

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuns	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmaafa-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Count	Package	Data Flash	Fields of Application ^{Note}	Ordering Part Number
64 pins	64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)	Mounted	A	R5F10WLAAFA#30, R5F10WLAAFA#50, R5F10WLCAFA#30, R5F10WLCAFA#50, R5F10WLDAFA#30, R5F10WLDAFA#50, R5F10WLEAFA#30, R5F10WLEAFA#50, R5F10WLFAFA#30, R5F10WLFAFA#50, R5F10WLGAFA#30, R5F10WLGAFA#50
	64-pin plastic LFQFP (10×10 mm, 0.5 mm pitch)	Mounted	A	R5F10WLAAFB#30, R5F10WLAAFB#50, R5F10WLCAFB#30, R5F10WLCAFB#50, R5F10WLDAFB#30, R5F10WLDAFB#50, R5F10WLEAFB#30, R5F10WLEAFB#50, R5F10WLFAFB#30, R5F10WLFAFB#50, R5F10WLGAFB#30, R5F10WLGAFB#50,
			G	R5F10WLAGFB#30, R5F10WLAGFB#50, R5F10WLCGFB#30, R5F10WLCGFB#50, R5F10WLDGFB#30, R5F10WLDGFB#50, R5F10WLEGFB#30, R5F10WLEGFB#50, R5F10WLFGFB#30, R5F10WLFGFB#50, R5F10WLGGFB#30, R5F10WLGGFB#50
80 pins	80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)	Mounted	A	R5F10WMAAFA#30, R5F10WMAAFA#50, R5F10WMCAFA#30, R5F10WMCAFA#50, R5F10WMDAFA#30, R5F10WMDAFA#50, R5F10WMEAFA#30, R5F10WMEAFA#50, R5F10WMFAFA#30, R5F10WMFAFA#50, R5F10WMGAFA#30, R5F10WMGAFA#50
	80-pin plastic LFQFP (12×12 mm, 0.5 mm pitch)	Mounted	A	R5F10WMAAFB#30, R5F10WMAAFB#50, R5F10WMCAFB#30, R5F10WMCAFB#50, R5F10WMDAFB#30, R5F10WMDAFB#50, R5F10WMEAFB#30, R5F10WMEAFB#50, R5F10WMFAFB#30, R5F10WMFAFB#50, R5F10WMGAFB#30, R5F10WMGAFB#50,
			G	R5F10WMAGFB#30, R5F10WMAGFB#50, R5F10WMCGFB#30, R5F10WMCGFB#50, R5F10WMDGFB#30, R5F10WMDGFB#50, R5F10WMEGFB#30, R5F10WMEGFB#50, R5F10WMFGFB#30, R5F10WMFGFB#50, R5F10WMGGFB#30, R5F10WMGGFB#50

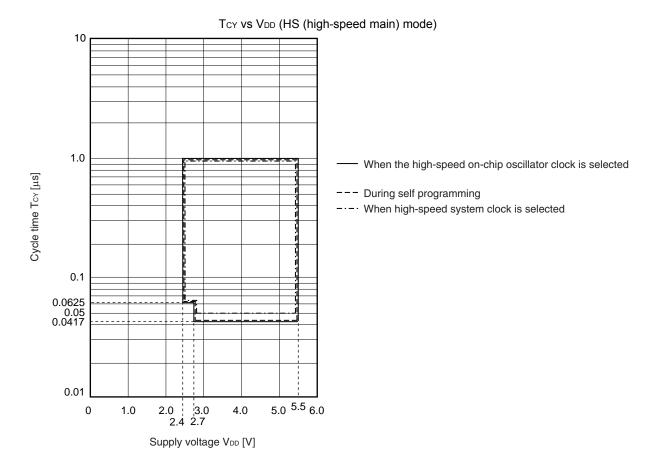
Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/L13.

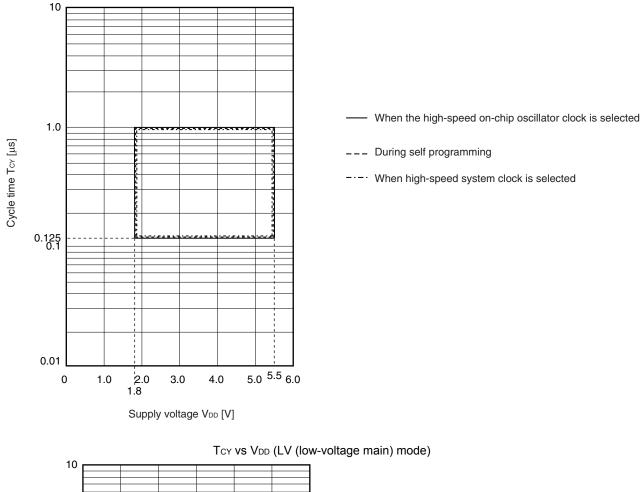
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

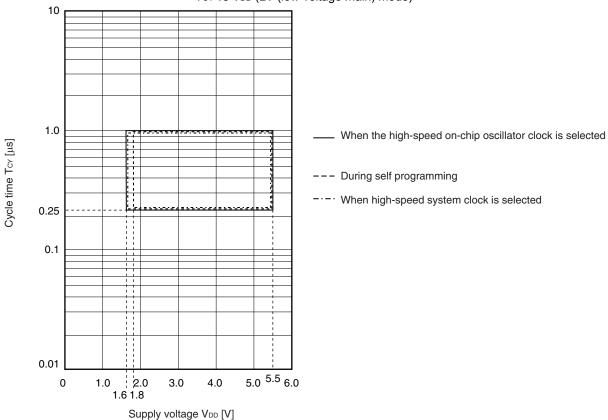
1.6 Outline of Functions

	Item	64-pin	80-pin				
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)				
Code flash m	emory (KB)	16 to 128	16 to 128				
Data flash me	emory (KB)	4	4				
RAM (KB)		1 to 8 ^{Note 1}	1 to 8 ^{Note 1}				
Address space	ce	1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main s HS (High-speed main) mode: 1 to 20 MHz (V_{DD} HS (High-speed main) mode: 1 to 16 MHz (V_{DD} LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = LV (Low-voltage main) mode: 1 to 4 MHz (V_{DD} =	= 2.7 to 5.5 V), = 2.4 to 5.5 V), 1.8 to 5.5 V),				
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 to 24 MHz (Vot HS (High-speed main) mode: 1 to 16 MHz (Vot LS (Low-speed main) mode: 1 to 8 MHz (Vot LV (Low-voltage main) mode: 1 to 4 MHz (Vot	= 2.4 to 5.5 V), = 1.8 to 5.5 V),				
Clock for 16-	bit timer KB20	48 MHz (TYP.): V _{DD} = 2.7 to 5.5 V					
Subsystem c	lock	XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): V _{DD} = 1.6 to 5.5 V					
Low-speed o	n-chip oscillator	15 kHz (TYP.)					
General-purp	ose register	(8-bit register \times 8) \times 4 banks					
Minimum inst	truction execution time	0.04167 μ s (High-speed on-chip oscillator: f _{IH} =	24 MHz operation)				
		0.05 μ s (High-speed system clock: f _{MX} = 20 MH	z operation)				
		30.5 μs (Subsystem clock: fsue = 32.768 kHz operation)					
Instruction se	et	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 					
I/O port	Total	49	65				
	CMOS I/O	42 (N-ch O.D. I/O [V _{DD} withstand voltage]: 12)	58 (N-ch O.D. I/O [V _{DD} withstand voltage]:				
	CMOS input	5	5				
	CMOS output	-	-				
	N-ch O.D I/O (withstand voltage: 6 V)	2	2				
Timer	16-bit timer TAU	8 chai	nnels				
	16-bit timer KB20	1 cha	nnel				
	Watchdog timer	1 cha	nnel				
	12-bit interval timer (IT)	1 channel					
	Real-time clock 2	1 channel					
	RTC2 output	1 • 1 Hz (subsystem clock: fsuв = 32.768 kHz)					
	Timer output	8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)					
	Remote control output	1 (TAU used)					

Notes 1. In the case of the 8 KB, this is about 7 KB when the self-programming function and data flash function are used.


2. The number of outputs varies depending on the setting of the channels in use and the number of master channels (see 6.9.3 Operation as multiple PWM output function in the RL78/L13 User's Manual.).

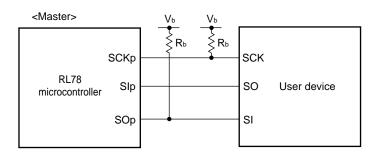

Note Operation is not possible if 1.6 V ≤ V_{DD} < 1.8 V in LV (low-voltage main) mode while the system is operating on the subsystem clock.


Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (LS (low-speed main) mode)

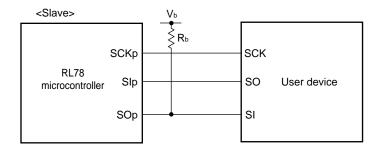
Parameter	Symbol	Conditions		h-speed Mode		/-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 4}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	44		110		110		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	44		110		110		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	19		19		19		ns
4		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	19		19		19		ns
Delay time from SCKp↑ to	tkso1			25		25		25	ns
SOp output ^{Note 4}		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		25		25		25	ns


(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Notes 1. Condition in HS (high-speed main) mode

2. Use it with $V_{DD} \ge V_b$.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- **4.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


CSI mode connection diagram (during communication at different potential)

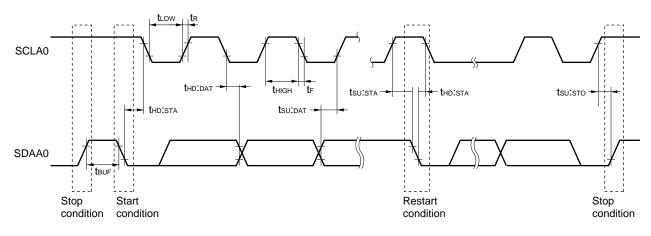
- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

(3) I²C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	ol Conditions			h-speed Mode		/-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fc⊥ĸ ≥ 10 MHz	$2.7 V \le V_{DD} \le$ 5.5 V	0	1000	-	-	-	-	kHz
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		0.26		_		-		μs
Hold time ^{Note 1}	thd:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.26		-		_		μs
Hold time when SCLA0 ="L"	t LOW	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.5		-		_		μs
Hold time when SCLA0 ="H"	tніgн	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≦5.5 V	0.26		-		-		μs
Data setup time (reception)	tsu:dat	2.7 V ≤ V _{DD} ≤	≦5.5 V	50		-		-	-	ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≤5.5 V	0	0.45	-	-	-	-	μs
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≤5.5 V	0.26		-	-	-	-	μs
Bus-free time	t BUF	$2.7 \text{ V} \leq V_{\text{DD}} \leq$	≤5.5 V	0.5		-	-	-	-	μs


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}^{Note 3},$ Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

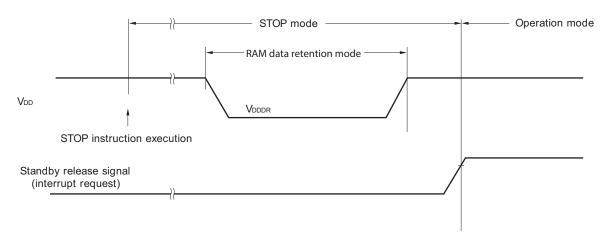
2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor /internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs


<R> 2.8 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^\circ \text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

<R> Caution Data in RAM are not retained if the CPU operates outside the specified operating voltage range. Therefore, place the CPU in STOP mode before the operating voltage drops below the specified range.

2.9 Flash Memory Programming Characteristics

(′T₄ = -	-40 to	+85°C.	1.8 \	1 < 1	VDD	< 5.5	V.	Vss = 0	V)
1	- ^ !	40.00			_		- 0.0	•,	• • • • •	•,

•		-				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclĸ	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	1		24	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years T _A = 85°C	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 year T _A = 25°C		1,000,000		
		Retained for 5 years T _A = 85°C	100,000			
		Retained for 20 years T _A = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

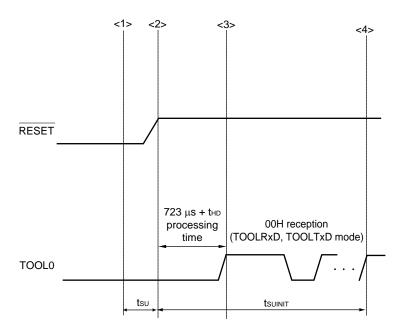
- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps



RL78/L13

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$

R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB

- Cautions 1. The RL78/L13 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.
 - Consult Renesas salesperson and distributor for derating when the product is used at T_A = +85°C to +105°C. Note that derating means "systematically lowering the load from the rated value to improve reliability".
- Remark When RL78/L13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		16.0	
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator		32	32.768	35	kHz

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/L13 User's Manual.

3.2.2 On-chip oscillator characteristics

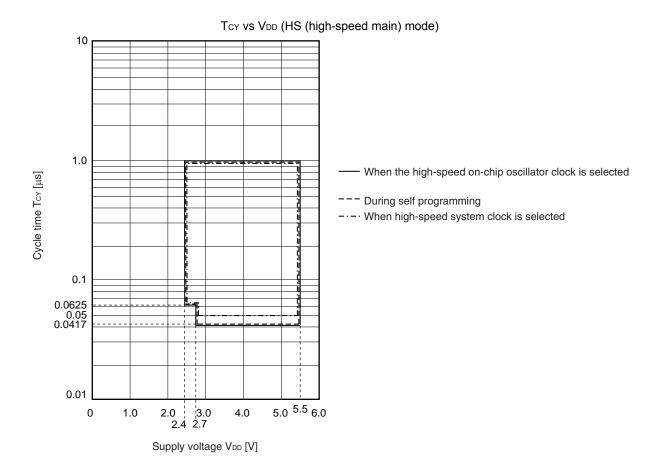
Parameter Symbol Conditions MIN. TYP. MAX. Unit 1 24 MHz High-speed on-chip oscillator fн clock frequencyNotes 1, 2 +85 to +105°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -2 +2 % High-speed on-chip oscillator clock frequency accuracy –20 to +85°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1 +1 % -40 to -20°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1.5 +1.5 % fı∟ 15 kHz Low-speed on-chip oscillator clock frequency Low-speed on-chip oscillator -15 +15 % clock frequency accuracy

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

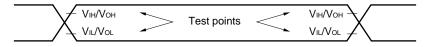
- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for the instruction execution time.

Notes 1. Current flowing to VDD.

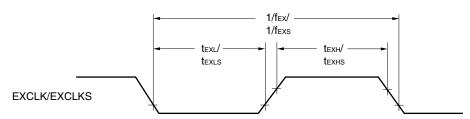
- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 6. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode in the RL78/L13 User's Manual.
- **11.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
- 12. Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsub for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
- **13.** Not including the current flowing into the external division resistor when using the external resistance division method.
- $\label{eq:result} \textbf{Remarks 1.} \hspace{0.1 in} f \hspace{-0.1 in} \texttt{IL:} \hspace{0.1 in} Low-speed \hspace{0.1 in} on-chip \hspace{0.1 in} oscillator \hspace{0.1 in} clock \hspace{0.1 in} frequency$
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. The temperature condition for the TYP. value is $T_A = 25^{\circ}C$.



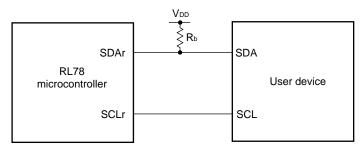
Note Specification under conditions where the duty factor is 50%.


Remark fmck: Timer array unit operation clock frequency

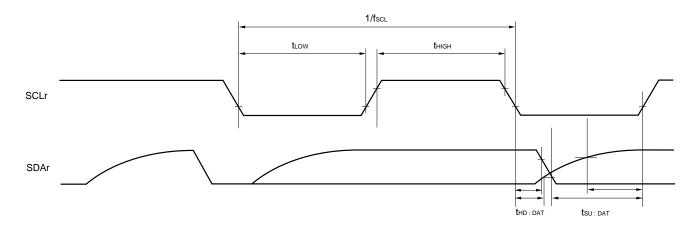
(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))


Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points



External System Clock Timing



Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
- <R>
- 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

Parameter S	Symbol		Conditions	HS (high-spee	Unit	
				MIN.	MAX.	
Transfer rate		Transmission	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		Note 1	bps
		Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.0 ^{Note 2}	Mbps	
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps	
		Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 ^{Note 4}	Mbps	
		$2.4 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 5	bps	
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 ^{Note 6}	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_DD \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times In (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

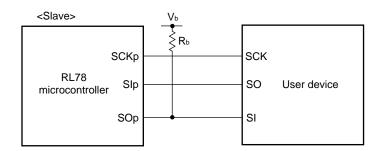
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

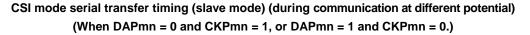

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

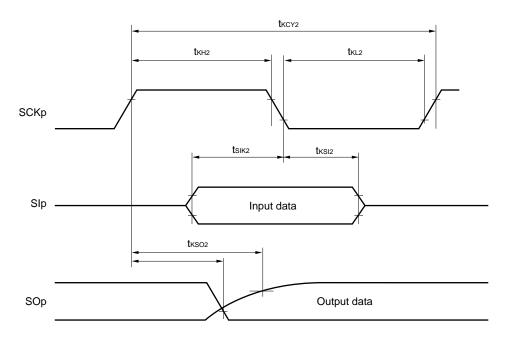
* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

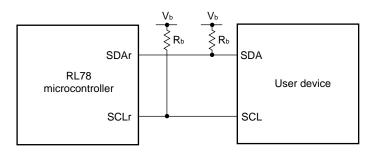


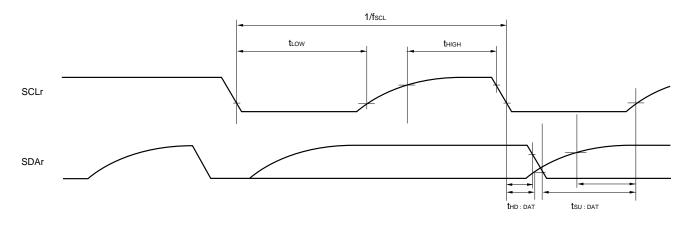
CSI mode connection diagram (during communication at different potential)




- **Notes 1.** Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)




- **Remarks 1.** $R_b[\Omega]$: Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn) m: Unit number, n: Channel number (mn = 00, 02))

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1} = 0.47 µ/F ^{Note 2}	VLCD = 04H	0.90	1.00	1.08	V
			VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} = 0.47 μ F		2 V _{L1} -0.10	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 μ F		3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} = 0.47 µF		500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F ± 30%

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

