

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

etails	
roduct Status	Obsolete
ore Processor	RL78
ore Size	16-Bit
peed	24MHz
onnectivity	CSI, I ² C, LINbus, UART/USART
eripherals	DMA, LCD, LVD, POR, PWM, WDT
umber of I/O	58
rogram Memory Size	32KB (32K x 8)
ogram Memory Type	FLASH
EPROM Size	4K x 8
AM Size	1.5K x 8
oltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
ata Converters	A/D 12x10b
scillator Type	Internal
perating Temperature	-40°C ~ 85°C (TA)
ounting Type	Surface Mount
ackage / Case	80-LQFP
upplier Device Package	80-LQFP (14x14)
urchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmcafa-x0

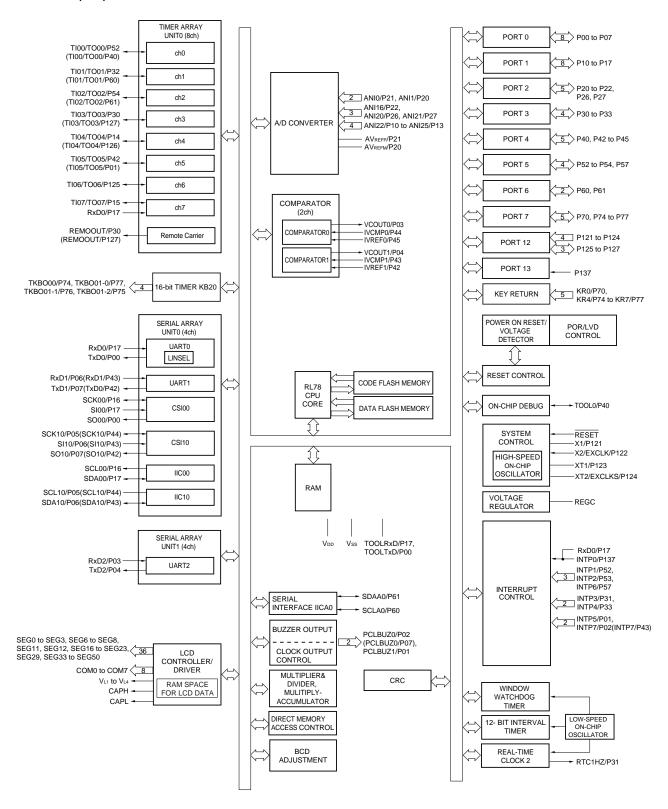
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78	3/L13
			64 pins	80 pins
128 KB	4 KB	8 KB ^{Note}	R5F10WLG	R5F10WMG
96 KB	4 KB	6 KB	R5F10WLF	R5F10WMF
64 KB	4 KB	4 KB	R5F10WLE	R5F10WME
48 KB	4 KB	2 KB	R5F10WLD	R5F10WMD
32 KB	4 KB	1.5 KB	R5F10WLC	R5F10WMC
16 KB	4 KB	1 KB	R5F10WLA	R5F10WMA

Note This is about 7 KB when the self-programming function and data flash function are used. (For details, see **CHAPTER 3** in the RL78/L13 User's Manual.)


Pin Count	Package	Data Flash	Fields of	Ordering Part Number
			Application ^{Note}	
64 pins	64-pin plastic LQFP	Mounted	Α	R5F10WLAAFA#30, R5F10WLAAFA#50, R5F10WLCAFA#30,
	(12 × 12 mm, 0.65			R5F10WLCAFA#50, R5F10WLDAFA#30, R5F10WLDAFA#50,
	mm pitch)			R5F10WLEAFA#30, R5F10WLEAFA#50, R5F10WLFAFA#30,
				R5F10WLFAFA#50, R5F10WLGAFA#30, R5F10WLGAFA#50
	64-pin plastic LFQFP	Mounted	Α	R5F10WLAAFB#30, R5F10WLAAFB#50, R5F10WLCAFB#30,
	(10 × 10 mm, 0.5			R5F10WLCAFB#50, R5F10WLDAFB#30, R5F10WLDAFB#50,
	mm pitch)			R5F10WLEAFB#30, R5F10WLEAFB#50, R5F10WLFAFB#30,
				R5F10WLFAFB#50, R5F10WLGAFB#30, R5F10WLGAFB#50,
			G	R5F10WLAGFB#30, R5F10WLAGFB#50, R5F10WLCGFB#30,
				R5F10WLCGFB#50, R5F10WLDGFB#30, R5F10WLDGFB#50,
				R5F10WLEGFB#30, R5F10WLEGFB#50, R5F10WLFGFB#30,
				R5F10WLFGFB#50, R5F10WLGGFB#30, R5F10WLGGFB#50
80 pins	80-pin plastic LQFP	Mounted	Α	R5F10WMAAFA#30, R5F10WMAAFA#50, R5F10WMCAFA#30,
	(14 × 14 mm, 0.65			R5F10WMCAFA#50, R5F10WMDAFA#30, R5F10WMDAFA#50,
	mm pitch)			R5F10WMEAFA#30, R5F10WMEAFA#50, R5F10WMFAFA#30,
				R5F10WMFAFA#50, R5F10WMGAFA#30, R5F10WMGAFA#50
	80-pin plastic LFQFP	Mounted	Α	R5F10WMAAFB#30, R5F10WMAAFB#50, R5F10WMCAFB#30,
	(12 × 12 mm, 0.5			R5F10WMCAFB#50, R5F10WMDAFB#30, R5F10WMDAFB#50,
	mm pitch)			R5F10WMEAFB#30, R5F10WMEAFB#50, R5F10WMFAFB#30,
				R5F10WMFAFB#50, R5F10WMGAFB#30, R5F10WMGAFB#50,
			G	R5F10WMAGFB#30, R5F10WMAGFB#50, R5F10WMCGFB#30,
				R5F10WMCGFB#50, R5F10WMDGFB#30, R5F10WMDGFB#50,
				R5F10WMEGFB#30, R5F10WMEGFB#50, R5F10WMFGFB#30,
				R5F10WMFGFB#50, R5F10WMGGFB#30, R5F10WMGGFB#50

Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/L13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.5 Block Diagram

1.5.1 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/L13 User's Manual.

(2/2)

	Item	64-pin	80-pin				
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)				
Clock outp	ut/buzzer output controller		2				
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 (Main system clock: f_{Main} = 20 MHz operatio 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09 (Subsystem clock: f_{SUB} = 32.768 kHz operation) 	n) 6 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz				
8/10-bit res	olution A/D converter	9 channels	12 channels				
Comparato	r	2 channels					
Serial inter	face	 [64-pin] CSI: 1 channel/UART (UART supporting LIN- CSI: 1 channel/UART: 1 channel/simplified I² UART: 1 channel 					
		[80-pin] • CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 1 channel • CSI: 1 channel/UART: 1 channel/simplified I ² C: 1 channel • UART: 2 channels					
	I ² C bus	1 channel					
LCD contro	ller/driver	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.					
	Segment signal output	36 (32) ^{Note 1}	51 (47) ^{Note 1}				
	Common signal output	4 (8	Note 1				
Multiplier a	nd divider/multiply-	• 16 bits × 16 bits = 32 bits (Unsigned or signe					
accumulato	or	• 32 bits ÷ 32 bits = 32 bits (Unsigned)					
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)					
DMA contro	oller	4 channels					
Vectored	Internal	32	35				
interrupt so	urces External	11	11				
Key interru	pt	5	8				
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-r	eset circuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)					
Voltage de	tector	 Rising edge: 1.67 V to 4.06 V (14 steps) Falling edge: 1.63 V to 3.98 V (14 steps) 					
On-chip de	bug function	Provided					
Power sup	oly voltage	V _{DD} = 1.6 to 5.5 V (TA = -40 to +85°C)					
		V _{DD} = 2.4 to 5.5 V (TA = -40 to +105°C)					
Operating a	ambient temperature	Consumer applications: $T_A = -40 \text{ to } +85^{\circ}\text{C}$ Industrial applications: $T_A = -40 \text{ to } +105^{\circ}\text{C}$					

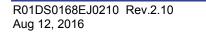
- **Notes 1.** The values in parentheses are the number of signal outputs when 8 com is used.
 - This reset occurs when instruction code FFH is executed.
 This reset does not occur during emulation using an in-circuit emulator or an on-chip debugging emulator.

<R>

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _L 1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130				20.0 ^{Note 2}	mA
		Per pin for P60 and P61				15.0 ^{Note 2}	mA
		Total of P40 to P47, P130	$4.0~V \leq V_{DD} \leq 5.5~V$			70.0	mA
		(When duty = 70% ^{Note 3})	$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}$			15.0	mA
			$1.8 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V}$			4.5	mA
		Total of P00 to P07, P10 to P17, P22 to P27,	$4.0~V \leq V_{DD} \leq 5.5~V$			90.0	mA
			$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}$			35.0	mA
		P30 to P35, P50 to P57, P70 to P77, P125 to P127	$1.8 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			20.0	mA
		(When duty = 70% ^{Note 3})	$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V}$			10.0	mA
		Total of all pins (When duty = 70% ^{Note 3})				160.0	mA
	Total of all pi	Per pin for P20 and P21				0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$1.6~V \le V_{DD} \le 5.5~V$			0.8	mA

- **Notes 1**. Value of the current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor $\leq 70\%$.


The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

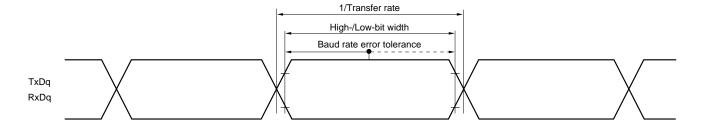
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped.
 When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - **6.** Not including the current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz

 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V@1 MHz to 16 MHz}$

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 4 \text{ MHz}$


- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fhoco: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fil: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditio	ns		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	_{FIL} Note 1						0.20		μΑ
RTC2 operating current	I _{RTC} Notes 1, 2, 3	f _{SUB} = 32.768 kHz					0.02		μΑ
12-bit interval timer operating current	I _{TMKA} Notes 1, 2,						0.04		μΑ
Watchdog timer operating current	_{WDT} Notes 1, 2, 5	f∟ = 15 kHz					0.22		μΑ
A/D converter operating current	ADC Notes 1, 6	When conversion at maximum speed	Normal mode		$p_{DD} = 5.0 \text{ V}$ = $V_{DD} = 3.0 \text{ V}$		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	ADREFNote 1		1 2 2 3				75.0		μΑ
Temperature sensor operating current	TMPS Note 1						75.0		μА
LVD operating current	_{LVD} Notes 1, 7						0.08		μΑ
Comparator	ICMPNotes 1, 11	V _{DD} = 5.0 V,	Window mode	Э			12.5		μΑ
operating current	operating current	Regulator output	Comparator h	igh-speed m	ode		6.5		μΑ
	voltage = 2.1 V	Comparator lo	ow-speed mo	de		1.7		μΑ	
		V _{DD} = 5.0 V,	Window mode	Э			8.0		μΑ
		Regulator output voltage = 1.8 V Comparator high-speed mode					4.0		μΑ
		Voltage = 1.6 V	Comparator lo	ow-speed mo	de		1.3		μΑ
Self- programming operating current	FSP ^{Notes 1, 9}						2.00	12.20	mA
BGO operating current	BGO ^{Notes 1, 8}						2.00	12.20	mA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	While the mod	de is shifting ^N	lote 10		0.50	0.60	mA
operating current			During A/D co		•		1.20	1.44	mA
		CSI/UART operation	1				0.70	0.84	mA
LCD operating current		External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 5.0 V, V _{L4} = 5.0 V		0.04	0.20	μΑ
	I _{LCD2} Note 1, 12	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias, four time slices	$V_{DD} = 3.0 \text{ V},$ $V_{L4} = 3.0 \text{ V}$ $(V_{LCD} = 04\text{H})$		0.85	2.20	μΑ
					$V_{DD} = 5.0 \text{ V},$ $V_{L4} = 5.1 \text{ V}$ $(V_{LCD} = 12\text{H})$		1.55	3.70	μΑ
	I _{LCD3} Note 1, 12	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20	0.50	μА

(Notes and Remarks are listed on the next page.)

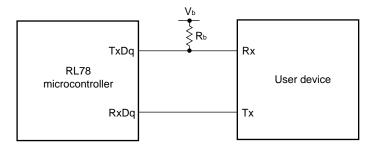
UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Notes 6. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V (2.4 V^{Note 8}) \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{1.5}{V_b})\} \times 3} [bps]$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. Condition in the HS (high-speed main) mode

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - 4. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (higl main)	-	LS (low main)	/-speed Mode	LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	1/f _{MCK} + 135 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ \begin{aligned} &2.7 \text{ V} \leq V_{DD} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}, \\ &C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 135 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 100 \text{ pF}, \text{ R}_b = 2.8 \text{ k}\Omega $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ \begin{aligned} &1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{split} 2.7 & \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{split}$	0	305	0	305	0	305	ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned} $	0	355	0	355	0	355	ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 100 \text{ pF}, \text{ R}_{b} = 2.7 \text{ k}\Omega $	0	355	0	355	0	355	ns
		$ \begin{aligned} &1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	0	405	0	405	0	405	ns

- **Notes 1.** The value must also be equal to or less than fmck/4.
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - 4. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

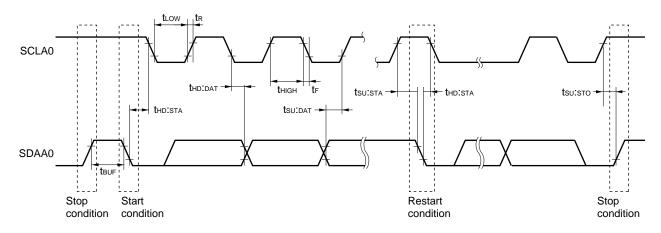
(Remarks are listed on the next page.)

(3) I2C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		, .	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fc⊥κ ≥ 5.5 V 10 MHz 2.7 V ≤ VDD ≤		0	1000	_		_		kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ V _{DD} ≤ 5.5 V		0.26		-		-	-	μs
Hold time ^{Note 1}	thd:sta	2.7 V ≤ V _{DD} ≤ 5.5 V		0.26		_		_		μs
Hold time when SCLA0 ="L"	tLOW	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$		0.5		_		-		μs
Hold time when SCLA0 ="H"	t HIGH	2.7 V ≤ V _{DD} ≤	≦5.5 V	0.26		_		_		μs
Data setup time (reception)	tsu:dat	2.7 V ≤ V _{DD} ≤	≤ 5.5 V	50		-	-		-	ns
Data hold time (transmission)Note 2	thd:dat	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$		0	0.45	-		-		μs
Setup time of stop condition	tsu:sto	2.7 V ≤ V _{DD} ≤ 5.5 V		0.26		-		_		μs
Bus-free time	t BUF	2.7 V ≤ V _{DD} ≤	≤ 5.5 V	0.5		-	-	_		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} =	0.47 μF	2 V _{L1} – 0.10	2 V _{L1}	2 VL1	V
Tripler output voltage	V _{L4}	C1 to C4 ^{Note 1} = 0.47 µF		3 VL1 – 0.15	3 V _{L1}	3 V _{L1}	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait timeNote 3	tvwait2	C1 to C4 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between V_{L4} and GND
- C1 = C2 = C3 = C4 = 0.47 μ F \pm 30 %
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx)Note	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, see **5.4 System Clock Oscillator** in the RL78/L13 User's Manual.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequencyNotes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator clock frequency accuracy		+85 to +105°C	2.4 V ≤ V _{DD} ≤ 5.5 V	-2		+2	%
		–20 to +85°C	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-1		+1	%
		-40 to −20°C	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fıL		•		15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

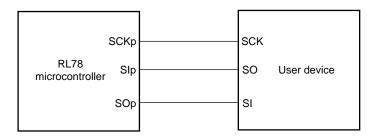
- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to **AC Characteristics** for the instruction execution time.

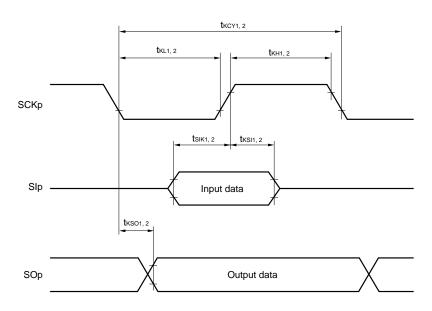
3.3.2 Supply current characteristics

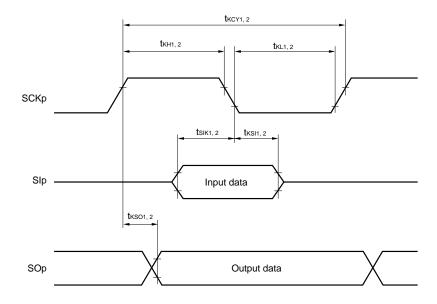
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1} Note 1	Operating	HS (high-	f _{HOCO} = 48 MHz ^{Note}	Basic	V _{DD} = 5.0 V		2.0		mA
current		mode	speed main)	3,	operation	V _{DD} = 3.0 V		2.0		mA
			mode ^{Note 5}	f _{IH} = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.8	7.0	mA
					operation	V _{DD} = 3.0 V		3.8	7.0	mA
				f _{HOCO} = 24 MHz ^{Note}	Basic	V _{DD} = 5.0 V		1.7		mA
				3,	operation	V _{DD} = 3.0 V		1.7		mA
				f _{IH} = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.6	6.5	mA
					operation	V _{DD} = 3.0 V		3.6	6.5	mA
				f _{HOCO} = 16 MHz ^{Note}	Normal	V _{DD} = 5.0 V		2.7	5.0	mA
				³ , f _{IH} = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	5.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	5.4	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.6	mA
			moderates	f _{MX} = 20 MHz ^{Note 2} ,	Normal Square wave input	Square wave input		2.9	5.4	mA
			V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.6	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}}$	Normal	Square wave input		1.9	3.2	mA
			V _{DD} = 5.0 V	operation	Resonator connection		1.9	3.2	mA	
				· ·	Nomal	Square wave input		1.9	3.2	mA
					operation	Resonator connection		1.9	3.2	mA
			Subsystem	f _{SUB} =	Nomal	Square wave input		4.0	5.4	μΑ
			clock operation	32.768 kHz ^{Note 4} , $T_A = -40^{\circ}C$	operation	Resonator connection		4.3	5.4	μΑ
				fsuB =	Normal	Square wave input		4.0	5.4	μΑ
				32.768 kHz Note 4, T _A = +25°C	operation	Resonator connection		4.3	5.4	μΑ
				fsub =	Normal	Square wave input		4.1	7.1	μΑ
				32.768 kHz ^{Note 4} , T _A = +50°C	operation	Resonator connection		4.4	7.1	μΑ
				f _{SUB} =	Nomal	Square wave input		4.3	8.7	μΑ
				32.768 kHz ^{Note 4} , T _A = +70°C	operation	Resonator connection		4.7	8.7	μΑ
				f _{SUB} =	Nomal	Square wave input		4.7	12.0	μΑ
			32.768 kHz ^{Note 4} , T _A = +85°C	operation	Resonator connection		5.2	12.0	μΑ	
				f _{SUB} =	Nomal	Square wave input		6.4	35.0	μΑ
				32.768 kHz ^{Note 4} , T _A = +105°C	operation	Resonator connection		6.6	35.0	μΑ


(Notes and Remarks are listed on the next page.)


- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \text{@} 1 \text{ MHz}$ to 24 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \text{@} 1 \text{ MHz}$ to 16 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fil: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 10)

2. m: Unit number, n: Channel number (mn = 00, 02)

(4) During communication at same potential (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) Mode		
			MIN.	MAX.		
SCLr clock frequency	fscL	$2.7~V \leq V_{DD} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$		400 ^{Note 1}	kHz	
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ		100 ^{Note 1}	kHz	
Hold time when SCLr = "L"	tLOW	$2.7~V \leq V_{DD} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1200		ns	
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	4600		ns	
Hold time when SCLr = "H"	t HIGH	$2.7~V \leq V_{DD} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1200		ns	
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	4600		ns	
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{DD} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1/f _{MCK} + 220 ^{Note 2}		ns	
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1/f _{MCK} + 580 ^{Note 2}		ns	
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	770	ns	
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	0	1420	ns	

Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

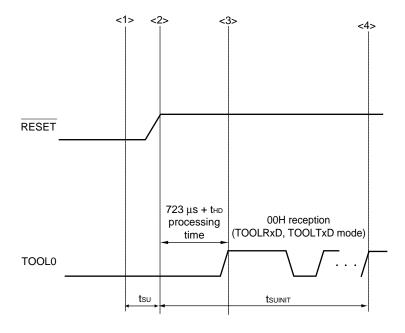
Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (–) = AV _{REFM}
ANIO, ANI1	-	See 3.6.1 (2).	See 3.6.1 (3).
ANI16 to ANI25	See 3.6.1 (1) .		
Internal reference voltage Temperature sensor output voltage	See 3.6.1 (1) .		-

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \le V_{DD} \le 5.5~V$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI16 to ANI25	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \le V_{DD} \le 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~\text{V} \le \text{V}_{\text{DD}} \le 5.5~\text{V}$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	2.4 V ≤ V _{DD} ≤ 5.5 V			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	2.4 V ≤ V _{DD} ≤ 5.5 V			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI25		0		AVREFP	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode))		V _{BGR} Note 4			V
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode))		V _{TMPS25} Note 4			V


(Notes are listed on the next page.)

3.11 Timing Specifications for Switching Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

