

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmcafa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78/L13		
			64 pins	80 pins	
128 KB	4 KB	8 KB ^{Note}	R5F10WLG	R5F10WMG	
96 KB	4 KB	6 KB	R5F10WLF	R5F10WMF	
64 KB	4 KB	4 KB	R5F10WLE	R5F10WME	
48 KB	4 KB	2 KB	R5F10WLD	R5F10WMD	
32 KB	4 KB	1.5 KB	R5F10WLC	R5F10WMC	
16 KB	4 KB	1 KB	R5F10WLA	R5F10WMA	

Note This is about 7 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/L13 User's Manual.)

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vi1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	Vı2	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI0, ANI1, ANI16 to ANI26	-0.3 to V_DD +0.3 and -0.3 to AV_REF(+) +0.3 $^{Notes 2, 3}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Parameter Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ mA \end{array} \end{array} \label{eq:VDD}$	Vdd - 1.5			V
		P70 to P77, P125 to P127, P130	$\begin{array}{l} 4.0 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	$V_{\text{DD}}-0.7$			V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -2.0 mA	$V_{\text{DD}} - 0.6$			V
			1.8 V \leq V _{DD} \leq 5.5 V, Іон1 = -1.5 mA	V _{DD} - 0.5			V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -1.0 mA	$V_{\text{DD}} - 0.5$			V
	V _{OH2}	P20 and P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH2 = -100 μ A	V _{DD} - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL1}} = 20 \ \text{mA} \end{array}$			1.3	V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 8.5 mA			0.7	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 0.6 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $I_{\text{OL1}} = 0.3 \text{ mA}$			0.4	V
	Vol2	P20 and P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL2}} = 400 \ \mu\text{A}$			0.4	V
	Vol3	P60 and P61	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol3 = 5.0 mA			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ Iol3 = 1.0 mA			0.4	V

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4 AC Characteristics

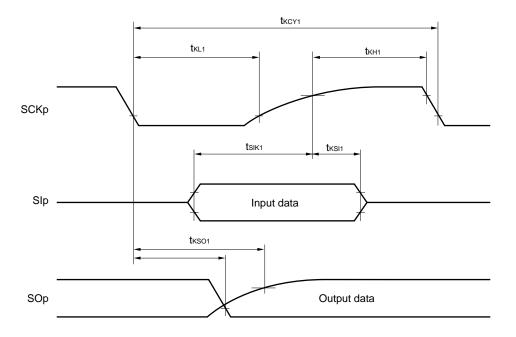
(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
instruction execution time)		clock (fmain) operation	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6~V \le V_{\text{DD}} \le 5.5~V$	0.25		1	μs
		Subsystem clo operation ^{Note}	ock (fsuв)	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	28.5	30.5	31.3	μs
		In the self	HS (high-speed	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
		programming	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 2.7 V	0.0625		1	μs
		mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fex	$2.7~V \leq V_{\text{DD}} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq V_{\text{DD}} <$	2.7 V		1.0		16.0	MHz
		$1.8 V \le V_{DD} <$	2.4 V		1.0		8.0	MHz
		$1.6 V \le V_{DD} <$	1.8 V		1.0		4.0	MHz
	fexs		32		35	kHz		
External system clock input high-level width, low-level width	t _{EXH} ,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$						ns
	texL	$2.4 V \le V_{DD} <$	30			ns		
		$1.8 V \le V_{DD} <$	60			ns		
		$1.6 V \le V_{DD} <$	120			ns		
	texhs, texls			13.7			μs	
TI00 to TI07 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск+10			ns
TO00 to TO07, TKBO00,	fто	HS (high-speed main) mode $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$					12	MHz
TKBO01-0 to TKBO01-2		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$				8	MHz	
output frequency				$2.4~V \leq V_{\text{DD}} < 2.7~V$			4	MHz
		LV (low-voltag	ge main) mode	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			2	MHz
		LS (low-speed main) mode $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$					4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spee	ed main) mode	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			16	MHz
frequency			,	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$			8	MHz
				$2.4 \text{ V} \leq \text{V}_{\text{DD}}$ < 2.7 V			4	MHz
		LV (low-voltag	ge main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$			4	MHz
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed	d main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTE	77	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	1			μs
Key interrupt input high-level	tkrh, tkrl	KR0 to KR7		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	250			ns
width, low-level width				$1.6~V \leq V_{\text{DD}} < 1.8~V$	1			μs
IH-PWM output restart input high-level width	t ihr	INTP0 to INTE	77		2			fськ
TMKB2 forced output stop input high-level width	tihr	INTP0 to INTF	2		2			fськ
RESET low-level width	trsl				10			μs

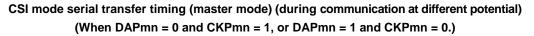
(Note and Remark are listed on the next page.)

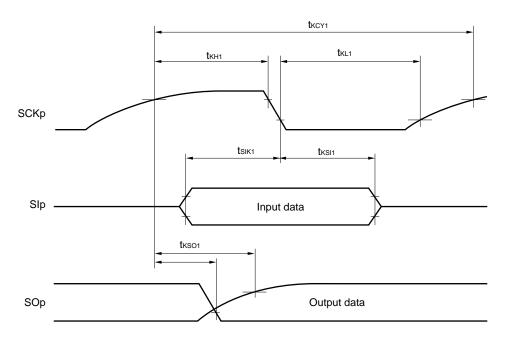
Parameter	Symbol	Conditions			HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	167 ^{Note 1}		500 ^{Note 1}		1000 ^{Note 1}		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	250 ^{Note 1}		500 ^{Note 1}		1000 ^{Note 1}		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	-		500 ^{Note 1}		1000 ^{Note 1}		ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	-		-		1000 ^{Note 1}		ns
SCKp high-/low-level	t кн1,	$4.0~V \le V_{\text{DD}} \le 5.$	5 V	tkcy1/2-12		tkcy1/2-50		tkcy1/2-50		ns
width	t ĸ∟1	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.$	tkcy1/2-18		tkcy1/2-50		tkcy1/2-50		ns	
		$2.4~V \le V_{\text{DD}} \le 5.$	tkcy1/2-38		tkcy1/2-50		tkcy1/2-50		ns	
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		_		tkcy1/2-50		tkcy1/2-50		ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	_		_		tkcy1/2-100		ns
SIp setup time	tsik1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		44		110		110		ns
(to SCKp↑) ^{Note 2}		$2.4~V \le V_{\text{DD}} \le 5.$	5 V	75		110		110		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	-		110		110		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	-		-		220		ns
SIp hold time	tksi1	$2.4~V \le V_{\text{DD}} \le 5.$	5 V	19		19		19		ns
(from SCKp↑) ^{Note 3}		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	-		19		19		ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	-		_		19		ns
Delay time from	tkso1	C = 30 pF ^{Note 5}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		25		25		25	ns
SCKp↓ to			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		25		25	ns
SOp output ^{Note 4}			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$		-		_		25	ns

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
	(T _A = −40 to +85°C, 1.6 V ≤ V _{DD} ≤ 5.5 V, V _{SS} = 0 V)


Notes 1. The value must also be equal to or more than 2/fcLk for CSI00 and equal to or more than 4/fcLk for CSI10.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.


Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 10), m: Unit number , n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

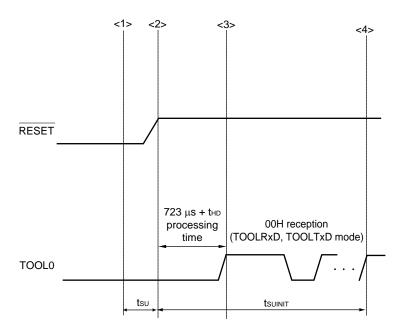
- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- When AV_{REFP} < V_{DD}, the MAX. values are as follows.
 Overall error: Add ±4 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 Zero-scale error/Full-scale error: Add ±0.2%FSR to the MAX. value when AV_{REFP} = V_{DD}.
 Integral linearity error/ Differential linearity error: Add ±2 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. See 2.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pins: ANI0, ANI1, ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Notes 1, 2} Conversion time	AINL	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
Resolution Overall error ^{Notes 1, 2} Conversion time Zero-scale error ^{Notes 1, 2} Full-scale error ^{Notes 1, 2} Integral linearity error ^{Note 1}		Target pin:	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		temperature sensor output voltage (HS (high-speed main)	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±0.85	%FSR
Full-scale errorNotes 1, 2	Efs	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±4.0	LSB
		L10-bit resolution $1.8 \vee \leq V_{DD} \leq 5.$ 1.6 $\vee \leq V_{DD} \leq 5.$ $1.6 \vee \leq V_{DD} \leq 5.$ Target pin: ANI0, ANI1, ANI16 to ANI25^Note 3 $2.7 \vee \leq V_{DD} \leq 5.$ 10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main)) mode) $3.6 \vee \leq V_{DD} \leq 5.$ 10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main)) mode) $3.6 \vee \leq V_{DD} \leq 5.$ 10-bit resolution Torget pin: Internal reference voltage (HS (high-speed main)) mode) $1.8 \vee \leq V_{DD} \leq 5.$ 10-bit resolution Torget pin: Internal reference voltage (HS (high-speed main)) mode) $1.8 \vee \leq V_{DD} \leq 5.$ 10-bit resolution Torget pin: Internal resolution $1.8 \vee \leq V_{DD} \leq 5.$ 10-bit resolution Torget pin: Internal resolution $1.8 \vee \leq V_{DD} \leq 5.$ 10-bit resolution Torget pin: Internal Torget pin: Internal Torget pin: Internal Torget pin: Internal Torget pin: Internal Torget pin: Internal 	$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±6.5	LSB
Differential linearity error Note	DLE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
1			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±2.5	LSB
Analog input voltage	VAIN	ANI0, ANI1, ANI16 to A	NI25	0		Vdd	V
			ternal reference voltage .4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode))		V _{BGR} Note 4		
		•	١	/TMPS25 ^{Note}	4	V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. See 2.6.2 Temperature sensor/internal reference voltage characteristics.



RL78/L13

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{su:}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3.3.2 Supply current characteristics

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	DD1 ^{Note 1}	Operating	HS (high-	fносо = 48 MHz ^{Note}	Basic	V _{DD} = 5.0 V		2.0		mA
current		mode	speed main) mode ^{Note 5}	³ , f⊪ = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.0		mA
			mode		Normal	V _{DD} = 5.0 V		3.8	7.0	mA
				operation	V _{DD} = 3.0 V		3.8	7.0	mA	
				fносо = 24 MHz ^{Note}	Basic	V _{DD} = 5.0 V		1.7		mA
				³ , f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA
					Normal	V _{DD} = 5.0 V		3.6	6.5	mA
		operation	V _{DD} = 3.0 V		3.6	6.5	mA			
				fносо = 16 MHz ^{Note}	Normal	V _{DD} = 5.0 V		2.7	5.0	mA
				³ , f⊮ = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	5.0	mA
		HS (high-	f_{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	5.4	mA	
			speed main)	V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.6	mA
		mode ^{Note 5}	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.9	5.4	mA	
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.6	mA
				f_{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	3.2	mA
			$V_{DD} = 5.0 V$ operation	operation	Resonator connection		1.9	3.2	mA	
				f_{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	3.2	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	3.2	mA
			Subsystem	f _{SUB} =	Normal	Square wave input		4.0	5.4	μA
			clock operation	32.768 kHz ^{Note 4} , T _A = -40°C	operation	Resonator connection		4.3	5.4	μA
				f _{SUB} =	Normal	Square wave input		4.0	5.4	μA
				32.768 kHz ^{Note 4} , T _A = +25°C	operation	Resonator connection		4.3	5.4	μA
				f _{SUB} =	Normal	Square wave input		4.1	7.1	μA
				32.768 kHz ^{Note 4} , T _A = +50°C	operation	Resonator connection		4.4	7.1	μA
				f _{SUB} =	Normal	Square wave input		4.3	8.7	μA
				32.768 kHz ^{Note 4} , T _A = +70°C	operation	Resonator connection		4.7	8.7	μA
				f _{SUB} =	Normal	Square wave input		4.7	12.0	μA
				32.768 kHz ^{Note 4} , T _A = +85°C	operation	Resonator connection		5.2	12.0	μA
				fsue =	Normal	Square wave input		6.4	35.0	μA
				32.768 kHz ^{Note 4} , T _A = +105°C	operation	Resonator connection		6.6	35.0	μA

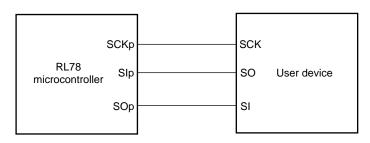
(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Cond	ditions	HS (high-speed	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time ^{Note 5}	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 20 MHz	16/f мск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 16 MHz	16/f мск		ns
		fмск ≤ 16 MHz 2.4 V ≤ V _{DD} ≤ 5.5 V		12/fмск		ns
				12/fмск and 1000		ns
SCKp high-/low-level width	tkh2, tkl2	$4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		tксү2/2–14		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–16		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–36		ns
SIp setup time	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+40		ns
(to SCKp↑) ^{Note 1}		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+62		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+66	ns
SOp output ^{Note 3}			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+113	ns

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

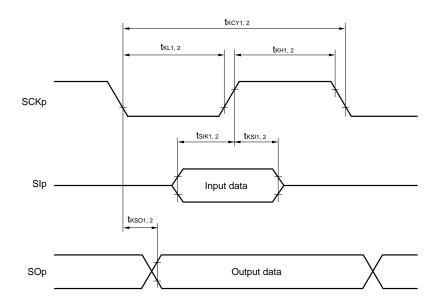
Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

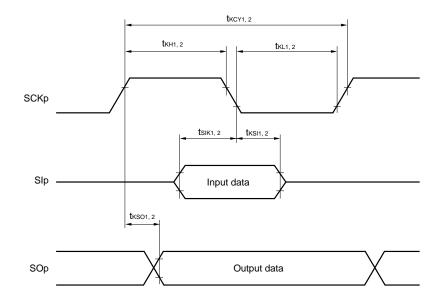
2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the SOp output lines.
- 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)


fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))



CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 02)

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 3 \ \text{k}\Omega \end{array}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1/f _{MCK} + 220 ^{Note 2}		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	1/f _{MCK} + 580 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	0	770	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	0	1420	ns

(4) During communication at same potential (simplified I²C mode)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

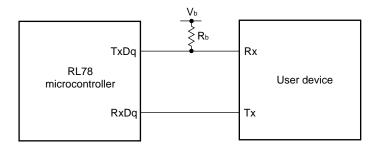
2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

Notes 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate = $\frac{1}{(0 \times D \times \ln 1)}$ [bps]

$$\{-C_b \times R_b \times \ln (1 - \frac{10}{V_b})\} \times 3$$

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-speed	l main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fclк		600		ns
			$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\label{eq:VD} \begin{split} & 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 1.8 \ V, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	2300		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$\le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ R _b = 1.4 k Ω	tkcy1/2 – 150		ns
		$2.7 V \le V_{DD} \le C_b = 30 pF, F$	$< 4.0 V$, 2.3 V $\le V_b \le 2.7 V$, R _b = 2.7 kΩ	tkcy1/2 – 340		ns
		$2.4 V \le V_{DD} \le C_b = 30 \text{ pF}, \text{ F}$	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ	tĸcy1/2 – 916		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; \text{V}, \; 2.7 \; \text{V} \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ C_{\text{b}} = 30 \; \text{pF}, \; R_{\text{b}} = 1.4 \; \text{k}\Omega \end{array}$		tkcy1/2 - 24		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} <$ C_{b} = 30 pF, F	$4.0 V$, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	tkcy1/2 - 36		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < \\ C_b = 30 \ pF, \ F \end{array}$	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ	tkcy1/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	≤ 5.5 V, 2.7 V \leq Vb ≤ 4.0 V, Rb = 1.4 k\Omega	162		ns
		$2.7 V \le V_{DD} \le C_b = 30 pF, F$	$ 4.0 V, 2.3 V \le V_b \le 2.7 V, $ R _b = 2.7 kΩ	354		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ	958		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}, $ R _b = 1.4 kΩ	38		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, F$	$< 4.0 V, 2.3 V \le V_b \le 2.7 V,$ R _b = 2.7 kΩ	38		ns
		$2.4 V \le V_{DD} \le C_b = 30 pF, F$	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}, $ R _b = 1.4 kΩ		200	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} <$ C_{b} = 30 pF, F	$ 4.0 V, 2.3 V \le V_b \le 2.7 V, $ R _b = 2.7 kΩ		390	ns
		$2.4 V \le V_{DD} \le C_b = 30 \text{ pF}, \text{ F}$	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ		966	ns

(Note, Caution and Remark are listed on the next page.)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-) = AV _{REFM}
ANIO, ANI1	_	See 3.6.1 (2) .	See 3.6.1 (3) .
ANI16 to ANI25	See 3.6.1 (1) .		
Internal reference voltage Temperature sensor output voltage	See 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 100 \text{ V}, \text{ V}_{SS} = 100 \text{ V}, \text{ V}_{SS}$
0 V)

Parameter	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI16 to ANI25	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \le V_{\text{DD}} \le 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI25		0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode))		V _{BGR} Note 4			V
		Temperature sensor output vo (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-	•	,	VTMPS25 ^{Note 4}	L	V

(Notes are listed on the next page.)

(3) When reference voltage (+) = internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	Conditions		TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error ^{Note 1}	DLE	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, TA = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

3.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	When power supply rises	3.90	4.06	4.22	V
voltage			When power supply falls	3.83	3.98	4.13	V
		VLVD1	When power supply rises	3.60	3.75	3.90	V
			When power supply falls	3.53	3.67	3.81	V
		VLVD2	When power supply rises	3.01	3.13	3.25	V
			When power supply falls	2.94	3.06	3.18	V
		VLVD3	When power supply rises	2.90	3.02	3.14	V
			When power supply falls	2.85	2.96	3.07	V
		VLVD4	When power supply rises	2.81	2.92	3.03	V
			When power supply falls	2.75	2.86	2.97	V
		VLVD5	When power supply rises	2.71	2.81	2.92	V
			When power supply falls	2.64	2.75	2.86	V
		VLVD6	When power supply rises	2.61	2.71	2.81	V
			When power supply falls	2.55	2.65	2.75	V
		VLVD7	When power supply rises	2.51	2.61	2.71	V
			When power supply falls	2.45	2.55	2.65	V
Minimum pu	Ilse width	t∟w		300			μs
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

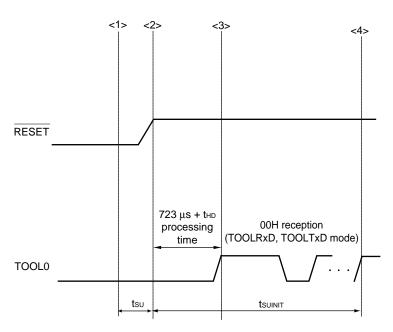
(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD5	VPOC2, VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.64	2.75	2.86	V
mode	VLVD4	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVD3	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVD0	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

3.6.6 Supply voltage rise time

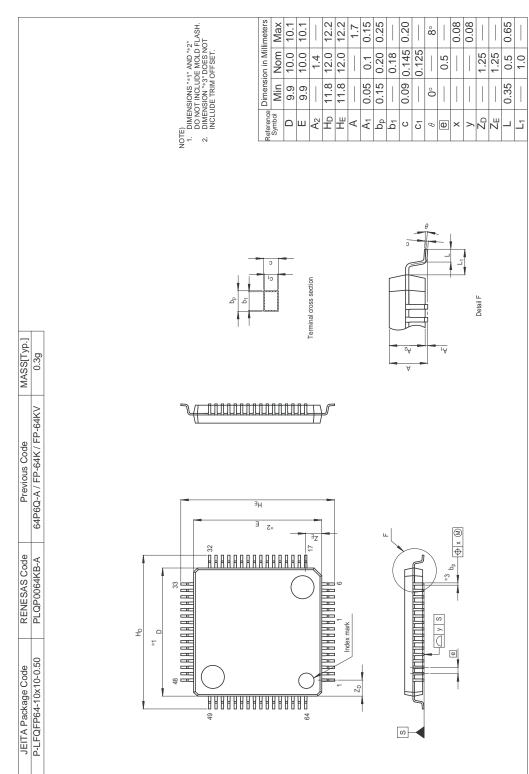
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rise slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{SU}:}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB, R5F10WLAGFB, R5F10WLCGFB, R5F10

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.