

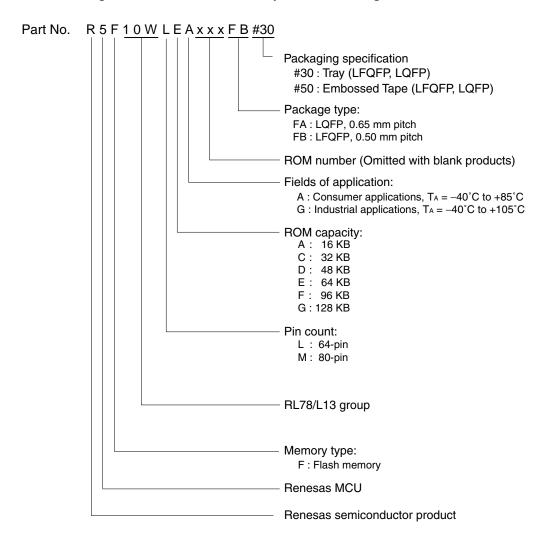
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

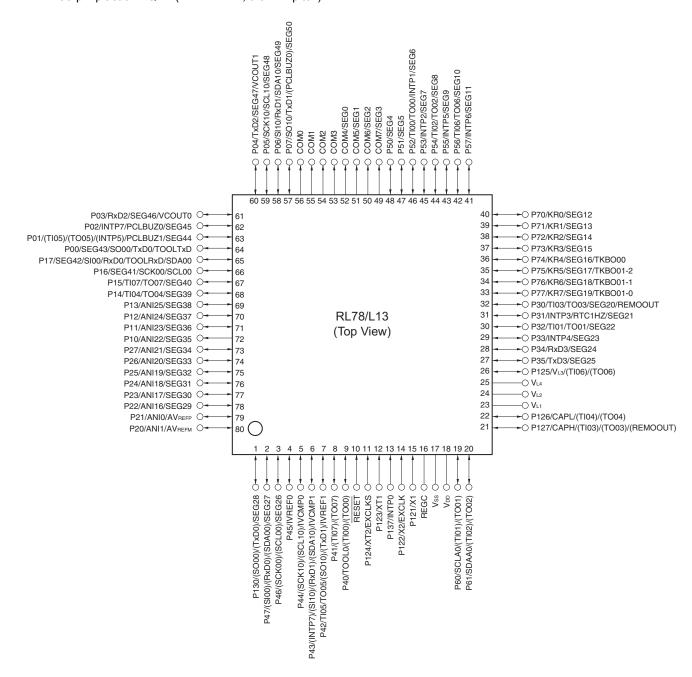
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmaafa-v0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/L13 1. OUTLINE

1.2 List of Part Numbers


Figure 1-1. Part Number, Memory Size, and Package of RL78/L13

RL78/L13 1. OUTLINE

<R> 1.3.2 80-pin products

- 80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

2. ELECTRICAL SPECIFICATIONS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Target products A: Consumer applications; $T_A = -40 \text{ to } +85^{\circ}\text{C}$

R5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA, R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA, R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WMDAFA, R5F10WMAAFA, R5F10WMCAFA, R5F10WMGAFA, R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB, R5F10WMBAFB, R5F10WMBAFB, R5F10WMBAFB, R5F10WMBAFB, R5F10WMBAFB

G: Industrial applications; when using T_A = -40 to +105°C specification products at T_A = -40 to +85°C R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLEGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WMEGFB, R5F10WMEGFB, R5F10WMEGFB

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.

<R>

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, lon-	Іон1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	$1.6~V \leq V_{DD} \leq 5.5~V$			-10.0 ^{Note 2}	mA
		Total of P00 to P07, P10 to P17,	$4.0~V \leq V_{DD} \leq 5.5~V$			-90.0	mA
		P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130 (When duty = 70% ^{Note 3})	$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}$			-15.0	mA
			$1.8 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			-7.0	mA
			$1.6 \text{ V} \le \text{V}_{DD} \le 1.8 \text{ V}$			-3.0	mA
	І он2	Per pin for P20 and P21	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$1.6~V \leq V_{DD} \leq 5.5~V$			-0.2	mA

- **Notes 1**. Value of the current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and I_{OH} = -90.0 mA

Total output current of pins = $(-90.0 \times 0.7)/(80 \times 0.01) \approx -78.75$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	f _{HOCO} = 48 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		2.0		mA
current ^{Note}		mode	speed main) mode ^{Note 5}	f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.0		mA
			mode		Normal	V _{DD} = 5.0 V		3.8	6.5	mA
					operation	V _{DD} = 3.0 V		2.0 2.0 3.8 6.5 3.8 6.5 1.7 1.7 3.6 6.1 3.6 6.1 2.7 4.7 2.7 4.7 1.2 2.1 1.2 1.2 1.8 1.2 1.8 1.2 1.8 3.0 5.1 3.2 5.2 2.9 5.1 3.2 5.2 2.9 5.1 3.2 5.2 2.5 4.4 2.7 4.5 2.5 4.4 2.7 4.5 1.9 3.0 1.9 3.0 1.9 3.0 1.9 3.0 1.9 3.0 1.1 2.0 1.1 2.0 4.0 5.4 4.3 5.4 4.1 7.1	6.5	mA
				fHOCO = 24 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		1.7		mA
				f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA
					Normal	V _{DD} = 5.0 V		3.6	6.1	mA
					operation	V _{DD} = 3.0 V		3.6	6.1	mA
				f _{HOCO} = 16 MHz ^{Note 3} ,	Normal	V _{DD} = 5.0 V		2.7	4.7	mA
				f _{IH} = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	4.7	mA
			LS (low-	fHOCO = 8 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V		1.2	2.1	mA
			speed main) mode ^{Note 5}	f _{IH} = 8 MHz ^{Note 3}	operation	V _{DD} = 2.0 V		1.2	2.1	mA
			LV (low-	f _{HOCO} = 4 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			voltage main) mode ^{Note 5}	f _{IH} = 4 MHz ^{Note 3}	operation	V _{DD} = 2.0 V		1.2	1.8	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	5.1	mA
			speed main) mode ^{Note 5}	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		3.2	5.2	mA
			mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.9	5.1	mA
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		3.2	5.2	mA
				$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	4.4	mA
			V _{DD} = 5.0 V	operation	Resonator connection		2.7	4.5	mA	
			$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.5	4.4	mA	
				V _{DD} = 3.0 V	operation	Resonator connection		2.7	4.5	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 5.0 \text{ V}$	Normal	Square wave input		 	3.0	mA
					operation	Resonator connection			1	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input				mA
				V _{DD} = 3.0 V	operation	Resonator connection				mA
			LS (low- speed main)	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 3.0 \text{ V}$	Normal operation	Square wave input		 	1	mA
			mode ^{Note 5}		· .	Resonator connection				mA
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 2.0 \text{ V}$	Normal operation	Square wave input				mA
			0.1			Resonator connection			1	mA
			Subsystem clock	$f_{SUB} = 32.768 \text{ kHz}^{Note}$ 4,	Normal operation	Square wave input				μΑ
			operation	, T _A = -40°C	opo.aco.r	Resonator connection		4.3	5.4	μΑ
				f _{SUB} = 32.768 kHz Note	Nomal	Square wave input		4.0	5.4	μΑ
				⁴ , T _A = +25°C	operation	Resonator connection		4.3	5.4	μА
				f _{SUB} = 32.768 kHz ^{Note}	Nomal	Square wave input		4.1	7.1	μΑ
				⁴ , T _A = +50°C	operation	Resonator connection		4.4	7.1	μΑ
					Normal	Square wave input		4.3	8.7	μΑ
			⁴ , T _A = +70°C	operation	Resonator connection		4.7	8.7	μΑ	
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		4.7	12.0	μΑ
				⁴ , T _A = +85°C	operation	Resonator connection		5.2	12.0	μΑ
				100 0	<u>i</u>	1				

(Notes and Remarks are listed on the next page.)

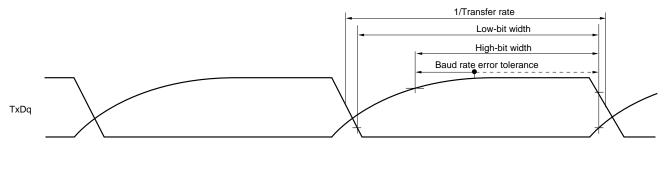
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

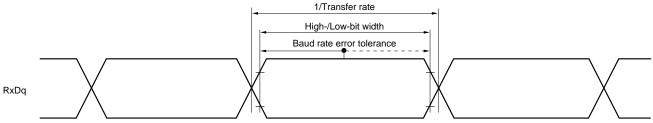
(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2} Note 2	HALT	HS (high-speed	f _{HOCO} = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	1.95	mA
current ^{Note 1}		mode	main) mode ^{Note}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	1.95	
				fHOCO = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.64	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.64	
				f _{HOCO} = 16 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.43	1.11	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.11	
			LS (low-speed	f _{HOCO} = 8 MHz Note 4,	V _{DD} = 3.0 V		280	770	μA
			main) mode ^{Note}	f _{IH} = 8 MHz Note 4	V _{DD} = 2.0 V		280	770	,
			LV (low-voltage	f _{HOCO} = 4 MHz ^{Note 4} ,	V _{DD} = 3.0 V		430	700	μΑ
			main) mode ^{Note 7}	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 2.0 V		430	700	μ.
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.42	mA
			main) mode ^{Note}	V _{DD} = 5.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.42	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.42	,
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.26	0.86	m.A
				V _{DD} = 5.0 V	Resonator connection		0.45	1.15	
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.25	0.86	m/
				V _{DD} = 3.0 V	Resonator connection		0.44	1.15	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.63	m/
			V _{DD} = 5.0 V	Resonator connection		0.28	0.71		
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.63	m/	
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71	
		LS	LS (low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μP
			main) mode ^{Note 7}	Von = 3 0 V	Resonator connection		160	560	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μP
				V _{DD} = 2.0 V	Resonator connection		160	560	
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μP
			clock operation	T _A = -40°C	Resonator connection		0.51	0.80	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μP
				T _A = +25°C	Resonator connection		0.57	0.80	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μΑ
				T _A = +50°C	Resonator connection		0.67	2.49	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μΑ
				T _A = +70°C	Resonator connection		0.91	4.22	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μP
			T _A = +85°C	Resonator connection		1.31	8.23		
	I _{DD3} Note 6	STOP	T _A = -40°C				0.18	0.52	μP
		mode ^{Note 8}	T _A = +25°C				0.24	0.52	
			T _A = +50°C				0.33	2.21	
		T _A = +70°C					0.53	3.94	
			T _A = +85°C				0.93	7.95	

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped.
 When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - **6.** Not including the current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz


 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 4 \text{ MHz}$

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fhoco: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fil: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

UART mode bit width (during communication at different potential) (reference)

- Remarks 1. $R_b[\Omega]$: Communication line (TxDq) pull-up resistance, $C_b[F]$: Communication line (TxDq) load capacitance, $V_b[V]$: Communication line voltage
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - 3. fMCK: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

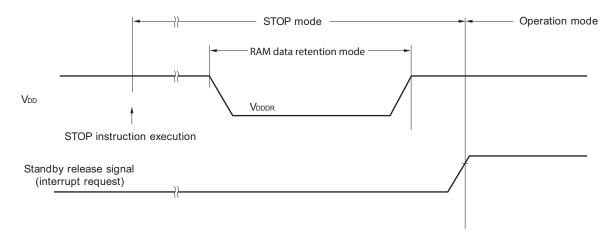
Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (-) = AV _{REFM}
ANIO, ANI1	_	See 2.6.1 (2).	See 2.6.1 (3).
ANI16 to ANI25	See 2.6.1 (1) .		
Internal reference voltage Temperature sensor output	See 2.6.1 (1) .		_
voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	C	conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±5.0	LSB
		AV _{REFP} = V _{DD} Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI16 to ANI25	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
			$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR
Full-scale errorNotes 1, 2	Ers	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±3.5	LSB
		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±6.0	LSB
Differential linearity errorNote 1	DLE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±2.0	LSB
		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI25		0		AVREFP	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, I	V _{BGR} Note 5			V	
		Temperature sensor of (2.4 V \leq V _{DD} \leq 5.5 V,	output voltage HS (high-speed main) mode))	,	V _{TMPS25} Note 5	5	V

(Notes are listed on the next page.)



<R> 2.8 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

- <R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.
- <R> Caution Data in RAM are not retained if the CPU operates outside the specified operating voltage range.
 Therefore, place the CPU in STOP mode before the operating voltage drops below the specified range.

2.9 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	1.8 V ≤ V _{DD} ≤ 5.5 V	1		24	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 year T _A = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years T _A = 85°C	10,000			

- Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

Absolute Maximum Ratings (2/3)

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		-0.3 to +2.8 and -0.3 to V _{L4} +0.3	V
	V _{L2}	V _{L2} voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	V _{L3}	V _{L3} voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	V _{L4}	V _{L4} voltage ^{Note 1}		-0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	-0.3 to V _{L4} +0.3 ^{Note 2}	V
	Vouт	COM0 to COM7	External resistance division method	-0.3 to V_{DD} +0.3 $^{Note 2}$	V
		SEG0 to SEG50	Capacitor split method	-0.3 to V_{DD} +0.3 $^{Note 2}$	V
		output voltage	Internal voltage boosting method	-0.3 to V _{L4} +0.3 ^{Note 2}	V

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F \pm 30%) and connect a capacitor (0.47 μ F \pm 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	litions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time ^{Note 5}	tkcy2	$4.0~V \le V_{DD} \le 5.5~V$	fmck > 20 MHz	16/fмск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \le V_{DD} \le 5.5~V$	fмск > 16 MHz	16/fмск		ns
			fмcк ≤ 16 MHz			ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		12/fмск and 1000		ns
SCKp high-/low-level width	t кн2, t кL2	4.0 V ≤ V _{DD} ≤ 5.5 V		tkcy2/2-14		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$		tkcy2/2-16		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		tkcy2/2-36		ns
SIp setup time	tsık2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск+40		ns
(to SCKp↑)Note 1		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+62		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмск+66	ns
SOp outputNote 3			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмск+113	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

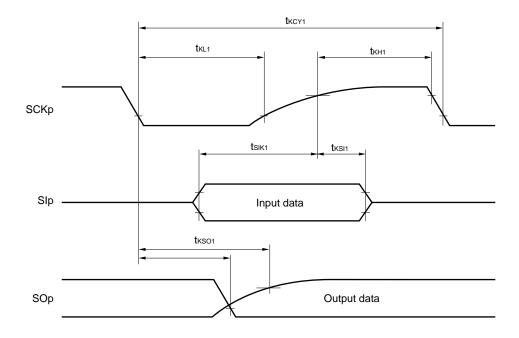
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

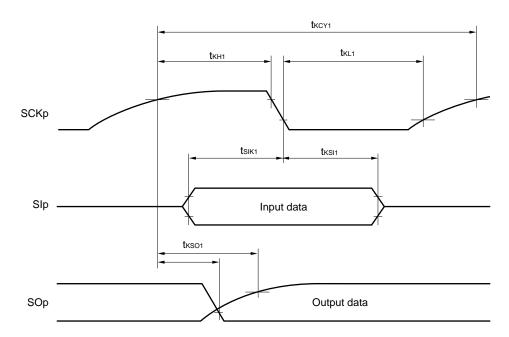
(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate		Reception	$\begin{split} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{split}$		fmck/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps
			$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V \end{split}$		fmck/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		fmck/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps

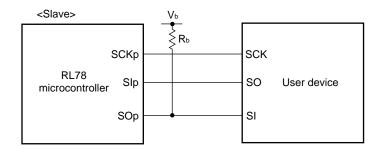
Note Transfer rate in SNOOZE mode is 4800 bps only.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage


- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)

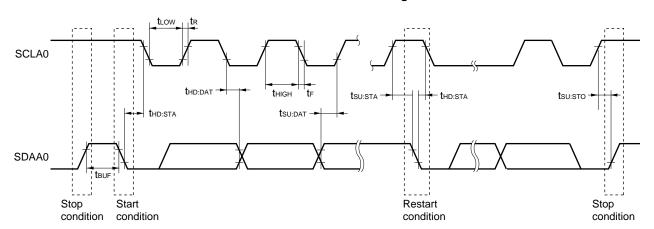
CSI mode connection diagram (during communication at different potential)

- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-speed main) Mode				Unit
				Standard Mode		Fast Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fcLk≥ 3.5 MHz	-	_	0	400	kHz
		Normal mode: fclk≥ 1 MHz	0	100	_	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	t HIGH		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		O ^{Note 3}	3.45	O ^{Note 3}	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

IICA serial transfer timing

3.7 LCD Characteristics

3.7.1 External resistance division method

(1) Static display mode

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		V _{DD}	V

(2) 1/2 bias method, 1/4 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.7		V _{DD}	V

(3) 1/3 bias method

(T_A = -40 to +105°C, V_{L4} (MIN.) \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.5		V _{DD}	V

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	٧
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	٧
			VLCD = 09H	1.15	1.25	1.33	٧
			VLCD = 0AH	1.20	1.30	1.38	٧
Doubler output voltage	V _{L2}	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} – 0.08	2 V _{L1}	2 V _{L1}	V
Tripler output voltage	V _{L3}	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} – 0.12	3 V _{L1}	3 V _{L1}	V
Quadruply output voltage	V _{L4}	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 V _{L1} – 0.16	4 V _{L1}	4 V _{L1}	V
Reference voltage setup timeNote 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between VL3 and GND
- C5: A capacitor connected between V_{L4} and GND

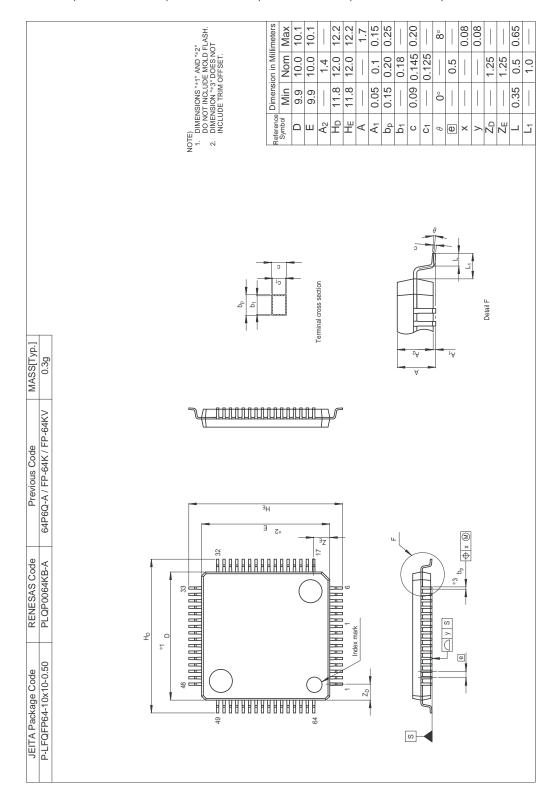
C1 = C2 = C3 = C4 = C5 = 0.47
$$\mu$$
F \pm 30%

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1)
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.7.3 Capacitor split method

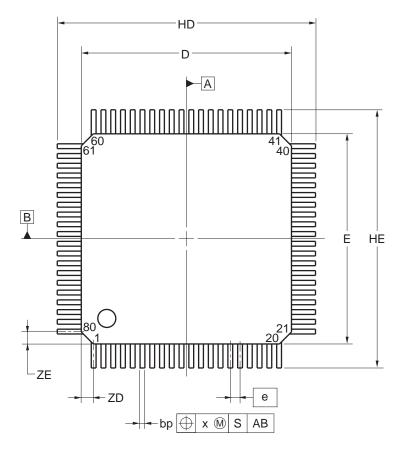
(1) 1/3 bias method

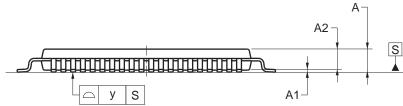
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_D \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

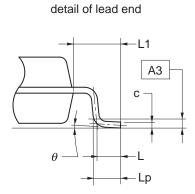

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	V _{L4}	C1 to C4 = 0.47 μ F ^{Note 2}		V _{DD}		٧
V _{L2} voltage	V _{L2}	C1 to C4 = $0.47 \ \mu F^{\text{Note 2}}$	2/3 V _{L4} – 0.1	2/3 V _{L4}	2/3 V _{L4} + 0.1	٧
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} – 0.1	1/3 V _{L4}	1/3 V _{L4} + 0.1	V
Capacitor split wait timeNote 1	tvwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

- 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between V_{L4} and GND
 - $C1 = C2 = C3 = C4 = 0.47 \text{ pF} \pm 30 \%$


R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB, R5F10WLAGFB, R5F10WLCGFB, R5WLCGFB, R5WL




4.2 80-pin Products

R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMEAFA, R5F10WMFAFA, R5F10WMGAFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

Referance	Dimension in Millimeters						
Symbol	Min	Nom	Max				
D	13.80	14.00	14.20				
Е	13.80	14.00	14.20				
HD	17.00	17.20	17.40				
HE	17.00	17.20	17.40				
А			1.70				
A1	0.05	0.125	0.20				
A2	1.35	1.40	1.45				
A3		0.25					
bp	0.26	0.32	0.38				
С	0.10	0.145	0.20				
L		0.80					
Lp	0.736	0.886	1.036				
L1	1.40	1.60	1.80				
	0°	3°	8°				
е		0.65					
х		_	0.13				
у	—		0.10				
ZD		0.825					
ZE		0.825					