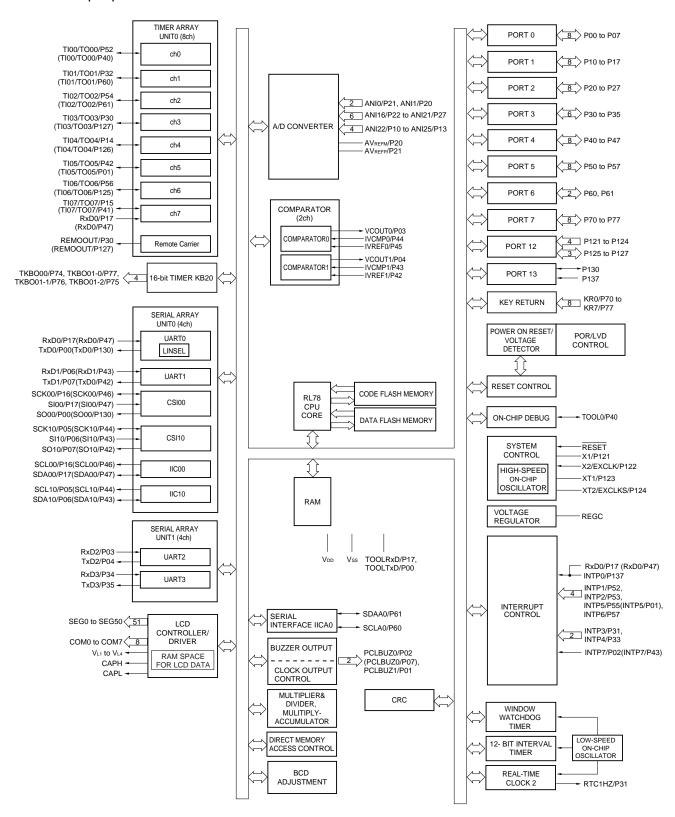


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmaafa-50

Email: info@E-XFL.COM

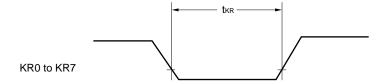
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/L13 1. OUTLINE

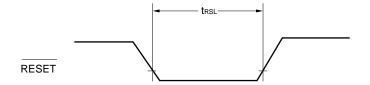
1.5.2 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/L13 User's Manual.

Absolute Maximum Ratings (2/3)

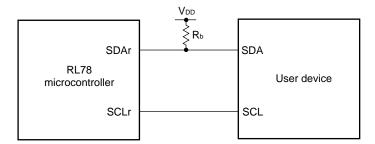

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		-0.3 to +2.8 and -0.3 to V _{L4} +0.3	V
	V _{L2}	V _{L2} voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	V _{L3}	V _{L3} voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	V _{L4}	V _{L4} voltage ^{Note 1}		-0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	-0.3 to V _{L4} +0.3 ^{Note 2}	V
	s	COM0 to COM7	External resistance division method	-0.3 to V _{DD} +0.3 ^{Note 2}	V
		SEG0 to SEG50	Capacitor split method	-0.3 to V _{DD} +0.3 ^{Note 2}	V
		output voltage	Internal voltage boosting method	-0.3 to V _{L4} +0.3 ^{Note 2}	V

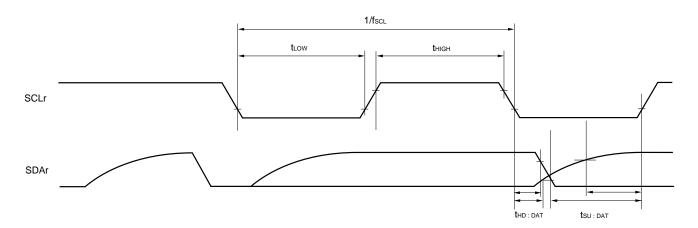
- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F \pm 30%) and connect a capacitor (0.47 μ F \pm 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.


Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Key Interrupt Input Timing

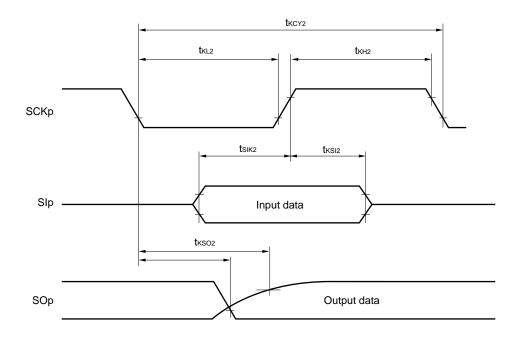

RESET Input Timing


- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
 - 3. Condition in the HS (high-speed main) mode

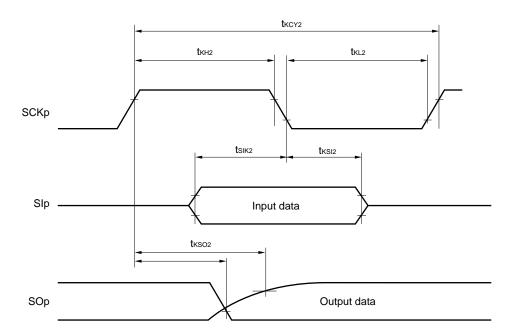
Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)



- **Remarks 1.** $R_b[\Omega]$: Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance
 - 2. r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)


<R>

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - 4. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. $R_b[\Omega]$: Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage

- 2. p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn) m: Unit number, n: Channel number (mn = 00, 02))

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

(TA = -40 to $+85^{\circ}$ C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}Note 3, Reference voltage (-) = AV_{REFM}Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
Integral linearity errorNote 1	ILE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.
- 4. When reference voltage (–) = V_{SS} , the MAX. values are as follows. Zero-scale error: Add $\pm 0.35\%$ FSR to the AV_{REFM} MAX. value. Integral linearity error: Add ± 0.5 LSB to the AV_{REFM} MAX. value. Differential linearity error: Add ± 0.2 LSB to the AV_{REFM} MAX. value.

2.6.2 Temperature sensor /internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	ADS register = 80H, T _A = +25°C		1.05		٧
Internal reference output voltage	V _{BGR}	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	٧
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	٧
Doubler output voltage	V _{L2}	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 V _{L1}	2 V _{L1}	V
Tripler output voltage	V _{L3}	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1-0.12	3 V _{L1}	3 V _{L1}	V
Quadruply output voltage	V _{L4}	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 VL1-0.16	4 V _{L1}	4 V _{L1}	V
Reference voltage setup timeNote 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between VL3 and GND
- C5: A capacitor connected between VL4 and GND
- C1 = C2 = C3 = C4 = C5 = 0.47 μ F \pm 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.7.3 Capacitor split method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.2 \text{ V} \le V_D \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	V _{L4}	C1 to C4 = 0.47 µF ^{Note 2}		V _{DD}		V
V _{L2} voltage	V _{L2}	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} – 0.1	2/3 V _{L4}	2/3 V _{L4} + 0.1	V
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} – 0.1	1/3 V _{L4}	1/3 V _{L4} + 0.1	V
Capacitor split wait timeNote 1	tvwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

- 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL4 and GND
 - C1 = C2 = C3 = C4 = 0.47 μ F \pm 30%

"G: Industrial applications ($T_A = -40$ to +105°C) differ from "A: Consumer applications" in function as follows:

Fields of Application	A: Consumer applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	TA = -40 to +105°C
Operation mode operating voltage range	HS (high-speed main) mode: $2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to 24 MHz}$ $2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to 16 MHz}$ $LS \text{ (low-speed main) mode:}$ $1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to 8 MHz}$ $LV \text{ (low-voltage main) mode:}$ $1.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to 4 MHz}$	HS (high-speed main) mode only: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~24~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$
High-speed on-chip oscillator clock accuracy	1.8 V ≤ VDD ≤ 5.5 V: ±1.0 % @ TA = -20 to +85°C ±1.5 % @ TA = -40 to -20°C 1.6 V ≤ VDD < 1.8 V: ±5.0 % @ TA = -20 to +85°C ±5.5 % @ TA = -40 to -20°C	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$: $\pm 2.0 \%$ @ $T_A = +85 \text{ to } +105^{\circ}\text{C}$ $\pm 1.0 \%$ @ $T_A = -20 \text{ to } +85^{\circ}\text{C}$ $\pm 1.5 \%$ @ $T_A = -40 \text{ to } -20^{\circ}\text{C}$
Serial array unit	UART CSI: fclk/2 (16 Mbps supported), fclk/4 Simplified I ² C	UART CSI: fclk/4 Simplified I ² C
IICA	Standard mode Fast mode Fast mode plus	Standard mode Fase mode
Voltage detector	• Rising: 1.67 V to 4.06 V (14 levels) • Falling: 1.63 V to 3.98 V (14 levels)	Rising: 2.61 V to 4.06 V (8 levels)Falling: 2.55 V to 3.98 V (8 levels)

Remark Electrical specifications of G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C) differ from "A: Consumer applications". For details, see **3.1** to **3.11** below.

Absolute Maximum Ratings (TA = 25°C) (3/3)

	Parameter	Symbol		Conditions	Ratings	Unit			
<r> Output current, high <r></r></r>		ut current, high I _{OH1}		P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA			
			Total of all pins -170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	–170	mA			
<r></r>		Іон2	Per pin	P20, P21	-0.5	mA			
			Total of all pins		–1	mA			
<r></r>	Output current, low	lol1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA			
			Total of all pins	P40 to P47, P130	70	mA			
<r></r>			170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA			
<r></r>		lo _{L2}	Per pin	P20, P21	1	mA			
<r></r>			Total of all pins		2	mA			
	Operating ambient	TA	In normal operation	n mode	-40 to +105	°C			
	temperature		In flash memory p	rogramming mode		°C			
	Storage temperature	Tstg			-65 to +150	°C			

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

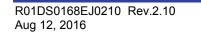
Parameter	Symbol	Conditions	MAX.	Unit		
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	2.4 V ≤ V _{DD} ≤ 5.5 V		-3.0 ^{Note 2}	mA
		Total of P00 to P07, P10 to P17,	$4.0~V \leq V_{DD} \leq 5.5~V$		-45.0	mA
		P22 to P27, P30 to P35, P40 to P47, P50	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$		-15.0	mA
		to P57, P70 to P77, P125 to P127, P130 (When duty = 70% ^{Note 3})	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$		-7.0	mA
	Іон2	Per pin for P20 and P21	$2.4~V \leq V_{DD} \leq 5.5~V$		-0.1 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$2.4~V \leq V_{DD} \leq 5.5~V$		-0.2	mA

Notes 1. Value of the current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin

- 2. Do not exceed the total current value.
- 3. Output current value under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(loh \times 0.7)/(n \times 0.01)$


<Example> Where n = 80% and IoH = -45.0 mA

Total output current of pins = $(-45.0 \times 0.7)/(80 \times 0.01) = -39.375$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit	
Supply	I _{DD1} Note 1	Operating	HS (high-	f _{HOCO} = 48 MHz ^{Note}	Basic	V _{DD} = 5.0 V		2.0		mA	
current		mode	speed main)	3,	operation	V _{DD} = 3.0 V		2.0		mA	
			mode ^{Note 5}	f _{IH} = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.8	7.0	mA	
					operation	V _{DD} = 3.0 V		3.8	7.0	mA	
				f _{HOCO} = 24 MHz ^{Note}	Basic	V _{DD} = 5.0 V		1.7		mA	
				3,	operation	V _{DD} = 3.0 V		1.7		mA	
				f _{IH} = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.6	6.5	mA	
					operation	V _{DD} = 3.0 V	6.5	mA			
				f _{HOCO} = 16 MHz ^{Note}	Normal	V _{DD} = 5.0 V		2.7	5.0	mA	
				³ , f _{IH} = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	5.0	mA	
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	5.4	mA	
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V ope	operation	Resonator connection		3.2	5.6	mA	
			moderates	f _{MX} = 20 MHz ^{Note 2} ,	Nomal	Square wave input	3.2	5.4	mA		
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.6	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	3.2	mA	
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	3.2	mA m	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 3.0 \text{ V}$	Nomal	Square wave input		1.9	3.2	mA	
					operation	Resonator connection		1.9	3.2	mA	
			Subsystem clock operation	f _{SUB} = 32.768 kHz ^{Note 4} , T _A = -40°C	Nomal	Square wave input		4.0	5.4	μΑ	
					operation	Resonator connection		4.3	5.4	μΑ	
				fsuB =	Normal	Square wave input		4.0	5.4	μΑ	
				32.768 kHz Note 4, T _A = +25°C	operation	Resonator connection		4.3	5.4	μΑ	
				fsub =	Normal	Square wave input		4.1	7.1	μΑ	
				32.768 kHz ^{Note 4} , T _A = +50°C	operation	Resonator connection		4.4	7.1	μΑ	
				f _{SUB} =	Nomal	Square wave input		4.3	8.7	μΑ	
				32.768 kHz ^{Note 4} , T _A = +70°C	operation	Resonator connection		4.7	8.7	μΑ	
				f _{SUB} =	Nomal	Square wave input		4.7	12.0	μΑ	
				32.768 kHz ^{Note 4} , T _A = +85°C	operation	Resonator connection		5.2	12.0	μΑ	
					Nomal	Square wave input		6.4	35.0	μΑ	
				32.768 kHz ^{Note 4} , T _A = +105°C		operation	Resonator connection		6.6	35.0	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped.
 When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - **6.** The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 24 MHz

 $2.4~V \leq V_{DD} \leq 5.5~V@1~MHz$ to 16 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	litions	HS (high-spee	ed main) Mode	Unit
		<u> </u>		MIN.	MAX.	
SCKp cycle time ^{Note 5}	tkcy2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \qquad $		16/fмск		ns
				12/fмск		ns
				16/fмск		ns
				12/fмск		ns
				12/fмск and 1000		ns
SCKp high-/low-level width	t кн2, t кL2	4.0 V ≤ V _{DD} ≤ 5.5 V		tkcy2/2-14		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$		tkcy2/2-16		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		tkcy2/2-36		ns
SIp setup time	tsık2	2.7 V ≤ V _{DD} ≤ 5.5 V		1/fмск+40		ns
(to SCKp↑)Note 1		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+62		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмск+66	ns
SOp output ^{Note 3}			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмск+113	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
Transfer rate		Transmission	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 1.4$ k Ω , $V_b = 2.7$ V		2.0 ^{Note 2}	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 2.7$ k Ω , $V_b = 2.3$ V		1.2 ^{Note 4}	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		Note 5	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 5.5$ k Ω , $V_b = 1.6$ V		0.43 ^{Note 6}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{In } (1-\frac{2.2}{V_b})\} \times 3} \text{[bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 1** above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

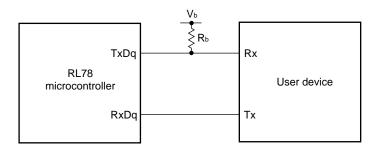
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

Notes 5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-) = AV _{REFM}
ANIO, ANI1	-	See 3.6.1 (2) .	See 3.6.1 (3).
ANI16 to ANI25	See 3.6.1 (1) .		
Internal reference voltage Temperature sensor output voltage	See 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

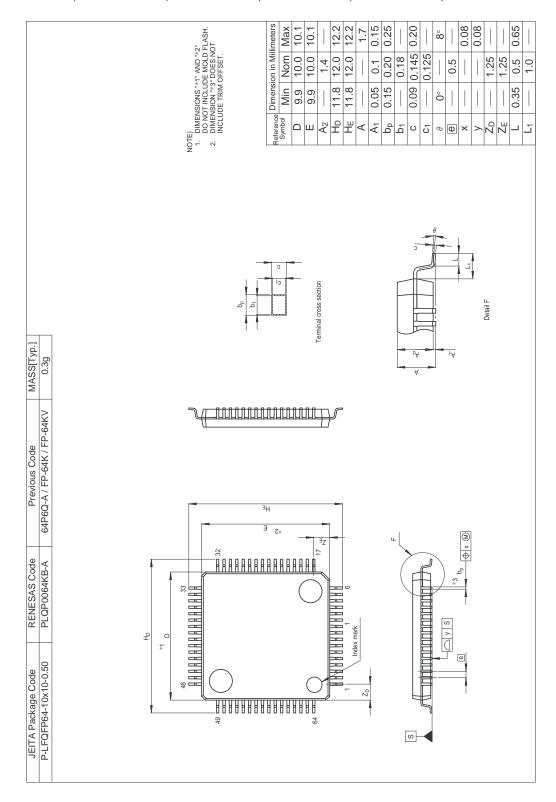
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \le V_{DD} \le 5.5~V$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI16 to ANI25	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \le V_{DD} \le 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	2.4 V ≤ V _{DD} ≤ 5.5 V			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI25		0		AVREFP	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-	ernal reference voltage 4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode))		V _{BGR} Note 4		
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode))			V _{TMPS25} Note 4		

(Notes are listed on the next page.)

3.7.2 Internal voltage boosting method

(1) 1/3 bias method


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} = 0.47 µF		2 V _{L1} – 0.10	2 V _{L1}	2 V _{L1}	V
Tripler output voltage	V _{L4}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} – 0.15	3 V _{L1}	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait timeNote 3	tvwait2	C1 to C4 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between V_{L4} and GND
- C1 = C2 = C3 = C4 = 0.47 μ F \pm 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB, R5F10WLAGFB, R5F10WLCGFB, R5WLCGFB, R5WL

Revision History

RL78/L13 Data Sheet

		Description			
Rev.	Date	Page	Summary		
0.01	Apr 13, 2012	-	First Edition issued		
0.02	Oct 31, 2012	-	Change of the number of segment pins		
			• 64-pin products: 36 pins		
			• 80-pin products: 51 pins		
2.10	Aug 12, 2016	1	Modification of features of 16-bit timer and 16-bit timer KB20 (IH) in 1.1 Features		
		5	Addition of product name (RL78/L13) and description (Top View) in 1.3.1 64-pin products		
		6	Addition of product name (RL78/L13) and description (Top View) in 1.3.2 80-pin products		
		10	Modification of functional overview of main system clock in 1.6 Outline of Functions		
		15	Modification of description in Absolute Maximum Ratings (3/3)		
		17, 18	Modification of description in 2.3.1 Pin characteristics		
		38	Modification of remark 3 in 2.5.1 (4) During communication at same potential (simplified I ² C mode)		
		68	Modification of the title and note, and addition of caution in 2.8 RAM Data Retention Characteristics		
		70	Addition of Remark		
		74	Modification of description in Absolute Maximum Ratings (T _A = 25 °C) (3/3)		
		76	Modification of description in 3.3.1 Pin characteristics		
		95	Modification of remark 3 in 3.5.1 (4) During communication at same potential (simplified I ² C mode)		
		118	Modification of the title and note, and addition of caution in 3.8 RAM Data Retention Characteristics		

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.