

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlgafb-yw

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Identification

ANIO, ANI1,		PCLBUZ0, PCLBUZ1:	Programmable Clock Output/
ANI16 to ANI25:	Analog Input		Buzzer Output
AVREFM:	Analog Reference Voltage	REGC:	Regulator Capacitance
	Minus	REMOOUT:	Remote control Output
AVREFP:	Analog Reference Voltage	RESET:	Reset
	Plus	RTC1HZ:	Real-time Clock 2 Correction Clock
CAPH, CAPL:	Capacitor for LCD		(1 Hz) Output
COM0 to COM7:	LCD Common Output	RxD0 to RxD3:	Receive Data
EXCLK:	External Clock Input	SCK00, SCK10, SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL10:	Serial Clock Output
EXCLKS:	External Clock Input	SDAA0, SDA00, SDA10:	Serial Data Input/Output
	(Subsystem Clock)	SEG0 to SEG50:	LCD Segment Output
INTP0 to INTP7:	External Interrupt Input	SI00, SI10:	Serial Data Input
IVCMP0, IVCMP1:	Comparator Input	SO00, SO10:	Serial Data Output
IVREF0, IVREF1:	Comparator Reference Input	TI00 to TI07:	Timer Input
KR0 to KR7:	Key Return	TO00 to TO07,	
P00 to P07:	Port 0	TKBO00, TKBO01-0,	
P10 to P17:	Port 1	TKBO01-1, TKBO01-2:	Timer Output
P20 to P27:	Port 2	TOOL0:	Data Input/Output for Tool
P30 to P35:	Port 3	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P40 to P47:	Port 4	TxD0 to TxD3:	Transmit Data
P50 to P57:	Port 5	VCOUT0, VCOUT1:	Comparator Output
P60, P61:	Port 6	Vdd:	Power Supply
P70 to P77:	Port 7	VL1 to VL4:	LCD Power Supply
P121 to P127:	Port 12	Vss:	Ground
P130, P137:	Port 13	X1, X2:	Crystal Oscillator (Main System Clock)
		XT1, XT2:	Crystal Oscillator (Subsystem Clock)

(2/2)

	Item	64-pin	80-pin				
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)				
Clock output	/buzzer output controller		2				
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 					
8/10-bit reso	lution A/D converter	9 channels	12 channels				
Comparator		2 channels					
Serial interfa	ce	 [64-pin] CSI: 1 channel/UART (UART supporting LIN- CSI: 1 channel/UART: 1 channel/simplified l²(UART: 1 channel [80-pin] 	bus): 1 channel/simplified I²C: 1 channel C: 1 channel				
		 CSI: 1 channel/UART (UART supporting LIN- CSI: 1 channel/UART: 1 channel/simplified l²(UART: 2 channels 	bus): 1 channel/simplified l ² C: 1 channel C: 1 channel				
	I ² C bus	1 channel					
LCD controll	er/driver	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.					
S	egment signal output	36 (32) ^{Note 1}	51 (47) ^{Note 1}				
C	ommon signal output	4 (8	Note 1				
Multiplier and	d divider/multiply-	• 16 bits × 16 bits = 32 bits (Unsigned or signed	()				
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)					
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)					
DMA control	ler	4 channels					
Vectored	Internal	32	35				
interrupt sou	rces External	11	11				
Key interrupt		5	8				
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-rea	set circuit	 Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.) 					
Voltage dete	ctor	 Rising edge: 1.67 V to 4.06 V (14 steps) Falling edge: 1.63 V to 3.98 V (14 steps) 					
On-chip deb	ug function	Provided					
Power suppl	y voltage	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (TA = -40 \text{ to } +85^{\circ}\text{C})$					
Operation	nhight tomporcture	$v_{DD} = 2.4 \text{ to } 5.5 \text{ v} (1\text{A} = -40 \text{ to } +105^{\circ}\text{C})$					
Operating ar	noient temperature	Industrial applications: $T_A = -40$ to +85°C					

Notes 1. The values in parentheses are the number of signal outputs when 8 com is used.

2. This reset occurs when instruction code FFH is executed.

This reset does not occur during emulation using an in-circuit emulator or an on-chip debugging emulator.

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	VL1	V _{L1} voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V∟₄ +0.3	V
	VL2	VL2 voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to VL4 +0.3Note 2	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	Vout	COM0 to COM7	External resistance division method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
		SEG0 to SEG50 output voltage	Capacitor split method	-0.3 to V_DD +0.3 $^{\rm Note\ 2}$	V
			Internal voltage boosting method	–0.3 to VL4 +0.3 $^{\rm Note\ 2}$	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VDD				1	μA
	Ілна	P20 and P21, RESET	VI = VDD				1	μA
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port mode and when external clock is input			1	μA
				Resonator connected			10	μA
Input leakage current, low	Ilul1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VSS				-1	μA
	Ilil2	P20 and P21, RESET	VI = VSS				-1	μA
	Ilil3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μA
				Resonator connected			-10	μA
On-chip pull-up	Ruı	P00 to P07, P10 to P17,	VI = VSS	$2.4~V \leq V_{\text{DD}} < 5.5~V$	10	20	100	kΩ
resistance		P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130		$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	10	30	100	kΩ
	Ru2	P40 to P44	VI = VSS		10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions	;	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system	HS (high-speed	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
instruction execution time)		clock (fmain)	main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.25		1	μs
		Subsystem clo operation ^{Note}	оск (fsuв)	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	28.5	30.5	31.3	μs
		In the self	HS (high-speed	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
		programming	main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μs
		mode	LS (low-speed main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fex	$2.7~V \leq V_{\text{DD}} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \le V_{\text{DD}} <$	2.7 V		1.0		16.0	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$			1.0	<u> </u>	8.0	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			1.0		4.0	MHz
	fexs		32		35	kHz		
External system clock input	t _{EXH} ,	$2.7~V \leq V_{\text{DD}} \leq$	24			ns		
high-level width, low-level width	t exl	$2.4~V \leq V_{\text{DD}} <$	2.7 V		30			ns
Width		$1.8 V \le V_{DD} <$	2.4 V		60			ns
		$1.6 V \le V_{DD} <$	1.8 V		120			ns
	texhs, texls				13.7			μs
TI00 to TI07 input high-level width, low-level width	tт⊪, tт⊫				1/fмск+10			ns
TO00 to TO07, TKBO00,	fто	HS (high-speed main) mode $\begin{array}{c} 4.0 \ V \leq V_{DD} \leq \\ 2.7 \ V \leq V_{DD} \end{array}$		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			12	MHz
TKBO01-0 to TKBO01-2				$2.7~V \leq V_{\text{DD}} < 4.0~V$			8	MHz
output inequency				$2.4~V \leq V_{\text{DD}} < 2.7~V$			4	MHz
		LV (low-voltag	je main) mode	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			2	MHz
		LS (low-speed	l main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spee	ed main) mode	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			16	MHz
frequency				$2.7~V \leq V_{\text{DD}} < 4.0~V$			8	MHz
				$2.4~V \leq V_{\text{DD}} < 2.7~V$			4	MHz
		LV (low-voltag	je main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			4	MHz
				$1.6~V \leq V_{\text{DD}} < 1.8~V$			2	MHz
		LS (low-speed	l main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTE	27	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	1			μs
Key interrupt input high-level	tkrh, tkrl	KR0 to KR7		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	250			ns
width, low-level width				$1.6~V \leq V_{\text{DD}} < 1.8~V$	1			μs
IH-PWM output restart input high-level width	tihr	INTP0 to INTE	27		2			fclк
TMKB2 forced output stop input high-level width	tihr	INTP0 to INTE	22		2			fськ
RESET low-level width	trsl				10			μs

(Note and Remark are listed on the next page.)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - 4. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 10), m: Unit number , n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (lov main)	v-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		300 ^{Note 1}		300 ^{Note 1}	kHz
				400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		2.7 V \leq V _{DD} < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 100 pF R _b = 2.7 kQ.		400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{split} &1.8 \ V \ (2.4 \ V^{\text{Note } 2}) \leq V_{\text{DD}} < 3.3 \ V, \\ &1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ &C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow		475		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
		$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note } 2}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note } 3}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tніgн		245		610		610		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
		$ \begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note } 2}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note } 3}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	610		610		610		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

2.7 LCD Characteristics

2.7.1 External resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$

R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB

- Cautions 1. The RL78/L13 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.
 - Consult Renesas salesperson and distributor for derating when the product is used at T_A = +85°C to +105°C. Note that derating means "systematically lowering the load from the rated value to improve reliability".
- Remark When RL78/L13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

	Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
	Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0 ^{Note 2}	mA
<r></r>			Total of P00 to P07, P10 to P17,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-45.0	mA
			P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130 (When duty = 70% ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-15.0	mA
				$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			-7.0	mA
		Іон2	Per pin for P20 and P21	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
			Total of all pins (When duty = 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

- Notes 1. Value of the current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoH = -45.0 mA

Total output current of pins = $(-45.0 \times 0.7)/(80 \times 0.01) = -39.375$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Aug 12, 2016

Parameter	Symbol	Condition	าร		MIN.	TYP.	MAX.	Unit
Input leakage current, high	kage high ILIH1 P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137 VI = VDD						1	μA
	Ілна	P20 and P21, RESET	VI = VDD				1	μA
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port mode and when external clock is input			1	μA
				Resonator connected			10	μA
Input leakage current, low	Ilili	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Vi = Vss				-1	μΑ
	ILIL2	P20 and P21, RESET	VI = VSS				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vi = Vss	In input port mode and when external clock is input			-1	μA
				Resonator connected			-10	μA
On-chip pull-up resistance	Ruı	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130	Vi = Vss		10	20	100	kΩ
	Ru2	P40 to P44	VI = Vss		10	20	100	kΩ

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

TI/TO Timing

Parameter	Symbol	Conditions	HS (high-spee	HS (high-speed main) Mode		
			MIN.	MAX.		
SCLr clock frequency	fsc∟	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		400 ^{Note 1}	kHz	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$		100 ^{Note 1}	kHz	
Hold time when SCLr = "L"	t∟ow	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	4600		ns	
Hold time when SCLr = "H"	tніgн	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ p\text{F}, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	1200		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	4600		ns	
Data setup time (reception)	tsu:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1/f _{MCK} + 220 ^{Note 2}		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	1/f _{MCK} + 580 ^{Note 2}		ns	
Data hold time (transmission)	thd:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	770	ns	
		$\label{eq:def_def_def} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	0	1420	ns	

(4) During communication at same potential (simplified I²C mode)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	20 MHz < fмск	24/f мск		ns
			8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	20 MHz < fмск	32/f мск		ns
			16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < f_MCK \leq 16 MHz	24/f мск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$	20 MHz < fмск	72/fмск		ns
			16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			8 MHz < fмск ≤ 16 MHz	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/f мск		ns
			fмск ≤ 4 MHz	20/ f мск		ns
SCKp high-/low-level width	tkh2, tkl2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 24		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{PD}}$	$2.3~V \leq V_{b} \leq 2.7~V$	tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}_{\text{PD}}$	$1.6~V \leq V_b \leq 2.0~V$	tkcy2/2 – 100		ns
SIp setup time tsik2		$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V$		1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{PD}}$	$2.3~V \leq V_{b} \leq 2.7~V$	1/fмск + 40		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}_{\text{PD}}$	$1.6~V \leq V_{b} \leq 2.0~V$	1/fмск + 60		ns
SIp hold time	tksi2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 62		ns
(from SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} \leq 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	1/fмск + 62		ns
		$2.4 \text{ V} \le V_{\text{DD}} \le 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{\text{b}} \le 2.0 \text{ V}$		1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$4.0~V \le V_{\text{DD}} \le 5.5~V,$	$2.7~V \leq V_{b} \leq 4.0~V,$		2/fмск + 240	ns
		C _b = 30 pF, R _b = 1.4 kΩ				
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$			2/fмск + 428	ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ s}$	$1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ 5 kΩ		2/fмск + 1146	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

3.5.2 Serial interface IICA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit		
			Standar	d Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fc⊥κ≥ 3.5 MHz	_	_	0	400	kHz
		Normal mode: fc⊥κ≥ 1 MHz	0	100	_	-	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0 ^{Note 3}	3.45	0 ^{Note 3}	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ R}_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

3.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{SU}:}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

Revision History

RL78/L13 Data Sheet

		Description		
Rev.	Date	Page	Summary	
0.01	Apr 13, 2012	-	First Edition issued	
0.02	Oct 31, 2012	-	Change of the number of segment pins	
			• 64-pin products: 36 pins	
			• 80-pin products: 51 pins	
2.10	Aug 12, 2016	1	Modification of features of 16-bit timer and 16-bit timer KB20 (IH) in 1.1 Features	
		5	Addition of product name (RL78/L13) and description (Top View) in 1.3.1 64-pin products	
		6	Addition of product name (RL78/L13) and description (Top View) in 1.3.2 80-pin products	
		10	Modification of functional overview of main system clock in 1.6 Outline of Functions	
		15	Modification of description in Absolute Maximum Ratings (3/3)	
		17, 18	Modification of description in 2.3.1 Pin characteristics	
		38	Modification of remark 3 in 2.5.1 (4) During communication at same potential (simplified I ² C mode)	
		68	Modification of the title and note, and addition of caution in 2.8 RAM Data Retention Characteristics	
		70	Addition of Remark	
		74	Modification of description in Absolute Maximum Ratings ($T_A = 25 \text{ °C}$) (3/3)	
		76	Modification of description in 3.3.1 Pin characteristics	
		95	Modification of remark 3 in 3.5.1 (4) During communication at same potential (simplified I ² C mode)	
		118	Modification of the title and note, and addition of caution in 3.8 RAM Data Retention Characteristics	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.