

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmdafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78	3/L13
			64 pins	80 pins
128 KB	4 KB	8 KB ^{Note}	R5F10WLG	R5F10WMG
96 KB	4 KB	6 KB	R5F10WLF	R5F10WMF
64 KB	4 KB	4 KB	R5F10WLE	R5F10WME
48 KB	4 KB	2 KB	R5F10WLD	R5F10WMD
32 KB	4 KB	1.5 KB	R5F10WLC	R5F10WMC
16 KB	4 KB	1 KB	R5F10WLA	R5F10WMA

Note This is about 7 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/L13 User's Manual.)

AC Timing Test Points

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

<u> </u>										
Parameter	Symbol		Conditions	HS (hig main)	h-speed Mode	LS (lov main)	v-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Trans mission			Note 1		Note 1		Note 1	bps
			$\label{eq:transfer} \begin{array}{l} Theoretical value of the maximum \\ transfer rate \\ (C_b = 50 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega, \mbox{ V}_b = 2.7 \mbox{ V}) \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3		Note 3		Note 3	bps
			$\label{eq:transfer} \begin{array}{l} \mbox{Theoretical value of the maximum} \\ \mbox{transfer rate} \\ \mbox{(C}_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega, \mbox{ V}_b = 2.3 \mbox{ V}) \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
			$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 8}}) \leq V_{\text{DD}} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $(C_{b} = 50 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega, V_{b} = 1.6 \text{ V})$		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

- RL78/L13
- **Notes 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V (2.4 V^{Note 8}) \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - 4. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

Parameter	Symbol	Conditions	HS (higl main)	n-speed Mode	LS (low main)	r-speed Mode	LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{МСК} + 135 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{МСК} + 135 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	1/f _{MCK} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 3}}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note } 2}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note } 3}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	0	405	0	405	0	405	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Condition in HS (high-speed main) mode
- 3. Use it with $V_{DD} \ge V_b$.
- **4.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(2) I²C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (hig main)	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	ic∟ Fast mode: fcικ ≥ 3.5 MHz	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$ 5.5 V	0	400	0	400	0	400	kHz
			$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}})$ $\leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	400	0	400	0	400	kHz
Setup time of	tsu:sta	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
restart condition		1.8 V (2.4 V	.8 V (2.4 V ^{Note 3}) \leq V _{DD} \leq 5.5 V			0.6		0.6		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq V_{\text{DD}}$	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			0.6		0.6		μs
		$1.8~V~(2.4~V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5~V$		0.6		0.6		0.6		μs
Hold time when	t LOW	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		1.3		1.3		1.3		μs
SCLA0 ="L"		1.8 V (2.4 V	Note ³) \leq VDD \leq 5.5 V	1.3		1.3		1.3		μs
Hold time when	t HIGH	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤5.5 V	0.6		0.6		0.6		μs
SCLA0 ="H"		1.8 V (2.4 V	$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			0.6		0.6		μs
Data setup time	tsu:dat	$2.7 \text{ V} \leq V_{\text{DD}}$	≤5.5 V	100		100		100		ns
(reception)		1.8 V (2.4 V	Note ³) \leq VDD \leq 5.5 V	100		100		100		ns
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μs
(transmission) ^{Note 2}		1.8 V (2.4 V	Note ³) \leq VDD \leq 5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤5.5 V	0.6		0.6		0.6		μs
condition	1.8 V (2.4 V	Note 3) \leq VDD \leq 5.5 V	0.6		0.6		0.6		μs	
Bus-free time	t BUF	$2.7 V \leq V_{DD}$	≤ 5.5 V	1.3		1.3		1.3		μs
		1.8 V (2.4 V	Note 3) \leq VDD \leq 5.5 V	1.3		1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- **3.** Condition in HS (high-speed main) mode
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}^{Note 3},$ Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGRNote 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor /internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

2.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	When power supply rises	3.98	4.06	4.14	V
voltage			When power supply falls	3.90	3.98	4.06	V
		VLVD1	When power supply rises	3.68	3.75	3.82	V
			When power supply falls	3.60	3.67	3.74	V
		VLVD2	When power supply rises	3.07	3.13	3.19	V
			When power supply falls	3.00	3.06	3.12	V
		VLVD3	When power supply rises	2.96	3.02	3.08	V
			When power supply falls	2.90	2.96	3.02	V
		VLVD4	When power supply rises	2.86	2.92	2.97	V
			When power supply falls	2.80	2.86	2.91	V
		VLVD5	When power supply rises	2.76	2.81	2.87	V
	·	When power supply falls	2.70	2.75	2.81	V	
	VLVD6	When power supply rises	2.66	2.71	2.76	V	
		When power supply falls	2.60	2.65	2.70	V	
	VLVD7	When power supply rises	2.56	2.61	2.66	V	
			When power supply falls	2.50	2.55	2.60	V
		VLVD8	When power supply rises	2.45	2.50	2.55	V
			When power supply falls	2.40	2.45	2.50	V
		VLVD9	When power supply rises	2.05	2.09	2.13	V
			When power supply falls	2.00	2.04	2.08	V
		VLVD10	When power supply rises	1.94	1.98	2.02	V
			When power supply falls	1.90	1.94	1.98	V
		VLVD11	When power supply rises	1.84	1.88	1.91	V
			When power supply falls	1.80	1.84	1.87	V
	VLVD12	When power supply rises	1.74	1.77	1.81	V	
		When power supply falls	1.70	1.73	1.77	V	
		VLVD13	When power supply rises	1.64	1.67	1.70	V
			When power supply falls	1.60	1.63	1.66	V
Minimum puls	se width	tLW		300			μs
Detection del	ay time					300	μs

2.7 LCD Characteristics

2.7.1 External resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

RL78/L13

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

	Parameter	Symbol	Conditions		Ratings	Unit
<r></r>	Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
<k></k>			Total of all pins −170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
<r></r>		Іон2	Per pin	P20, P21	-0.5	mA
			Total of all pins		-1	mA
<r></r>	Output current, low	Iol1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
			Total of all pins	P40 to P47, P130	70	mA
<r></r>			170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
<r></r>		Iol2	Per pin	P20, P21	1	mA
<r></r>			Total of all pins		2	mA
	Operating ambient temperature	TA	In normal operation mode		-40 to +105	°C
			In flash memory p	programming mode		°C
	Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (3/3)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

(Ta = -40	to +105	°C, 2.4 V	\leq VDD \leq 5.5	V, Vss = 0 V)						(1/2)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	DD1 ^{Note 1}	Operating	HS (high-	f _{HOCO} = 48 MHz ^{Note}	Basic	V _{DD} = 5.0 V		2.0		mA
current		mode	speed main) mode ^{Note 5}	³ , f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.0		mA
					Normal	V _{DD} = 5.0 V		3.8	7.0	mA
					operation	V _{DD} = 3.0 V		3.8	7.0	mA
				$ f_{HOCO} = 24 \text{ MHz}^{\text{Note}} $ $ 3, \\ f_{IH} = 24 \text{ MHz}^{\text{Note 3}} $	Basic	V _{DD} = 5.0 V		1.7		mA
					operation	V _{DD} = 3.0 V		1.7		mA
					Normal operation	V _{DD} = 5.0 V		3.6	6.5	mA
						V _{DD} = 3.0 V		3.6	6.5	mA
					V _{DD} = 5.0 V		2.7	5.0	mA	
					operation	V _{DD} = 3.0 V		2.7	5.0	mA
			HS (high- speed main) mode ^{Note 5}	f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		3.0	5.4	mA
						Resonator connection		3.2	5.6	mA
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Square wave input		2.9	5.4	mA
						Resonator connection		3.2	5.6	mA
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		1.9	3.2	mA
						Resonator connection		1.9	3.2	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	3.2	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	3.2	mA
			Subsystem clock operation	fsue =	Normal	Square wave input		4.0	5.4	μA
				32.768 KHZ ^{NOLE 4} , T _A = -40°C	operation	Resonator connection		4.3	5.4	μA
				f _{SUB} = 32.768 kHz ^{Note 4} , T _A = +25°C	Normal	Square wave input		4.0	5.4	μA
					operation	Resonator connection		4.3	5.4	μA
				f _{SUB} = 32.768 kHz ^{Note 4} , T _A = +50°C	Normal operation	Square wave input		4.1	7.1	μA
						Resonator connection		4.4	7.1	μA
				f _{SUB} = 32.768 kHz ^{Note 4} , T _A = +70°C	Normal operation	Square wave input		4.3	8.7	μA
						Resonator connection		4.7	8.7	μA
				fsue =	Normal	Square wave input		4.7	12.0	μA
				32.768 kHz ^{Note 4} , T _A = +85°C	operation	Resonator connection		5.2	12.0	μA
				f _{SUB} = 32.768 kHz ^{Note 4} , T _A = +105°C	Normal operation	Square wave input		6.4	35.0	μA
						Resonator connection		6.6	35.0	μA

(Notes and Remarks are listed on the next page.)

Note Specification under conditions where the duty factor is 50%.

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points

External System Clock Timing

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
- <R>
- 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1} = 0.47 μ F ^{Note 2}	VLCD = 04H	0.90	1.00	1.08	V
			VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} = 0.47 µF		2 V _{L1} -0.10	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 µF		3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F ± 30%

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

Revision History

RL78/L13 Data Sheet

		Description				
Rev.	Date	Page	Summary			
0.01	Apr 13, 2012	-	First Edition issued			
0.02	Oct 31, 2012	-	Change of the number of segment pins			
			• 64-pin products: 36 pins			
			• 80-pin products: 51 pins			
2.10	Aug 12, 2016	1	Modification of features of 16-bit timer and 16-bit timer KB20 (IH) in 1.1 Features			
		5	Addition of product name (RL78/L13) and description (Top View) in 1.3.1 64-pin products			
		6	Addition of product name (RL78/L13) and description (Top View) in 1.3.2 80-pin products			
		10	Modification of functional overview of main system clock in 1.6 Outline of Functions			
		15	Modification of description in Absolute Maximum Ratings (3/3)			
		17, 18	Modification of description in 2.3.1 Pin characteristics			
		38	Modification of remark 3 in 2.5.1 (4) During communication at same potential (simplified I ² C mode)			
		68	Modification of the title and note, and addition of caution in 2.8 RAM Data Retention Characteristics			
		70	Addition of Remark			
		74	Modification of description in Absolute Maximum Ratings ($T_A = 25 \text{ °C}$) (3/3)			
		76	Modification of description in 3.3.1 Pin characteristics			
		95	Modification of remark 3 in 3.5.1 (4) During communication at same potential (simplified I ² C mode)			
		118	Modification of the title and note, and addition of caution in 3.8 RAM Data Retention Characteristics			

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.