

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XE

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlgafb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78/L13		
			64 pins	80 pins	
128 KB	4 KB	8 KB ^{Note}	R5F10WLG	R5F10WMG	
96 KB	4 KB	6 KB	R5F10WLF	R5F10WMF	
64 KB	4 KB	4 KB	R5F10WLE	R5F10WME	
48 KB	4 KB	2 KB	R5F10WLD	R5F10WMD	
32 KB	4 KB	1.5 KB	R5F10WLC	R5F10WMC	
16 KB	4 KB	1 KB	R5F10WLA	R5F10WMA	

Note This is about 7 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/L13 User's Manual.)

1.3 Pin Configuration (Top View)

<R> 1.3.1 64-pin products

- 64-pin plastic LQFP (12 \times 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

	Parameter	Symbol		Conditions	Ratings	Unit
<r></r>	Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
			Total of all pins –170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
<r></r>		Іон2	Per pin	P20, P21	-0.5	mA
<k></k>			Total of all pins		-1	mA
<r></r>	Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
			Total of all pins	P40 to P47, P130	70	mA
<r></r>			170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
<r></r>		IOL2	Per pin	P20, P21	1	mA
<r></r>			Total of all pins		2	mA
	Operating ambient	Та	In normal operation	on mode	-40 to +85	°C
	temperature		In flash memory p	programming mode		
	Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (3/3)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
	Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-10.0 ^{Note 2}	mA
R>			Total of P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130 (When duty = 70% ^{Note 3})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-90.0	mA
				$2.7~V \leq V_{\text{DD}} < 4.0~V$			-15.0	mA
	Іон2			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-7.0	mA
				$1.6~V \leq V_{\text{DD}} < 1.8~V$			-3.0	mA
		Іон2	Per pin for P20 and P21	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
			Total of all pins (When duty = 70% ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

- Notes 1. Value of the current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin
 - 2. Do not exceed the total current value.
 - **3.** Output current value under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoH = -90.0 mA

Total output current of pins = $(-90.0 \times 0.7)/(80 \times 0.01) \approx -78.75$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Note Operation is not possible if 1.6 V ≤ V_{DD} < 1.8 V in LV (low-voltage main) mode while the system is operating on the subsystem clock.

Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

Key Interrupt Input Timing

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.$.5 V	167 ^{Note 1}		500 ^{Note 1}		1000 ^{Note 1}		ns
		$2.4~V \le V_{\text{DD}} \le 5.$.5 V	250 ^{Note 1}		500 ^{Note 1}		1000 ^{Note 1}		ns
		$1.8~V \le V_{\text{DD}} \le 5.$	$1.8 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$			500 ^{Note 1}		1000 ^{Note 1}		ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	-		_		1000 ^{Note 1}		ns	
SCKp high-/low-level	t кн1,	$4.0~V \le V_{\text{DD}} \le 5.$.5 V	tkcy1/2-12		tkcy1/2-50		tkcy1/2-50		ns
width	t KL1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tkcy1/2-18		tkcy1/2-50		tkcy1/2-50		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tkcy1/2-38		tkcy1/2-50		tkcy1/2-50		ns
		$1.8 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		_		tkcy1/2-50		tkcy1/2-50		ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.$.5 V	-		-		tkcy1/2-100		ns
SIp setup time	tsik1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$.5 V	44		110		110		ns
(to SCKp↑) ^{Note 2}		$2.4~V \le V_{\text{DD}} \le 5.$.5 V	75		110		110		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.$.5 V	-		110		110		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.$.5 V	-		_		220		ns
SIp hold time	tksi1	$2.4~V \leq V_{\text{DD}} \leq 5.$.5 V	19		19		19		ns
(from SCKp [↑]) ^{Note 3}		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.$.5 V	-		19		19		ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.$.5 V	_		_		19		ns
Delay time from	tkso1	C = 30 pF ^{Note 5}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		25		25		25	ns
SCKp↓ to			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		25		25	ns
SOp output ^{Note 4}			$1.6~V \le V_{\text{DD}} \le 5.5~V$		_		_		25	ns

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock output
	$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or more than 2/fcLk for CSI00 and equal to or more than 4/fcLk for CSI10.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (hig main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к		300		1150		1150		ns
			$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$ \begin{split} & 1.8 \; \text{V} \; (2.4 \; \text{V}^{\text{Note 1}}) \leq \text{V}_{\text{DD}} < 3.3 \\ & \text{V}, \\ & 1.6 \; \text{V} \leq \text{V}_{\text{b}} \leq 1.8 \; \text{V}^{\text{Note 2}}, \\ & \text{C}_{\text{b}} = 30 \; \text{pF}, \; \text{R}_{\text{b}} = 5.5 \; \text{k}\Omega \end{split} $	1150		1150		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 kΩ	tксү1/2 — 75		tксү1/2 — 75		tксү1/2 — 75		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h = 2.7 kΩ	tксү1/2 — 170		tксү1/2 — 170		tксү1/2 — 170		ns
		$\begin{array}{l} \hline C_{\rm b} = 30 \ \mu\text{J}, \ \text{Kb} = 2.7 \ \text{K2} \\ \hline 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note 1}}) \leq \text{V}_{\rm DD} < 3.3 \ \text{V}, \\ \hline 1.6 \ \text{V} \leq \text{V}_{\rm b} \leq 2.0 \ \text{V}^{\text{Note 2}}, \\ \hline C_{\rm b} = 30 \ \mu\text{F}, \ \text{R}_{\rm b} = 5.5 \ \text{k}\Omega \end{array}$		tксү1/2 — 458		tксү1/2 — 458		tксү1/2 — 458		ns
SCKp low-level width	tĸ∟1			tксү1/2 — 12		tксү1/2 — 50		tксү1/2 — 50		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h = 2.7 kΩ	tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
		1.8 V (2.4 V ^{NG} 1.6 V \leq V _b \leq 2 C _b = 30 pF, R	$V^{\text{te 1}}) \le V_{\text{DD}} < 3.3 \text{ V},$ 2.0 V ^{Note 2} , $V_{\text{b}} = 5.5 \text{ k}\Omega$	tксү1/2 — 50		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsik1	$4.0 V \le V_{DD} \le C_b = 30 pF, R$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 kΩ	81		479		479		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, R$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h _b = 2.7 kΩ	177		479		479		ns
		$1.8 V (2.4 V^{NG})$ $1.6 V \le V_b \le 2$ $C_b = 30 \text{ pF, R}$	$V^{\text{tot 1}}) \le V_{\text{DD}} < 3.3 \text{ V},$ 2.0 V ^{Note 2} , $V_{\text{b}} = 5.5 \text{ k}\Omega$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	$4.0 V \le V_{DD} \le C_b = 30 pF, R$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 kΩ	19		19		19		ns
3		$2.7 V \le V_{DD} < C_b = 30 pF, R$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h _b = 2.7 kΩ	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{No} \\ 1.6 \ V \leq V_b \leq 2 \\ C_b = 30 \ pF, \ R \end{array}$	$V_{DD}^{\text{te 1}} = V_{DD} < 3.3 \text{ V},$ 2.0 V ^{Note 2} , $V_{b} = 5.5 \text{ k}\Omega$	19		19		19		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, hb = 1.4 k Ω		100		100		100	ns
SOp output ^{Note 3}		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, h _b = 2.7 kΩ		195		195		195	ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{No} \\ 1.6 \ V \leq V_b \leq 2 \\ C_b = 30 \ pF, \ R \end{array}$	$\frac{(100)}{1000} \leq V_{DD} < 3.3 \text{ V},$ 2.0 V ^{Note 2} , $N_{b} = 5.5 \text{ k}\Omega$		483		483		483	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	mbol Conditions		HS (high-speed main) Mode		v-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		300 ^{Note 1}		300 ^{Note 1}	kHz
				400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		2.7 V \leq V _{DD} < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 100 pF R _b = 2.7 kQ.		400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{split} &1.8 \ V \ (2.4 \ V^{\text{Note } 2}) \leq V_{\text{DD}} < 3.3 \ V, \\ &1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ &C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow		475		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
		$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note } 2}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note } 3}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tніgн		245		610		610		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
		$ \begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note } 2}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note } 3}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	610		610		610		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM
ANIO, ANI1	_	See 2.6.1 (2).	See 2.6.1 (3).
ANI16 to ANI25	See 2.6.1 (1).		
Internal reference voltage Temperature sensor output voltage	See 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall errorNote 1	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$		1.2	±8.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI16 to ANI25	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	57		95	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
			$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
			$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±6.0	LSB
Differential linearity errorNote 1	DLE	10-bit resolution	$1.8~V \le AV_{\text{REFP}} \le 5.5~V$			±2.0	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI25	ANI16 to ANI25			AVREFP	V
Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-spi		tage HS (high-speed main) mode))		VBGR ^{Note 5}		V	
Temperature sensor output voltage $(2.4 V \le V_{DD} \le 5.5 V, HS (high-speed main) mode))$				V _{TMPS25} Note 5			V

(TA = -40 to +85°C	$4, 1.6 V \le V_{DD} \le 5.5 V,$	Vss = 0 V, Reference	voltage (+) = AVREFP,	, Reference voltage (–) = AVREFM = 0 V)
--------------------	----------------------------------	----------------------	-----------------------	-----------------------	--------------------

(Notes are listed on the next page.)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$

R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB

- Cautions 1. The RL78/L13 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.
 - Consult Renesas salesperson and distributor for derating when the product is used at T_A = +85°C to +105°C. Note that derating means "systematically lowering the load from the rated value to improve reliability".
- Remark When RL78/L13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
		$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator		32	32.768	35	kHz

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/L13 User's Manual.

3.2.2 On-chip oscillator characteristics

Parameter Symbol Conditions MIN. TYP. MAX. Unit 1 24 MHz High-speed on-chip oscillator fн clock frequencyNotes 1, 2 +85 to +105°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -2 +2 % High-speed on-chip oscillator clock frequency accuracy –20 to +85°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1 +1 % -40 to -20°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1.5 +1.5 % fı∟ 15 kHz Low-speed on-chip oscillator clock frequency Low-speed on-chip oscillator -15 +15 % clock frequency accuracy

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for the instruction execution time.

3.3.2 Supply current characteristics

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}) $ (1/2											
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit	
Supply	DD1 ^{Note 1}	Operating	HS (high-	f _{HOCO} = 48 MHz ^{Note}	Basic	V _{DD} = 5.0 V		2.0		mA	
current		mode	speed main)	³ , f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.0		mA	
			mode		Normal	V _{DD} = 5.0 V		3.8	7.0	mA	
					operation	V _{DD} = 3.0 V		3.8	7.0	mA	
				f _{HOCO} = 24 MHz ^{Note}	Basic	V _{DD} = 5.0 V		1.7		mA	
				3,	operation	V _{DD} = 3.0 V		1.7		mA	
				$T_{\rm H} = 24 \text{ MHz}^{10003}$	Normal	V _{DD} = 5.0 V		3.6	6.5	mA	
					operation	V _{DD} = 3.0 V		3.6	6.5	mA	
				f _{HOCO} = 16 MHz ^{Note}	Normal	V _{DD} = 5.0 V		2.7	5.0	mA	
				³ , f _{IH} = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	5.0	mA	
			HS (high-	f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		3.0	5.4	mA	
			speed main) mode ^{Note 5} Subsystem clock operation			Resonator connection		3.2	5.6	mA	
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal	Square wave input		2.9	5.4	mA	
					operation	Resonator connection		3.2	5.6	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 5.0 \text{ V}$ $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 3.0 \text{ V}$ $f_{SUB} =$ $22.700 \text{ Hz}^{\text{Note 4}}$	Normal	Square wave input		1.9	3.2	mA	
					operation	Resonator connection		1.9	3.2	mA	
					Normal	Square wave input		1.9	3.2	mA	
					operation	Resonator connection		1.9	3.2	mA	
					Normal	Square wave input		4.0	5.4	μA	
				32.768 kHZ ^{kote 4} , T _A = -40°C	operation	Resonator connection		4.3	5.4	μA	
				f _{SUB} = 32.768 kHz ^{Note 4} , T _A = +25°C	Normal	Square wave input		4.0	5.4	μA	
					operation	Resonator connection		4.3	5.4	μA	
				f _{SUB} =	Normal	Square wave input		4.1	7.1	μA	
				32.768 kHz ^{Note 4} , T _A = +50°C	operation	Resonator connection		4.4	7.1	μA	
				f _{SUB} =	Normal	Square wave input		4.3	8.7	μA	
				32.768 kHz ^{Note 4} , T _A = +70°C	operation	Resonator connection		4.7	8.7	μA	
				fsuв =	Normal	Square wave input		4.7	12.0	μA	
				32.768 kHz ^{Note 4} , T _A = +85°C	operation	Resonator connection		5.2	12.0	μA	
				f _{SUB} =	Normal	Square wave input		6.4	35.0	μA	
					32.768 kHz ^{Note 4} , T _A = +105°C	operation	Resonator connection		6.6	35.0	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 6. The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 24 MHz

2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN. MAX.		
SCKp cycle time	tkCY1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334 ^{Note 1}		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500 ^{Note 1}		ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 — 24		ns
	tĸ∟ı	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 - 36		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 – 76		ns
SIp setup time (to SCKp↑) ^{Note 2}	tsikı	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	113		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi1		38		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	C = 30 pF ^{Note 5}		50	ns

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. The value must also be equal to or more than 4/fcLK.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	20 MHz < fмск	24/f мск		ns
			8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	20 MHz < fмск	32/f мск		ns
			16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < f_MCK \leq 16 MHz	24/f мск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск	72/fмск		ns
		$1.6 \ V \le V_b \le 2.0 \ V$	16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			8 MHz < fмск ≤ 16 MHz	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/f мск		ns
			fмск ≤ 4 MHz	20/ f мск		ns
SCKp high-/low-level width	tkh2, tkl2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 24		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{PD}}$	$2.3~V \leq V_{b} \leq 2.7~V$	tkcy2/2 - 36		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_b \leq 2.0~V$	tkcy2/2 – 100		ns
SIp setup time	tsık2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{PD}}$	$2.3~V \leq V_{b} \leq 2.7~V$	1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V$	1/fмск + 60		ns
SIp hold time	tksi2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 62		ns
(from SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} \leq 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	1/fмск + 62		ns
		$2.4~V \leq V_{\text{DD}} \leq 3.3~V,$	$1.6~V \leq V_b \leq 2.0~V$	1/fмск + 62		ns
Delay time from SCKp \downarrow to	tkso2	$4.0~V \le V_{\text{DD}} \le 5.5~V,$	$2.7~V \leq V_{b} \leq 4.0~V,$		2/fмск + 240	ns
SOp output ^{Note 4}		C _b = 30 pF, R _b = 1.4	ŧkΩ			
		$2.7 V \le V_{DD} < 4.0 V$, $C_b = 30 pF$, $R_b = 2.7$, 2.3 V \leq V _b \leq 2.7 V, 7 k Ω		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ s}$	$1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ 5 kΩ		2/fмск + 1146	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(8)	Communication at different potential	(1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)
-----	--------------------------------------	--

(Т	A = -40 to	+105°C.	2.4 V	≤ V _{DD}	≤ 5.5 \	/. Vss =	0 V)
· ·						,	/

Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 50 \ p\text{F}, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		400 ^{Note 1}	kHz
		$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V, \\ C_{\text{b}} = 100 \; p\text{F}, \; R_{\text{b}} = 2.8 \; \text{k}\Omega \end{array}$		100 ^{Note 1}	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		100 ^{Note 1}	kHz
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns
		$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; \text{V}, \; 2.7 \; \text{V} \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 2.8 \; \text{k}\Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	620		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b < 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		ns
		$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V, \\ C_{\text{b}} = 100 \; p\text{F}, \; R_{\text{b}} = 2.8 \; \text{k}\Omega \end{array}$	2700		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; \text{V}, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; \text{V}, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{array}$	2400		ns
		$\label{eq:VD} \begin{array}{ c c c } \hline 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ \hline C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1830		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

3.5.2 Serial interface IICA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode				Unit
			Standar	Standard Mode		Fast Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fc⊥κ≥ 3.5 MHz	_	_	0	400	kHz
		Normal mode: fc⊥κ≥ 1 MHz	0	100	_	-	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0 ^{Note 3}	3.45	0 ^{Note 3}	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ R}_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

