

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlfafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 Outline of Functions

	Item	64-pin	80-pin				
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)				
Code flash m	emory (KB)	16 to 128	16 to 128				
Data flash me	emory (KB)	4	4				
RAM (KB)		1 to 8 ^{Note 1}	1 to 8 ^{Note 1}				
Address space	ce	1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (V_{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V)					
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 to 24 MHz (Vot HS (High-speed main) mode: 1 to 16 MHz (Vot LS (Low-speed main) mode: 1 to 8 MHz (Vot LV (Low-voltage main) mode: 1 to 4 MHz (Vot	= 2.4 to 5.5 V), = 1.8 to 5.5 V),				
Clock for 16-	bit timer KB20	48 MHz (TYP.): V _{DD} = 2.7 to 5.5 V					
Subsystem c	lock	XT1 (crystal) oscillation, external subsystem clo 32.768 kHz (TYP.): V _{DD} = 1.6 to 5.5 V	ock input (EXCLKS)				
Low-speed o	n-chip oscillator	15 kHz (TYP.)					
General-purp	ose register	(8-bit register \times 8) \times 4 banks					
Minimum inst	truction execution time	0.04167 μ s (High-speed on-chip oscillator: f _{IH} = 24 MHz operation)					
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)					
		30.5 μ s (Subsystem clock: f _{SUB} = 32.768 kHz op	peration)				
Instruction se	et	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 line) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set 					
I/O port	Total	49	65				
	CMOS I/O	42 (N-ch O.D. I/O [V _{DD} withstand voltage]: 12)	58 (N-ch O.D. I/O [V _{DD} withstand voltage]:				
	CMOS input	5	5				
	CMOS output	-	-				
	N-ch O.D I/O (withstand voltage: 6 V)	2	2				
Timer	16-bit timer TAU	8 chai	nnels				
	16-bit timer KB20	1 cha	nnel				
	Watchdog timer	1 cha	nnel				
	12-bit interval timer (IT)	1 cha	nnel				
	Real-time clock 2	1 channel					
	RTC2 output	1 • 1 Hz (subsystem clock: fsuв = 32.768 kHz)					
	Timer output	8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)					
	Remote control output	1 (TAU used)					

Notes 1. In the case of the 8 KB, this is about 7 KB when the self-programming function and data flash function are used.

2. The number of outputs varies depending on the setting of the channels in use and the number of master channels (see 6.9.3 Operation as multiple PWM output function in the RL78/L13 User's Manual.).

(2/2)

	Item	64-pin	80-pin					
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)					
Clock output	/buzzer output controller		2					
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: f_{MAIN} = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: f_{SUB} = 32.768 kHz operation) 						
8/10-bit reso	lution A/D converter	9 channels	12 channels					
Comparator		2 channels						
Serial interfa	ice	 [64-pin] CSI: 1 channel/UART (UART supporting LIN CSI: 1 channel/UART: 1 channel/simplified 1² UART: 1 channel [80-pin] CSI: 1 channel/UART (UART supporting LIN CSI: 1 channel/UART: 1 channel/simplified 1² 	² C: 1 channel -bus): 1 channel/simplified l ² C: 1 channel					
		UART: 2 channels						
	I ² C bus	1 channel						
LCD controll	er/driver	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.						
Se	egment signal output	36 (32) ^{Note 1}	51 (47) ^{Note 1}					
C	ommon signal output	4 (8	3) ^{Note 1}					
Multiplier and accumulator	d divider/multiply-	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 						
DMA control	ler	4 channels						
Vectored	Internal	32	35					
interrupt sou	External	11	11					
Key interrupt	t	5	8					
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 						
Power-on-res	set circuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)						
Voltage dete	ector	 Rising edge: 1.67 V to 4.06 V (14 steps) Falling edge: 1.63 V to 3.98 V (14 steps) 						
On-chip deb	ug function	Provided						
Power supply	y voltage	V_{DD} = 1.6 to 5.5 V (TA = -40 to +85°C) V_{DD} = 2.4 to 5.5 V (TA = -40 to +105°C)						
Operating an	nbient temperature	Consumer applications: $T_A = -40$ to +85°C Industrial applications: $T_A = -40$ to +105°C						

Notes 1. The values in parentheses are the number of signal outputs when 8 com is used.

2. This reset occurs when instruction code FFH is executed.

This reset does not occur during emulation using an in-circuit emulator or an on-chip debugging emulator.

2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

Target productsA: Consumer applications; TA = -40 to +85°CR5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA,R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA,R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB,R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB,R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA,R5F10WMEAFA, R5F10WMCAFA, R5F10WMGAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFA,R5F10WMEAFA, R5F10WMCAFB, R5F10WMGAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB,R5F10WMEAFB, R5F10WMCAFB, R5F10WMDAFB,

G: Industrial applications; when using T_A = -40 to +105°C specification products at T_A = -40 to +85°C R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WEGFB, R5F10WEGFB,

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
		$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	
		$1.8~V \leq V_{\text{DD}} < 2.4~V$	1.0		8.0	
		$1.6~V \leq V_{\text{DD}} < 1.8~V$	1.0		4.0	
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator		32	32.768	35	kHz

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/L13 User's Manual.

2.2.2 On-chip oscillator characteristics

Parameter Symbol Conditions MIN. TYP. MAX. Unit High-speed on-chip oscillator fн 1 24 MHz clock frequencyNotes 1, 2 High-speed on-chip oscillator -20 to +85°C $1.8~V \le V_{\text{DD}} \le 5.5~V$ -1.0 +1.0% clock frequency accuracy $1.6~V \le V_{\text{DD}} < 1.8~V$ -5.0 +5.0 % -40 to -20°C $1.8~V \leq V_{\text{DD}} \leq 5.5~V$ -1.5 +1.5 % $1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$ -5.5 +5.5 % Low-speed on-chip oscillator fı∟ 15 kHz clock frequency Low-speed on-chip oscillator -15 +15 % clock frequency accuracy

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for the instruction execution time.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0.8Vdd		Vdd	V
	VIH2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.2		Vdd	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	2.0		Vdd	V
			TTL input buffer $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	1.5		V _{DD}	V
	VIH3	P20, P21		0.7V _{DD}		Vdd	V
	VIH4	P60, P61	0.7V _{DD}		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	0.8VDD		Vdd	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0		0.2V _{DD}	V
	VIL2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V \leq V _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20, P21	0		0.3VDD	V	
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	S, RESET	0		0.2VDD	V

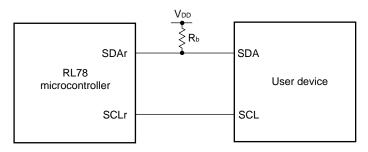
 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Caution The maximum value of V_I of pins P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

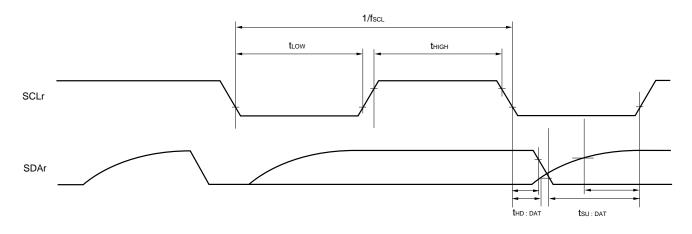
- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot}$ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot} 1 \text{ MHz}$ to 4 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped.
 When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. However, not including the current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - **6.** Not including the current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 24 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


Parameter	Symbol		Condition	าร		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	I _{FIL} Note 1						0.20		μA
RTC2 operating current	_{RTC} ^{Notes 1, 2,} 3	fsuв = 32.768 kHz					0.02		μA
12-bit interval timer operating current	_{TMKA} Notes 1, 2, 4						0.04		μA
Watchdog timer operating current	Notes 1, 2, 5	f⊩ = 15 kHz					0.22		μA
A/D converter operating current	ADC ^{Notes 1, 6}	When conversion at maximum speed	Normal mode		D = 5.0 V = V _{DD} = 3.0 V		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	ADREF ^{Note 1}						75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}						75.0		μA
LVD operating current	LVD ^{Notes 1, 7}						0.08		μA
Comparator			Window mode	Э			12.5		μA
operating current		Regulator output	Comparator h	igh-speed mo	ode		6.5		μA
		voltage = 2.1 V	Comparator low-speed mode				1.7		μA
		V _{DD} = 5.0 V,	Window mode	e			8.0		μA
		Regulator output voltage = 1.8 V	Comparator high-speed mode				4.0		μA
		Vollage – 1.6 V	Comparator lo	ow-speed mo	de		1.3		μA
Self- programming operating current	FSP ^{Notes 1, 9}						2.00	12.20	mA
BGO operating current	BGO ^{Notes 1, 8}						2.00	12.20	mA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	While the mo	de is shifting ^N	ote 10		0.50	0.60	mA
operating current			During A/D co mode, AVREFF		0		1.20	1.44	mA
		CSI/UART operation	1				0.70	0.84	mA
LCD operating current	_{LCD1} Notes 1, 12, 13	External resistance division method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	$V_{DD} = 5.0 V,$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	I _{LCD2} Note 1, 12	Internal voltage boosting method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	$V_{DD} = 3.0 V,$ $V_{L4} = 3.0 V$ $(V_{LCD} = 04H)$		0.85	2.20	μA
					$V_{DD} = 5.0 V,$ $V_{L4} = 5.1 V$ $(V_{LCD} = 12H)$		1.55	3.70	μA
	I _{LCD3} Note 1, 12	Capacitor split method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20	0.50	μA

(Notes and Remarks are listed on the next page.)



- Notes 1. The value must also be equal to or less than $f_{MCK}/4$.
 - 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
 - 3. Condition in the HS (high-speed main) mode
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)

<R>

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0),
 n: Channel number (n = 0-3), mn = 00-03, 10-13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Parameter	arameter Symbol		Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Trans mission	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V \end{array}$		Note 1		Note 1		Note 1	bps
			$\label{eq:constraint} \hline Theoretical value of the maximum transfer rate \\ (C_b = 50 \text{ pF}, \text{R}_b = 1.4 \text{ k}\Omega, \text{V}_b = 2.7 \text{ V}) \\ \hline \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V})$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbp
			$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 8}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V})$		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

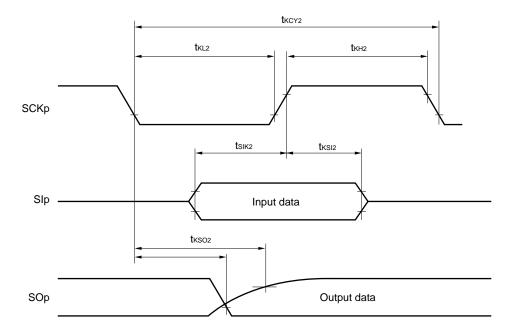
Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

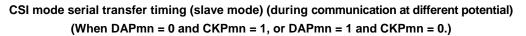
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

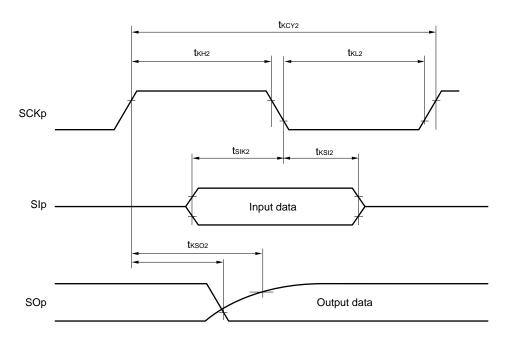
* This value is the theoretical value of the relative difference between the transmission and reception sides.

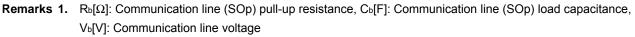
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.



(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)


Parameter	Symbol		Conditions	HS (higl main)	•	LS (low main)	/-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 2/fc∟к		200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 — 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 — 120		tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	t ĸ∟1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tксү1/2 — 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸ1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	58		479		479		ns
		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ F}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tks⊨	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
1		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	t KSO1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	23		110		110		ns
		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tks⊨1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
2		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V \le V _b \le 4.0 V, = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$


(Notes, Caution and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn)
 m: Unit number, n: Channel number (mn = 00, 02))

(1) I²C standard mode (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	250		250		250		ns
(reception)		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	250		250		250		ns
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	Ι	_	_	-	250		ns
Data hold time	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	I	_	_	-	0	3.45	μs
Setup time of stop	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.0		4.0		4.0		μs
condition		$1.8~V~(2.4~V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	-	_	_	_	4.0		μs
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V~(2.4~V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	-	_	_	_	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- 3. Condition in HS (high-speed main) mode
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}^{Note 3},$ Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR ^{Note 3}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor /internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

2.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	When power supply rises	3.98	4.06	4.14	V
voltage			When power supply falls	3.90	3.98	4.06	V
		VLVD1	When power supply rises	3.68	3.75	3.82	V
			When power supply falls	3.60	3.67	3.74	V
		VLVD2	When power supply rises	3.07	3.13	3.19	V
			When power supply falls	3.00	3.06	3.12	V
		VLVD3	When power supply rises	2.96	3.02	3.08	V
			When power supply falls	2.90	2.96	3.02	V
		VLVD4	When power supply rises	2.86	2.92	2.97	V
			When power supply falls	2.80	2.86	2.91	V
		VLVD5	When power supply rises	2.76	2.81	2.87	V
			When power supply falls	2.70	2.75	2.81	V
		VLVD6	When power supply rises	2.66	2.71	2.76	V
			When power supply falls	2.60	2.65	2.70	V
		VLVD7	When power supply rises	2.56	2.61	2.66	V
			When power supply falls	2.50	2.55	2.60	V
		VLVD8	When power supply rises	2.45	2.50	2.55	V
			When power supply falls	2.40	2.45	2.50	V
		VLVD9	When power supply rises	2.05	2.09	2.13	V
			When power supply falls	2.00	2.04	2.08	V
		VLVD10	When power supply rises	1.94	1.98	2.02	V
			When power supply falls	1.90	1.94	1.98	V
		VLVD11	When power supply rises	1.84	1.88	1.91	V
			When power supply falls	1.80	1.84	1.87	V
		VLVD12	When power supply rises	1.74	1.77	1.81	V
			When power supply falls	1.70	1.73	1.77	V
		VLVD13	When power supply rises	1.64	1.67	1.70	V
			When power supply falls	1.60	1.63	1.66	V
Minimum pu	Ilse width	t∟w		300			μs
Detection de	elay time					300	μs

	Parameter	Symbol		Conditions	Ratings	Unit
<r></r>	Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
<r></r>			Total of all pins –170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
<r></r>		Іон2	Per pin	P20, P21	-0.5	mA
			Total of all pins		-1	mA
<r></r>	Output current, low	Total o	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
			Total of all pins	P40 to P47, P130	70	mA
<r></r>			170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
<r></r>		Iol2	Per pin	P20, P21	1	mA
<r></r>			Total of all pins		2	mA
	Operating ambient temperature	TA	In normal operation mode		-40 to +105	°C
			In flash memory programming mode			°C
	Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (3/3)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

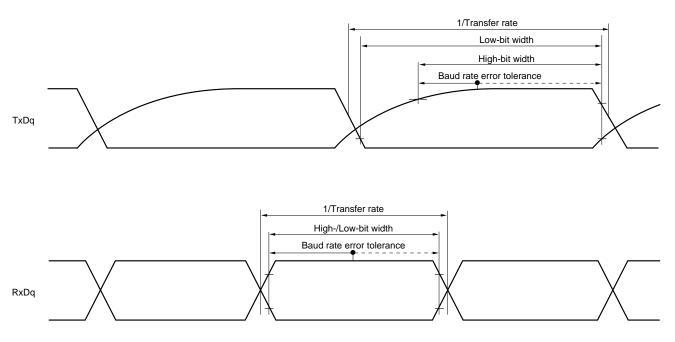
3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	crystal reconstor	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		16.0	
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator		32	32.768	35	kHz

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

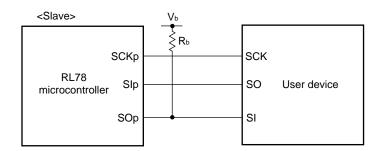
- **Note** Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/L13 User's Manual.


3.2.2 On-chip oscillator characteristics

Parameter Symbol Conditions MIN. TYP. MAX. Unit 1 24 MHz High-speed on-chip oscillator fн clock frequencyNotes 1, 2 +85 to +105°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -2 +2 % High-speed on-chip oscillator clock frequency accuracy –20 to +85°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1 +1 % -40 to -20°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1.5 +1.5 % fı∟ 15 kHz Low-speed on-chip oscillator clock frequency Low-speed on-chip oscillator -15 +15 % clock frequency accuracy

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for the instruction execution time.


UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at different potential)

- **Notes 1.** Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.

 Overall error:
 Add ±4 LSB to the MAX. value when AV_{REFP} = V_{DD}.

 Zero-scale error/Full-scale error:
 Add ±0.2%FSR to the MAX. value when AV_{REFP} = V_{DD}.

 Integral linearity error/ Differential linearity error:
 Add ±2 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. See 3.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pins: ANI0, ANI1, ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall errorNote 1	AINL	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution Target pin: ANI0, ANI1, ANI16 to ANI25	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale errorNotes 1, 2	Ezs	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±4.0	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0, ANI1, ANI16 to ANI25		0		Vdd	V
		Internal reference voltage (2.4 V \leq V_{DD} \leq 5.5 V, HS (high-speed main) mode))		V _{BGR} Note 3			V
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode))		V _{TMPS25} Note 3			V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

