r></r>		Іон2	Per pin	P20, P21	-0.5	mA
<r></r>			Total of all pins		-1	mA
<r></r>	Output current, low IoL1	lol1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
			Total of all pins	P40 to P47, P130	70	mA
<r></r>			170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
<r></r>		IOL2	Per pin	P20, P21	1	mA
<r></r>	Operating ambient T _A		Total of all pins		2	mA
			In normal operation	on mode	-40 to +85	°C
	temperature		In flash memory p	programming mode		
	Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (3/3)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0.8Vdd		Vdd	V
			TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.2		Vdd	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	2.0		Vdd	V
-			TTL input buffer $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	1.5		V _{DD}	V
	VIH3	P20, P21	0.7V _{DD}		Vdd	V	
	VIH4	P60, P61	0.7V _{DD}		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	0.8VDD		Vdd	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0		0.2V _{DD}	V
	VIL2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V \leq V _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20, P21		0		0.3VDD	V
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	S, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Caution The maximum value of V_I of pins P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ mA \end{array} \end{array} \label{eq:VDD}$	Vdd - 1.5			V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -3.0 mA	$V_{\text{DD}}-0.7$			V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -2.0 mA	$V_{\text{DD}} - 0.6$			V
			1.8 V \leq V _{DD} \leq 5.5 V, Іон1 = -1.5 mA	V _{DD} - 0.5			V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -1.0 mA	$V_{\text{DD}} - 0.5$			V
	V _{OH2}	P20 and P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH2 = -100 μ A	V _{DD} - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL1}} = 20 \ \text{mA} \end{array}$			1.3	V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 8.5 mA			0.7	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 0.6 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $I_{\text{OL1}} = 0.3 \text{ mA}$			0.4	V
	Vol2	P20 and P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL2}} = 400 \ \mu\text{A}$			0.4	V
	Vol3	P60 and P61	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol3 = 5.0 mA			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ Iol3 = 1.0 mA			0.4	V

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Condition	าร		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	I _{FIL} Note 1						0.20		μA
RTC2 operating current	_{RTC} ^{Notes 1, 2,} 3	fsuв = 32.768 kHz					0.02		μA
12-bit interval timer operating current	_{TMKA} Notes 1, 2, 4						0.04		μA
Watchdog timer operating current	Notes 1, 2, 5	f⊩ = 15 kHz	fi∟ = 15 kHz				0.22		μA
A/D converter operating current	ADC ^{Notes 1, 6}	When conversion at maximum speed	Normal mode		D = 5.0 V = V _{DD} = 3.0 V		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	ADREF ^{Note 1}						75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}						75.0		μA
LVD operating current	LVD ^{Notes 1, 7}						0.08		μA
Comparator	ICMP ^{Notes 1, 11}	V _{DD} = 5.0 V,	Window mode	Э			12.5		μA
operating current		Regulator output	Comparator h	igh-speed mo	ode		6.5		μA
		voltage = 2.1 V	Comparator lo	ow-speed mo	de		1.7		μA
	V_{DD} = 5.0 V, Regulator output voltage = 1.8 V	Window mode	e			8.0		μA	
		Comparator high-speed mode				4.0		μA	
		Vollage – 1.6 V	Comparator lo	ow-speed mo	de		1.3		μA
Self- programming operating current	FSP ^{Notes 1, 9}						2.00	12.20	mA
BGO operating current	BGO ^{Notes 1, 8}						2.00	12.20	mA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	While the mo	de is shifting ^N	ote 10		0.50	0.60	mA
operating current			During A/D conversion, in low voltage mode, AVREFP = VDD = 3.0 V				1.20	1.44	mA
		CSI/UART operation	1				0.70	0.84	mA
LCD operating current	_{LCD1} Notes 1, 12, 13	External resistance division method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	$V_{DD} = 5.0 V,$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	I _{LCD2} Note 1, 12	Internal voltage boosting method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	$V_{DD} = 3.0 V,$ $V_{L4} = 3.0 V$ $(V_{LCD} = 04H)$		0.85	2.20	μA
					$V_{DD} = 5.0 V,$ $V_{L4} = 5.1 V$ $(V_{LCD} = 12H)$		1.55	3.70	μA
	I _{LCD3} Note 1, 12	Capacitor split method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20	0.50	μA

(Notes and Remarks are listed on the next page.)

Note Operation is not possible if 1.6 V ≤ V_{DD} < 1.8 V in LV (low-voltage main) mode while the system is operating on the subsystem clock.

Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions		h-speed Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		400 ^{Note 1}		400 ^{Note 1}	kHz
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 3 \; \text{k}\Omega \end{array}$		400 ^{Note 1}		400 ^{Note 1}		400 ^{Note 1}	kHz
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\label{eq:def-loss} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{\scriptsize DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-		_		250 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	475		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \mbox{ (2.4 V}^{\mbox{Note 3}}) \leq V_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, R_{\mbox{b}} = 3 k\Omega \end{array}$	1150		1150		1150		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:def-loss} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_		1850		ns
Hold time when SCLr = "H"	t high	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	1150		1150		1150		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5 \; \text{k}\Omega \end{array}$	1550		1550		1550		ns
		$\begin{array}{l} 1.6 \; V \leq V_{DD} < 1.8 \; V, \\ C_b = 100 \; pF, \; R_b = 5 \; k\Omega \end{array}$	_		_		1850		ns
Data setup time (reception)	tsu:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq V_{\text{DD}} \leq 5.5 \mbox{ V}, \\ C_{\text{b}} = 50 \mbox{ pF}, \mbox{ R}_{\text{b}} = 2.7 \mbox{ k}\Omega \end{array}$	1/f _{МСК} + 85 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	1/f _{МСК} + 145 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		1/f _{МСК} + 145 ^{Note 2}		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 230 ^{Note 2}		1/fмск+ 230 ^{Note 2}		1/f _{MCK} + 230 ^{Note 2}		ns
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_		1/f _{MCK} + 290 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	0	405	0	405	0	405	ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-	_	_	_	0	405	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

2.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	When power supply rises	3.98	4.06	4.14	V
voltage			When power supply falls	3.90	3.98	4.06	V
		VLVD1	When power supply rises	3.68	3.75	3.82	V
			When power supply falls	3.60	3.67	3.74	V
		VLVD2	When power supply rises	3.07	3.13	3.19	V
			When power supply falls	3.00	3.06	3.12	V
		VLVD3	When power supply rises	2.96	3.02	3.08	V
			When power supply falls	2.90	2.96	3.02	V
		VLVD4	When power supply rises	2.86	2.92	2.97	V
			When power supply falls	2.80	2.86	2.91	V
		VLVD5	When power supply rises	2.76	2.81	2.87	V
			When power supply falls	2.70	2.75	2.81	V
		VLVD6	When power supply rises	2.66	2.71	2.76	V
		When power supply falls	2.60	2.65	2.70	V	
	VLVD7	When power supply rises	2.56	2.61	2.66	V	
			When power supply falls	2.50	2.55	2.60	V
		VLVD8	When power supply rises	2.45	2.50	2.55	V
			When power supply falls	2.40	2.45	2.50	V
		VLVD9	When power supply rises	2.05	2.09	2.13	V
			When power supply falls	2.00	2.04	2.08	V
		VLVD10	When power supply rises	1.94	1.98	2.02	V
			When power supply falls	1.90	1.94	1.98	V
		VLVD11	When power supply rises	1.84	1.88	1.91	V
			When power supply falls	1.80	1.84	1.87	V
		VLVD12	When power supply rises	1.74	1.77	1.81	V
			When power supply falls	1.70	1.73	1.77	V
		VLVD13	When power supply rises	1.64	1.67	1.70	V
			When power supply falls	1.60	1.63	1.66	V
Minimum pu	Ilse width	t∟w		300			μs
Detection de	elay time					300	μs

Fields of Application	A: Consumer applications	G: Industrial applications
Operating ambient temperature	$T_{A} = -40$ to +85°C	TA = -40 to +105°C
Operation mode operating voltage range	$ \begin{array}{l} \text{HS (high-speed main) mode:} \\ 2.7 \ \text{V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 24 MHz} \\ 2.4 \ \text{V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 16 MHz} \\ \text{LS (low-speed main) mode:} \\ 1.8 \ \text{V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 8 MHz} \\ \text{LV (low-voltage main) mode:} \\ 1.6 \ \text{V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 4 MHz} \\ \end{array} $	HS (high-speed main) mode only: 2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 24 MHz 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	$\begin{array}{l} 1.8 \ V \leq V_{DD} \leq 5.5 \ V: \\ \pm 1.0 \ \% \ @ \ TA = -20 \ to \ +85^{\circ}C \\ \pm 1.5 \ \% \ @ \ TA = -40 \ to \ -20^{\circ}C \\ 1.6 \ V \leq V_{DD} < 1.8 \ V: \\ \pm 5.0 \ \% \ @ \ TA = -20 \ to \ +85^{\circ}C \\ \pm 5.5 \ \% \ @ \ TA = -40 \ to \ -20^{\circ}C \end{array}$	$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 5.5 \ V: \\ \pm 2.0 \ \% \ @ \ T_A = +85 \ to \ +105^\circ C \\ \pm 1.0 \ \% \ @ \ T_A = -20 \ to \ +85^\circ C \\ \pm 1.5 \ \% \ @ \ T_A = -40 \ to \ -20^\circ C \end{array}$
Serial array unit	UART CSI: fcLk/2 (16 Mbps supported), fcLk/4 Simplified I ² C	UART CSI: fcLk/4 Simplified I ² C
IICA	Standard mode Fast mode Fast mode plus	Standard mode Fase mode
Voltage detector	 Rising: 1.67 V to 4.06 V (14 levels) Falling: 1.63 V to 3.98 V (14 levels) 	 Rising: 2.61 V to 4.06 V (8 levels) Falling: 2.55 V to 3.98 V (8 levels)

"G: Industrial applications (T_A = -40 to +105°C) differ from "A: Consumer applications" in function as follows:

Remark Electrical specifications of G: Industrial applications (T_A = -40 to +105°C) differ from "A: Consumer applications". For details, see **3.1** to **3.11** below.

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	VL2	–0.3 to VL4 +0.3 $^{\rm Note\ 2}$	V		
	VL3	VL3 voltage ^{Note 1}		–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	S	COM0 to COM7	External resistance division method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
		SEG0 to SEG50	Capacitor split method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
		output voltage	Internal voltage boosting method	–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		16.0	
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator		32	32.768	35	kHz

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/L13 User's Manual.

3.2.2 On-chip oscillator characteristics

Parameter Symbol Conditions MIN. TYP. MAX. Unit 1 24 MHz High-speed on-chip oscillator fн clock frequencyNotes 1, 2 +85 to +105°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -2 +2 % High-speed on-chip oscillator clock frequency accuracy –20 to +85°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1 +1 % -40 to -20°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1.5 +1.5 % fı∟ 15 kHz Low-speed on-chip oscillator clock frequency Low-speed on-chip oscillator -15 +15 % clock frequency accuracy

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for the instruction execution time.

Parameter	Symbol	Condition	าร		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ісінт	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VDD				1	μΑ
	Ілна	P20 and P21, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port mode and when external clock is input			1	μA
				Resonator connected			10	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Vi = Vss				-1	μA
		P20 and P21, RESET	VI = VSS				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μA
				Resonator connected			-10	μA
On-chip pull-up resistance	Ruı	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130	Vi = Vss		10	20	100	kΩ
	Ru2	P40 to P44	VI = Vss		10	20	100	kΩ

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
- <R>
- 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

Parameter S	Symbol		Conditions	HS (high-spe	Unit	
				MIN.	MAX.	
Transfer rate		Reception	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		fмск/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate f _{CLK} = 24 MHz, f _{MCK} = f _{CLK}		2.0	Mbps
			$2.7 V \le V_{DD} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		fмск/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate f_{CLK} = 24 MHz, f_{MCK} = f_{CLK}		2.0	Mbps
			$2.4 V \le V_{DD} < 3.3 V,$ 1.6 V $\le V_b \le 2.0 V$		fмск/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate f _{CLK} = 24 MHz, f _{MCK} = f _{CLK}		2.0	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Note Transfer rate in SNOOZE mode is 4800 bps only.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Parameter	Symbol		Conditions	HS (high-spee	Unit	
				MIN.		MAX.
Transfer rate		Transmission	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.0 ^{Note 2}	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 ^{Note 4}	Mbps
		$2.4 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 5	bps	
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 ^{Note 6}	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_DD \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times In (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.

 Overall error:
 Add ±4 LSB to the MAX. value when AV_{REFP} = V_{DD}.

 Zero-scale error/Full-scale error:
 Add ±0.2%FSR to the MAX. value when AV_{REFP} = V_{DD}.

 Integral linearity error/ Differential linearity error:
 Add ±2 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. See 3.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pins: ANI0, ANI1, ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit
Overall errorNote 1	AINL	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI0, ANI1, ANI16 to ANI25	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale errorNotes 1, 2	Ezs	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±4.0	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0, ANI1, ANI16 to ANI25		0		Vdd	V
	Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high		n-speed main) mode))	V _{BGR} Note 3		V	
		Temperature sensor output votes (2.4 V \leq V _{DD} \leq 5.5 V, HS (high	-	-		3	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

RL78/L13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

3.6.3 Comparator

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Input voltage range	lvref			0		V _{DD} – 1.4	V
	lvcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V_{DD} = 3.0 V Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
		Comparator high-speed mode, window mode			2.0	μs	
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode, window mode			0.76Vdd	0.86Vdd	V
Low-electric-potential reference voltage	VTW–	Comparator high-speed mode, window mode			0.24V _{DD}	0.34Vdd	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	Vbgr	$2.4~V \leq V_{\text{DD}} \leq 5.5~V,~HS$ (high-speed main) mode			1.45	1.50	V

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Note Cannot be used in subsystem clock operation and STOP mode.

3.6.4 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	VPOR When power supply rises		1.51	1.57	V
	VPDR	When power supply falls	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

