

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

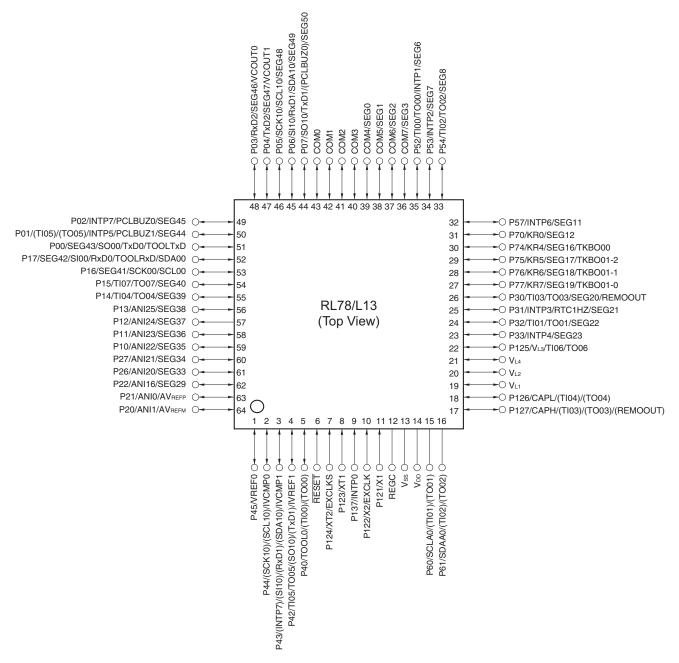
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Betans	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmaafb-30


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

<R> 1.3.1 64-pin products

- 64-pin plastic LQFP (12 \times 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	Vı2	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI0, ANI1, ANI16 to ANI26	-0.3 to V_DD +0.3 and -0.3 to AV_REF(+) +0.3 $^{Notes 2, 3}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

(1/2)

2.3.2 Supply current characteristics

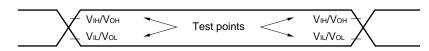
(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol			Conditions	•		MIN.	TYP.	MAX.	Uni
Supply	DD1	Operating	HS (high-	fHOCO = 48 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		2.0		mA
current ^{Note}		mode	speed main) mode ^{Note 5}	f⊪ = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.0		mA
			mode		Normal	V _{DD} = 5.0 V		3.8	6.5	mA
					operation	V _{DD} = 3.0 V		3.8	6.5	mA
				fHOCO = 24 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		1.7		mA
				fı⊩ = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA
					Normal	V _{DD} = 5.0 V		3.6	6.1	mA
					operation	V _{DD} = 3.0 V		3.6	6.1	m/
				fносо = 16 MHz ^{Note 3} ,	Normal	V _{DD} = 5.0 V		2.7	4.7	m/
				f⊪ = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	4.7	m/
			LS (low-	fHOCO = 8 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V		1.2	2.1	m/
			speed main) mode ^{Note 5}	$f_{H} = 8 \text{ MHz}^{Note 3}$	operation	V _{DD} = 2.0 V		1.2	2.1	m/
			LV (low-	$f_{HOCO} = 4 \text{ MHz}^{\text{Note 3}},$ $f_{IH} = 4 \text{ MHz}^{\text{Note 3}}$	Normal	V _{DD} = 3.0 V		1.2	1.8	m/
			voltage main) mode ^{Note 5}	IIH = 4 IVI⊓Z	operation	V _{DD} = 2.0 V		1.2	1.8	m/
			HS (high- speed main) mode ^{Note 5}	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	5.1	m
				V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.2	m.
			mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.9	5.1	m
			V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.2	m	
			$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	4.4	m	
		$V_{DD} = 5.0 V$	operation	Resonator connection		2.7	4.5	m		
				Normal	Square wave input		2.5	4.4	m	
				V _{DD} = 3.0 V	operation	Resonator connection		2.7	4.5	m
				· · · · ·	Normal	Square wave input		1.9	3.0	m
					operation	Resonator connection		1.9	3.0	m
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Normal	Square wave input		1.9	3.0	m
					operation	Resonator connection		1.9	3.0	m
			LS (low-	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.1	2.0	m
			speed main) mode ^{Note 5}	V _{DD} = 3.0 V	operation	Resonator connection		1.1	2.0	m
			mode	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.1	2.0	m
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	2.0	m
			Subsystem	fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		4.0	5.4	μ
			clock operation	⁴, T _A = −40°C	operation	Resonator connection		4.3	5.4	μ
				fsue = 32.768 kHz ^{Note}	Normal	Square wave input		4.0	5.4	μ
				⁴ , T _A = +25°C	operation	Resonator connection		4.3	5.4	μ
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		4.1	7.1	μ
			⁴ , T _A = +50°C	operation	Resonator connection		4.4	7.1	μ	
		$f_{SUB} = 32.768 \text{ kHz}^{Note}$		Normal	Square wave input		4.3	8.7	μ	
			⁴, T _A = +70°C	operation	Resonator connection		4.7	8.7	μ	
				fs∪в = 32.768 kHz ^{Note}	Normal	Square wave input		4.7	12.0	μ
				4	operation	Resonator connection		5.2	12.0	μ/

(Notes and Remarks are listed on the next page.)

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)


Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
instruction execution time)		clock (fmain)	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6~V \le V_{\text{DD}} \le 5.5~V$	0.25		1	μs
		Subsystem clo operation ^{Note}	ock (fsuв)	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	28.5	30.5	31.3	μs
		In the self	HS (high-speed	$2.7~V \le V_{\text{DD}} \le 5.5~V$	0.0417		1	μs
		programming	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 2.7 V	0.0625		1	μs
		mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fex	$2.7~V \leq V_{\text{DD}} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq V_{\text{DD}} <$	2.7 V	1.0		16.0	MHz	
		$1.8 V \le V_{DD} <$	2.4 V		1.0		8.0	MHz
		$1.6 V \le V_{DD} <$	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$				4.0	MHz
	fexs			32		35	kHz	
External system clock input	t _{EXH} ,	$2.7~V \leq V_{\text{DD}} \leq$	5.5 V		24			ns
high-level width, low-level width	texL	$2.4 V \le V_{DD} <$	2.7 V		30			ns
		$1.8 V \le V_{DD} <$	2.4 V		60			ns
		$1.6 V \le V_{DD} <$	1.8 V		120			ns
	texhs, texls			13.7			μs	
TI00 to TI07 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск+10			ns
TO00 to TO07, TKBO00,	fто	HS (high-speed main) mode $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$					12	MHz
TKBO01-0 to TKBO01-2		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$				8	MHz	
output frequency			$2.4 \text{ V} \leq \text{V}_{DD}$				4	MHz
		LV (low-voltag	ge main) mode	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			2	MHz
		LS (low-speed	d main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spee	ed main) mode	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			16	MHz
frequency			,	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$			8	MHz
				$2.4 \text{ V} \leq \text{V}_{\text{DD}}$ < 2.7 V			4	MHz
		LV (low-voltag	ge main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$			4	MHz
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed	d main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTE	77	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	1			μs
Key interrupt input high-level	tkrh, tkrl	KR0 to KR7		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	250			ns
width, low-level width				$1.6~V \leq V_{\text{DD}} < 1.8~V$	1			μs
IH-PWM output restart input high-level width	t ihr	INTP0 to INTE	77		2			fськ
TMKB2 forced output stop input high-level width	tihr	INTP0 to INTF	2		2			fськ
RESET low-level width	trsl				10			μs

(Note and Remark are listed on the next page.)

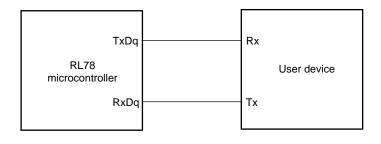
2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (T_A = -40 to +85°C, 1.6 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions		h-speed Mode	`	v-speed Mode	`	/-voltage) Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note} 1	2.	$2.4 \ V \le V_{\text{DD}} \le 5.5 \ V$		fмск/6		fмск/6		fмск/6	bps
		m	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		4.0		1.3		0.6
		$1.8~V \le V_{DD} \le 5.5~V$		-		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		_		1.3		0.6	Mbps
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		-		-		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		_		_		0.6	Mbps


Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode:	24 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq V _{DD} \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V _{DD} \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Parameter	Symbol		Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Trans mission	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V \end{array}$		Note 1		Note 1		Note 1	bps
			$\label{eq:constraint} \hline Theoretical value of the maximum transfer rate \\ (C_b = 50 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega, \mbox{ V}_b = 2.7 \mbox{ V}) \\ \hline$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		·		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V})$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbp
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 8}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps	
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V})$		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

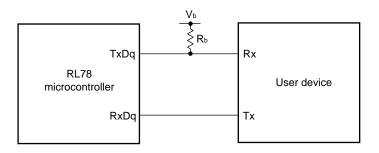
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

- RL78/L13
- **Notes 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

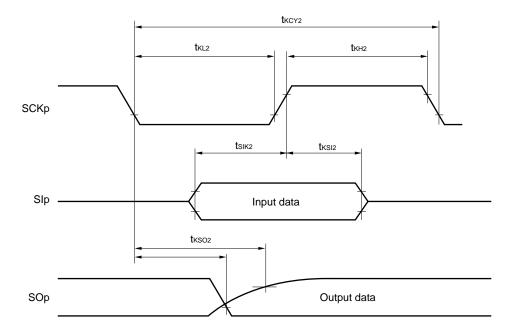

Expression for calculating the transfer rate when 1.8 V (2.4 V^{Note 8}) \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

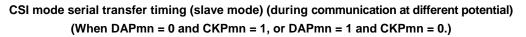
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

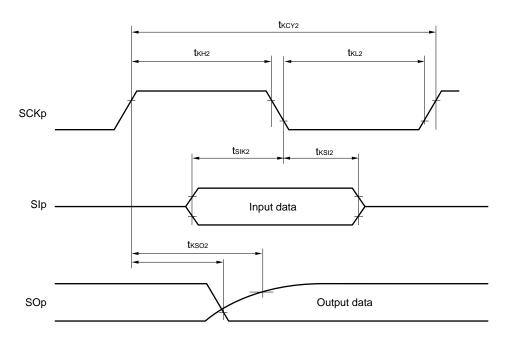
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

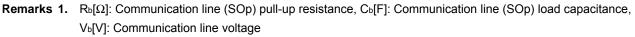
UART mode connection diagram (during communication at different potential)



(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)


Parameter	Symbol		Conditions	HS (higl main)	•	LS (low main)	/-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 2/fc∟к		200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 — 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		tксү1/2 — 120		tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	t ĸ∟1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 V \le V_{DD} < 4$ $C_b = 20 \text{ pF}, R_b$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tксү1/2 — 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time tsiк1 (to SCKp↑) ^{Note 1}				58		479		479		ns
		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ F}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tks⊨	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
1		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	t KSO1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	23		110		110		ns
		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tks⊨1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
2		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V \le V _b \le 4.0 V, = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$


(Notes, Caution and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn)
 m: Unit number, n: Channel number (mn = 00, 02))

(1) I²C standard mode (2/2)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le$	5.5 V, Vss = 0 V)
---	-------------------

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low main)	Unit	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	250		250		250		ns
(reception)		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	250		250		250		ns
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	Ι	_	_	-	250		ns
Data hold time	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	I	_	_	-	0	3.45	μs
Setup time of stop	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.0		4.0		4.0		μs
condition		$1.8~V~(2.4~V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	-	_	_	_	4.0		μs
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V~(2.4~V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	-	_	_	_	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- 3. Condition in HS (high-speed main) mode
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}^{Note 3},$ Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor /internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{\mbox{\tiny L4}}$ and GND
- C1 = C2 = C3 = C4 = C5 = 0.47 μ F ± 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.7.3 Capacitor split method

(1) 1/3 bias method

```
(T_A = -40 \text{ to } +85^{\circ}C, 2.2 \text{ V} \le V_D \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})
```

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 VL4 -	2/3 VL4	2/3 V _{L4} +	V
			0.1		0.1	
V _{L1} voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 VL4 -	1/3 VL4	1/3 V _{L4} +	V
			0.1		0.1	
Capacitor split wait time ^{Note 1}	tvwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between V_{L1} and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between V_{L4} and GND

C1 = C2 = C3 = C4 = 0.47 μ F ± 30%

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

	Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
	Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0 ^{Note 2}	mA
<r></r>			Total of P00 to P07, P10 to P17,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-45.0	mA
			P22 to P27, P30 to P35, P40 to P47, P50	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-15.0	mA
			to P57, P70 to P77, P125 to P127, P130 (When duty = 70% ^{Note 3})	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			-7.0	mA
	Іон2		Per pin for P20 and P21	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
			Total of all pins (When duty = 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

- Notes 1. Value of the current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor \leq 70%.

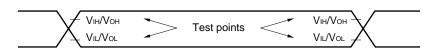
The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoH = -45.0 mA

Total output current of pins = $(-45.0 \times 0.7)/(80 \times 0.01) = -39.375$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

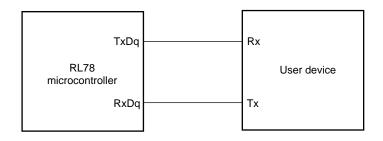

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Aug 12, 2016

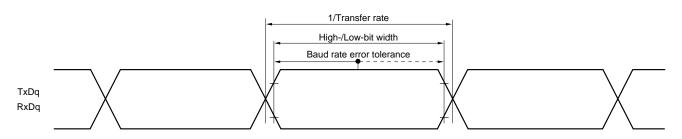
3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit


(1) During communication at same potential (UART mode) ($T_A = -40$ to $\pm 105^{\circ}$ C, 2.4 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
Transfer rate ^{Note}				fмск/12	bps
		Theoretical value of the maximum transfer rate f_{CLK} = 24 MHz, f_{MCK} = f_{CLK}		2.0	Mbps


Note Transfer rate in the SNOOZE mode is 4800 bps only.

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Conditions	HS (high-speed	l main) Mode	Unit	
			MIN.	MAX.		
SCKp cycle time	tkCY1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334 ^{Note 1}		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500 ^{Note 1}		ns	
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 – 24		ns	
	t KL1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 – 36		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 – 76		ns	
SIp setup time (to SCKp↑) ^{Note 2}	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns	
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	113		ns	
SIp hold time (from SCKp↑) ^{Note 3}	tksi1		38		ns	
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	C = 30 pF ^{Note 5}		50	ns	

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. The value must also be equal to or more than 4/fcLK.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

Parameter	Symbol		Conditions	HS (high-spee	ed main) Mode	Unit		
				MIN.	MAX.			
Transfer rate		Transmission	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		Note 1	bps		
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.0 ^{Note 2}	Mbps		
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps		
		2.0			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 ^{Note 4}	Mbps
			$2.4 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 5	bps		
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 ^{Note 6}	Mbps		

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_DD \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times In (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

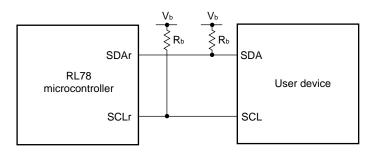
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

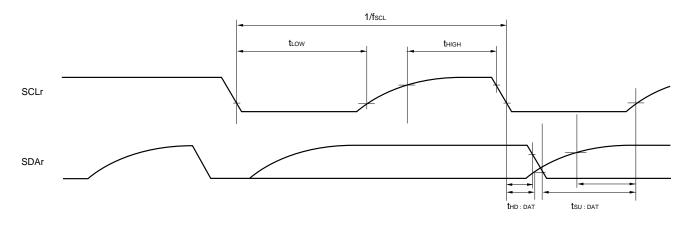
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.


4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)

(2) 1/4 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	$3 V_{L1} - 0.12$	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND
- C1 = C2 = C3 = C4 = C5 = 0.47 μ F ± 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.7.3 Capacitor split method

(1) 1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_D \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
VL1 voltage	V _{L1}	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} – 0.1	1/3 VL4	1/3 V _{L4} + 0.1	V
Capacitor split wait time ^{Note 1}	t vwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

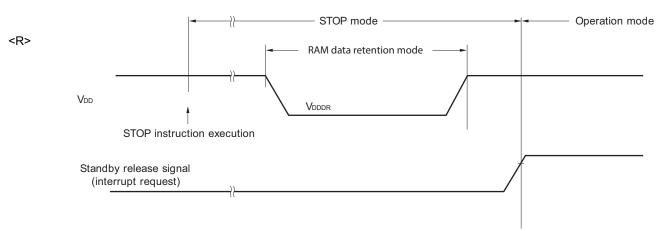
2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND
- C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 pF±30 %


3.8 RAM Data Retention Characteristics

<R>

$(T_A = -40 \text{ to } +105^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.9 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$2.4 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	1		24	MHz
Number of code flash rewrites ^{Note 1, 2, 3}	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	1,000			Times
Number of data flash rewrites ^{Note 1, 2, 3}		Retained for 1 year T _A = 25°C		1,000,000		-
		Retained for 5 years T _A = 85°C ^{Note 4}	100,000			
		Retained for 20 years T _A = 85°C ^{Note 4}	10,000			

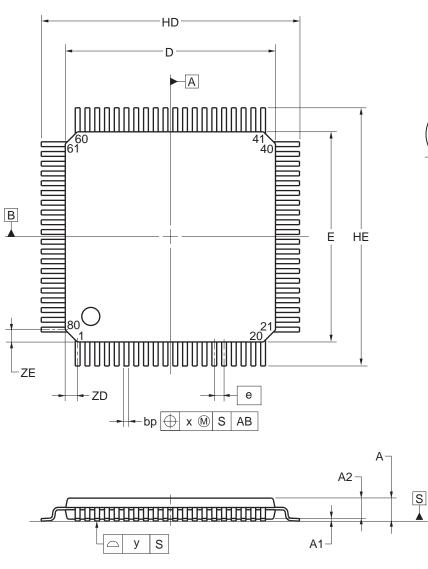
Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

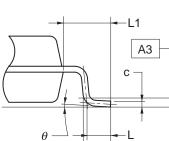
- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.
- 4. This temperature is the average value at which data are retained.

Remark When updating data multiple times, use the flash memory as one for updating data.

3.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps



4.2 80-pin Products

R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMEAFA, R5F10WMFAFA, R5F10WMGAFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

detail of lead end

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	13.80	14.00	14.20	
Е	13.80	14.00	14.20	
HD	17.00	17.20	17.40	
HE	17.00	17.20	17.40	
А			1.70	
A1	0.05	0.125	0.20	
A2	1.35	1.40	1.45	
A3		0.25		
bp	0.26	0.32	0.38	
С	0.10	0.145	0.20	
L		0.80		
Lp	0.736	0.886	1.036	
L1	1.40	1.60	1.80	
	0°	3°	8°	
е		0.65		
х			0.13	
У			0.10	
ZD		0.825		
ZE		0.825		

Lp