

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlgafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	VL1	V∟1 voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	VL2	VL2 voltage ^{Note 1}		–0.3 to $V_{\rm L4}$ +0.3 $^{\rm Note\ 2}$	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to $V_{\rm L4}$ +0.3 $^{\rm Note\ 2}$	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to $V_{\rm L4}$ +0.3 $^{\rm Note\ 2}$	V
	Vout	COM0 to COM7	External resistance division method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	_	SEG0 to SEG50	Capacitor split method	–0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
	output voltage		Internal voltage boosting method	–0.3 to VL4 +0.3 $^{\rm Note\ 2}$	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

(1/2)

2.3.2 Supply current characteristics

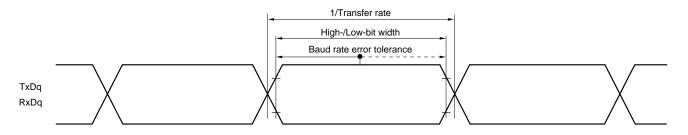
(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol			Conditions	•		MIN.	TYP.	MAX.	Uni
Supply	DD1		HS (high-	fHOCO = 48 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		2.0		mA
current ^{Note}		mode	speed main) mode ^{Note 5}	f⊪ = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.0		mA
			mode		Normal	V _{DD} = 5.0 V		3.8	6.5	mA
					operation	V _{DD} = 3.0 V		3.8	6.5	mA
				fHOCO = 24 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		1.7		mA
		fı⊩ = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA		
					Normal	V _{DD} = 5.0 V		3.6	6.1	mA
					operation	V _{DD} = 3.0 V		3.6	6.1	m/
				fносо = 16 MHz ^{Note 3} ,	Normal	V _{DD} = 5.0 V		2.7	4.7	m/
		f⊪ = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	4.7	m/		
		LS (low-	fHOCO = 8 MHz ^{Note 3} , Normal	V _{DD} = 3.0 V		1.2	2.1	m/		
		speed main) mode ^{Note 5}	$f_{H} = 8 \text{ MHz}^{Note 3}$	operation	V _{DD} = 2.0 V		1.2	2.1	m/	
			LV (low- voltage main) mode ^{Note 5}		V _{DD} = 3.0 V		1.2	1.8	m/	
					operation	V _{DD} = 2.0 V		1.2	1.8	m/
			HS (high- speed main) mode ^{Note 5}	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	5.1	m
				V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.2	m.
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.9	5.1	m
			V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.2	m	
			$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	4.4	m	
			V _{DD} = 5.0 V	operation	Resonator connection		2.7	4.5	m	
			$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	4.4	m	
				V _{DD} = 3.0 V	operation	Resonator connection		2.7	4.5	m
				,	Normal	Square wave input		1.9	3.0	m
				$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		1.9	3.0	m
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	3.0	m
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	3.0	m
			LS (low-	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.1	2.0	m
			speed main) mode ^{Note 5}	V _{DD} = 3.0 V	operation	Resonator connection		1.1	2.0	m
			mode	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.1	2.0	m
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	2.0	m
			Subsystem	fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		4.0	5.4	μ
			clock operation	⁴, T _A = −40°C	operation	Resonator connection		4.3	5.4	μ
				fsue = 32.768 kHz ^{Note}	Normal	Square wave input		4.0	5.4	μ
				⁴ , T _A = +25°C	operation	Resonator connection		4.3	5.4	μ
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		4.1	7.1	μ
			⁴ , T _A = +50°C	operation	Resonator connection		4.4	7.1	μ	
				fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		4.3	8.7	μ
		-	⁴, T _A = +70°C	operation	Resonator connection		4.7	8.7	μ	
			fs∪в = 32.768 kHz ^{Note}	Normal	Square wave input		4.7	12.0	μ	
				4	operation	Resonator connection		5.2	12.0	μ/

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot}$ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot} 1 \text{ MHz}$ to 4 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

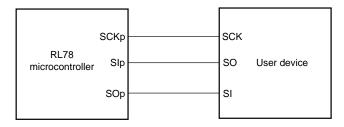
Notes 1. Current flowing to VDD.


- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 6. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
 - 10. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode in the RL78/L13 User's Manual.
- **11.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
- 12. Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsuB for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
- **13.** Not including the current flowing into the external division resistor when using the external resistance division method.

Remarks 1. fiL: Low-speed on-chip oscillator clock frequency

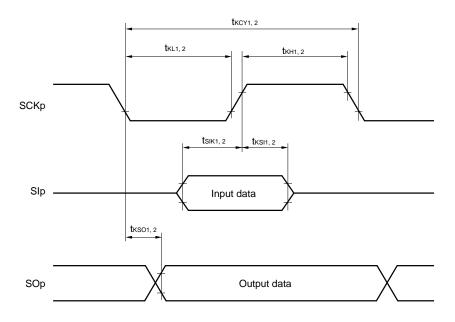
- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fcLK: CPU/peripheral hardware clock frequency
- **4.** The temperature condition for the TYP. value is $T_A = 25^{\circ}C$.

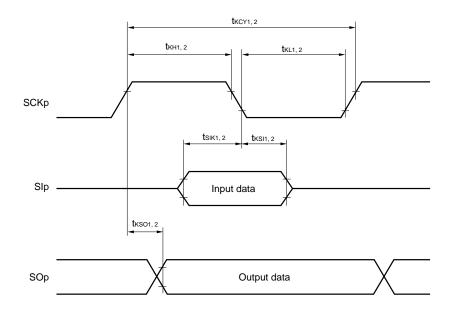
UART mode bit width (during communication at same potential) (reference)

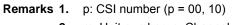


Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))



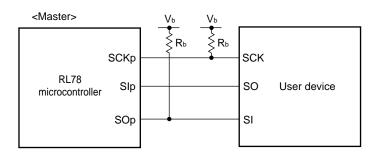

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

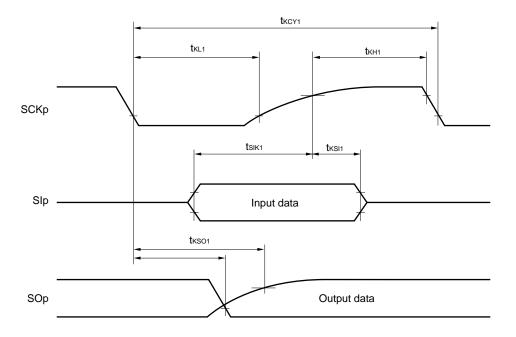
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 02)

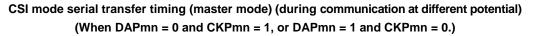
Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 4}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	44		110		110		ns
	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	44		110		110		ns	
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	19		19		19		ns
4		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	19		19		19		ns
Delay time from SCKp↑ to	tkso1			25		25		25	ns
SOp output ^{Note 4}		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		25		25		25	ns

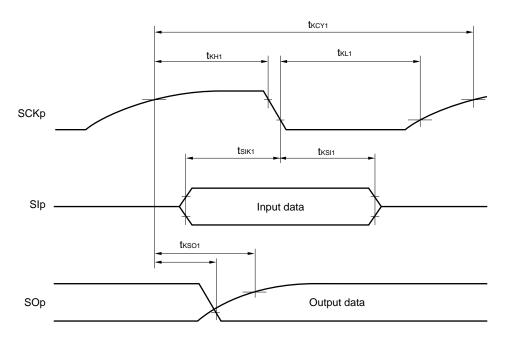

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Notes 1. Condition in HS (high-speed main) mode


2. Use it with $V_{DD} \ge V_b$.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- **4.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


CSI mode connection diagram (during communication at different potential)



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 10), m: Unit number , n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	HS (hig main)	h-speed Mode		/-speed Mode	LV (low main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	12/fмск		_		_		ns
time ^{Note 1}		$\begin{array}{l} 2.7 \ V \leq V_b \leq \\ 4.0 \ V \end{array}$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	20 MHz < fмск	16/fмск		-		-		ns
		$2.3~V \leq V_b \leq$	16 MHz < fмск ≤ 20 MHz	14/fмск		_		_		ns
		2.7 V	8 MHz < fмск ≤ 16 MHz	12/fмск		-		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		1.8 V (2.4 V ^{Note 2}) ≤	20 MHz < fмск	36/f мск		_		_		ns
		V_{DD} < 3.3 V,	16 MHz < fмск ≤ 20 MHz	32/fмск		_		_		ns
		1.6 V ≤ V _b ≤ 2.0 V ^{Note 3}	8 MHz < fмск ≤ 16 MHz	26/fмск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
/low-level width tkL2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 – 50		ns	
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 3$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns	
		$1.8 \vee (2.4 \vee^{Note 2}) \leq \vee$ $1.6 \vee \leq V_b \leq 2.0 \vee^{Note}$	tксү2/2 - 50		tксү2/2 – 50		tксү2/2 - 50		ns	
SIp setup time (to SCKp↑) ^{Note 4}	tsık2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
、 、 、 、		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns	
		$1.8 \vee (2.4 \vee^{Note 2}) \leq V$ $1.6 \vee \leq V_b \leq 2.0 \vee^{Note}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns	
SIp hold time (from	tĸsı2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
SCKp↑) ^{Note 5}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 200 \text{ V}$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 2}}) \leq V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \end{array}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \end{array}$			2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
SOp output ^{Note 6}			$\begin{array}{l} \hline & 0.0 \\ \hline & 0.0 \\$				2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{Note 2}) \leq V \\ 1.6 \; V \leq V_b \leq 2.0 \; V^{Note} \\ C_b = 30 \; pF, \; R_b = 5.5 \end{array}$	e 3 ,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(1) I²C standard mode (2/2)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le$	5.5 V, Vss = 0 V)
---	-------------------

Parameter	Symbol	Symbol Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	250		250		250		ns
(reception)		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	250		250		250		ns
		$1.6~V \le V_{DD} \le 5.5~V$	Ι	_	_	-	250		ns
Data hold time thd:DAT (transmission) ^{Note 2}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs	
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	I	_	_	-	0	3.45	μs
Setup time of stop	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.0		4.0		4.0		μs
condition		$1.8~V~(2.4~V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	-	_	_	_	4.0		μs
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V~(2.4~V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	-	_	_	_	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

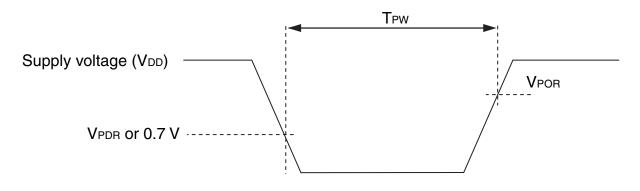
- 3. Condition in HS (high-speed main) mode
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

2.6.3 Comparator characteristics

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		V _{DD} – 1.4	V
	lvcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V_{DD} = 3.0 V Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mod window mode	e,	0.66VDD	0.76Vdd	0.86Vdd	V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mod window mode	e,	0.14Vdd	0.24VDD	0.34Vdd	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	Vbgr	2.4 V \leq V_{DD} \leq 5.5 V, HS (high	n-speed main) mode	1.38	1.45	1.50	V

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

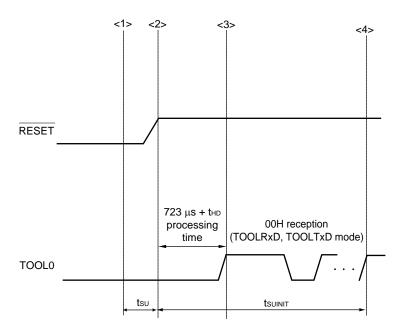

Note Cannot be used in LS (low-speed main) mode, LV (low-voltage main) mode, subsystem clock operation, and STOP mode.

2.6.4 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	When power supply rises	1.47	1.51	1.55	V
	VPDR	When power supply falls	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.



RL78/L13

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

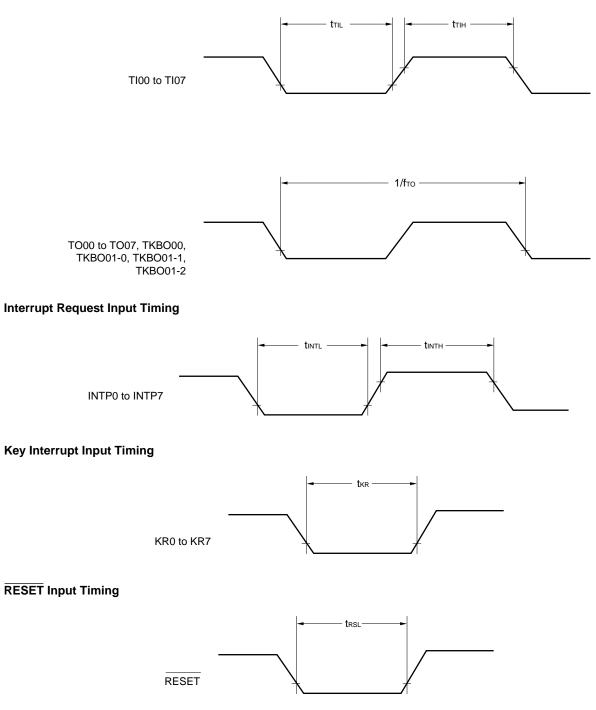
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3.1 Absolute Maximum Ratings

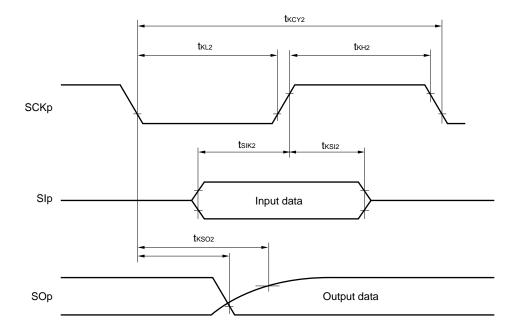
Absolute	Maximum	Ratings	(1/3)

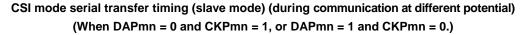
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 Note1	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V ₁₂	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Vaii	ANI0, ANI1, ANI16 to ANI26	-0.3 to V_{DD} +0.3 and -0.3 to $AV_{\text{REF}(*)}$ +0.3 $^{\text{Notes 2, 3}}$	V

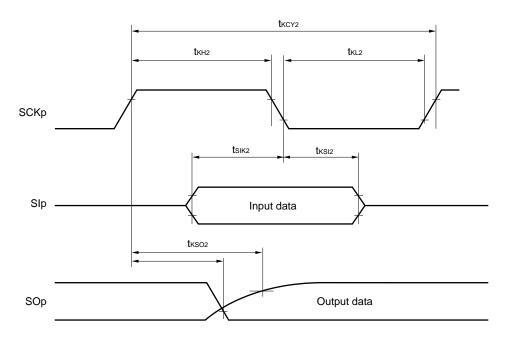
- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input voltage, high	Vih1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0.8V _{DD}		Vdd	V
	VIH2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer $4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	2.2		Vdd	۷
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	2.0		Vdd	V
			TTL input buffer 2.4 V \leq V_DD $<$ 3.3 V	1.5		V _{DD}	V
	VIH3	P20, P21	0.7V _{DD}		Vdd	V	
	VIH4	P60, P61	0.7V _{DD}		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	0.8VDD		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P22 to P27, Normal input buffer P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137 P137		0		0.2Vdd	V
	VIL2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V \leq V _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 2.4 V \leq V_DD $<$ 3.3 V	0		0.32	V
	VIL3	P20, P21	0		0.3VDD	V	
	VIL4	P60, P61	0		0.3V _{DD}	V	
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	0		0.2VDD	V	

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


- Caution The maximum value of V_I of pins P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


TI/TO Timing



CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** $R_b[\Omega]$: Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn) m: Unit number, n: Channel number (mn = 00, 02))

(8)	Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)
-----	---

(T _A = -40 to +105°C,	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V. Vss = 0 V)
(1A - 10.0010000)		•,••• • • •

Parameter	Symbol	Conditions	HS (high-spe	Unit		
			MIN. MAX.]	
SCLr clock frequency	fsc∟			400 ^{Note 1}	kHz	
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 ^{Note 1}	kHz	
				100 ^{Note 1}	kHz	
		$\label{eq:VDD} \begin{split} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		100 ^{Note 1}	kHz	
		$\label{eq:VDD} \begin{split} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		100 ^{Note 1}	kHz	
Hold time when SCLr = "L"	t.ow	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns	
		$\label{eq:VDD} \begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1200		ns	
			4600		ns	
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	4600		ns	
		$\label{eq:VDD} \begin{split} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	4650		ns	
Hold time when SCLr = "H"	t ніGH	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	620		ns	
		$\label{eq:VDD} \begin{split} 2.7 \; V &\leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{\text{b}} < 2.7 \; V, \\ C_{\text{b}} &= 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{split}$	500		ns	
			2700		ns	
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	2400		ns	
		$\label{eq:VDD} \begin{split} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1830		ns	

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

3.7 LCD Characteristics

3.7.1 External resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

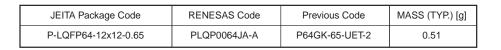
(2) 1/2 bias method, 1/4 bias method

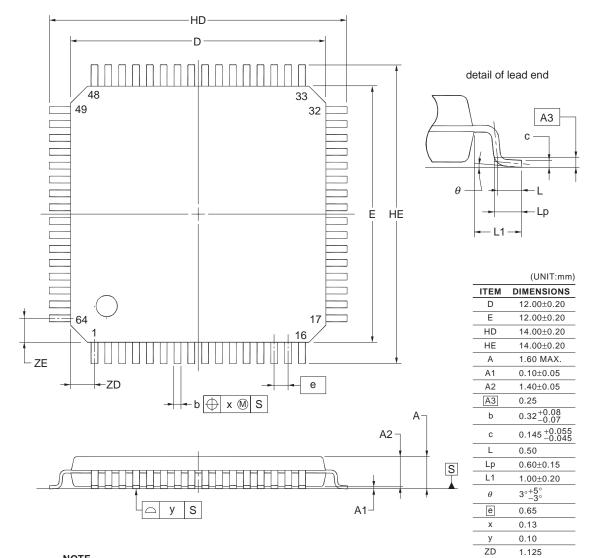
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(T_A = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V



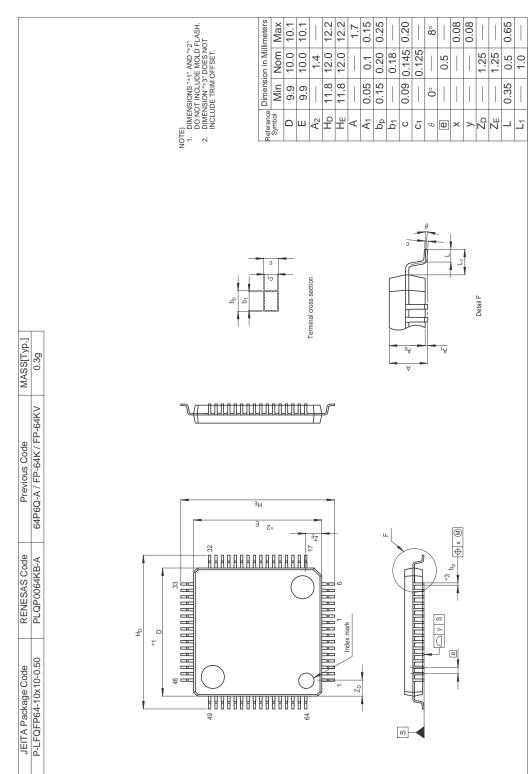
4. PACKAGE DRAWINGS

4.1 64-pin Products

R5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA, R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA

NOTE

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.


©2012 Renesas Electronics Corporation. All rights reserved.

ZE

1.125

R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB, R5F10WLAGFB, R5F10WLCGFB, R5F10

