

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmeafa-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

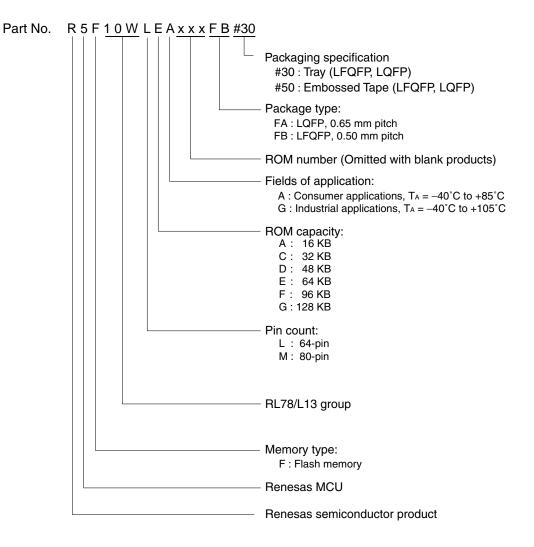
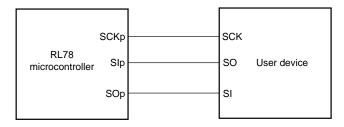


Figure 1-1. Part Number, Memory Size, and Package of RL78/L13

Pin Count	Package	Data Flash	Fields of Application ^{Note}	Ordering Part Number
64 pins	64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)	Mounted	A	R5F10WLAAFA#30, R5F10WLAAFA#50, R5F10WLCAFA#30, R5F10WLCAFA#50, R5F10WLDAFA#30, R5F10WLDAFA#50, R5F10WLEAFA#30, R5F10WLEAFA#50, R5F10WLFAFA#30, R5F10WLFAFA#50, R5F10WLGAFA#30, R5F10WLGAFA#50
	64-pin plastic LFQFP (10×10 mm, 0.5 mm pitch)	Mounted	A	R5F10WLAAFB#30, R5F10WLAAFB#50, R5F10WLCAFB#30, R5F10WLCAFB#50, R5F10WLDAFB#30, R5F10WLDAFB#50, R5F10WLEAFB#30, R5F10WLEAFB#50, R5F10WLFAFB#30, R5F10WLFAFB#50, R5F10WLGAFB#30, R5F10WLGAFB#50,
			G	R5F10WLAGFB#30, R5F10WLAGFB#50, R5F10WLCGFB#30, R5F10WLCGFB#50, R5F10WLDGFB#30, R5F10WLDGFB#50, R5F10WLEGFB#30, R5F10WLEGFB#50, R5F10WLFGFB#30, R5F10WLFGFB#50, R5F10WLGGFB#30, R5F10WLGGFB#50
80 pins	80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)	Mounted	A	R5F10WMAAFA#30, R5F10WMAAFA#50, R5F10WMCAFA#30, R5F10WMCAFA#50, R5F10WMDAFA#30, R5F10WMDAFA#50, R5F10WMEAFA#30, R5F10WMEAFA#50, R5F10WMFAFA#30, R5F10WMFAFA#50, R5F10WMGAFA#30, R5F10WMGAFA#50
	80-pin plastic LFQFP (12×12 mm, 0.5 mm pitch)	Mounted	A	R5F10WMAAFB#30, R5F10WMAAFB#50, R5F10WMCAFB#30, R5F10WMCAFB#50, R5F10WMDAFB#30, R5F10WMDAFB#50, R5F10WMEAFB#30, R5F10WMEAFB#50, R5F10WMFAFB#30, R5F10WMFAFB#50, R5F10WMGAFB#30, R5F10WMGAFB#50,
			G	R5F10WMAGFB#30, R5F10WMAGFB#50, R5F10WMCGFB#30, R5F10WMCGFB#50, R5F10WMDGFB#30, R5F10WMDGFB#50, R5F10WMEGFB#30, R5F10WMEGFB#50, R5F10WMFGFB#30, R5F10WMFGFB#50, R5F10WMGGFB#30, R5F10WMGGFB#50

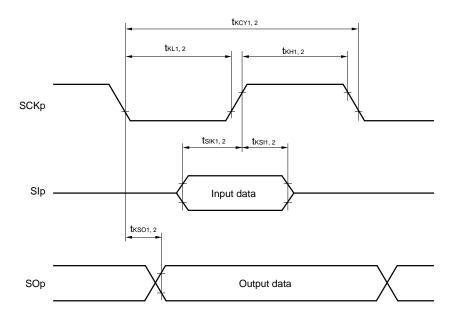
Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/L13.

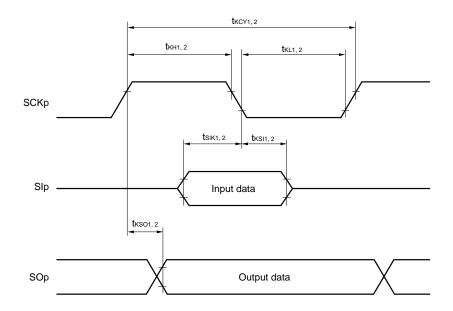
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

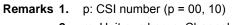

1.6 Outline of Functions

	Item	64-pin	80-pin				
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)				
Code flash m	emory (KB)	16 to 128	16 to 128				
Data flash me	emory (KB)	4	4				
RAM (KB)		1 to 8 ^{Note 1}	1 to 8 ^{Note 1}				
Address space	ce	1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main s HS (High-speed main) mode: 1 to 20 MHz (V_{DD} HS (High-speed main) mode: 1 to 16 MHz (V_{DD} LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = LV (Low-voltage main) mode: 1 to 4 MHz (V_{DD} =	= 2.7 to 5.5 V), = 2.4 to 5.5 V), 1.8 to 5.5 V),				
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 to 24 MHz (Vot HS (High-speed main) mode: 1 to 16 MHz (Vot LS (Low-speed main) mode: 1 to 8 MHz (Vot LV (Low-voltage main) mode: 1 to 4 MHz (Vot	= 2.4 to 5.5 V), = 1.8 to 5.5 V),				
Clock for 16-	bit timer KB20	48 MHz (TYP.): V _{DD} = 2.7 to 5.5 V					
Subsystem c	lock	XT1 (crystal) oscillation, external subsystem clo 32.768 kHz (TYP.): V _{DD} = 1.6 to 5.5 V	ock input (EXCLKS)				
Low-speed o	n-chip oscillator	15 kHz (TYP.)					
General-purp	ose register	(8-bit register \times 8) \times 4 banks					
Minimum inst	truction execution time	0.04167 μ s (High-speed on-chip oscillator: fi $_{\rm H}$ = 24 MHz operation)					
		0.05 μ s (High-speed system clock: f _{MX} = 20 MH	z operation)				
		30.5 μ s (Subsystem clock: f _{SUB} = 32.768 kHz op	peration)				
Instruction se	et	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 line) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set 					
I/O port	Total	49	65				
	CMOS I/O	42 (N-ch O.D. I/O [V _{DD} withstand voltage]: 12)	58 (N-ch O.D. I/O [V _{DD} withstand voltage]:				
	CMOS input	5	5				
	CMOS output	-	-				
	N-ch O.D I/O (withstand voltage: 6 V)	2	2				
Timer	16-bit timer TAU	8 chai	nnels				
	16-bit timer KB20	1 cha	nnel				
	Watchdog timer	1 cha	nnel				
	12-bit interval timer (IT)	1 cha	nnel				
	Real-time clock 2	1 cha	nnel				
	RTC2 output	1 • 1 Hz (subsystem clock: fsue = 32.768 kHz)					
	Timer output	8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)					
	Remote control output	1 (TAU used)					

Notes 1. In the case of the 8 KB, this is about 7 KB when the self-programming function and data flash function are used.


2. The number of outputs varies depending on the setting of the channels in use and the number of master channels (see 6.9.3 Operation as multiple PWM output function in the RL78/L13 User's Manual.).




CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 02)

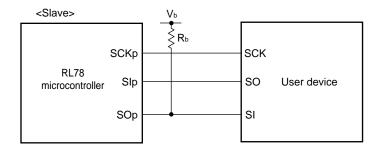
(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (higl main)	•	LS (low main)	/-speed Mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 2/fc∟к		200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 — 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tксү1/2 — 120		tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	t ĸ∟1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 V \le V_{DD} < 4$ $C_b = 20 \text{ pF}, R_b$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tксү1/2 — 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸ1		$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; \text{V}, \; 2.7 \; \text{V} \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ \\ C_{\text{b}} = 20 \; \text{pF}, \; R_{\text{b}} = 1.4 \; \text{k}\Omega \end{array}$			479		479		ns
		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ F}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tks⊨	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
1		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	t KSO1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	23		110		110		ns
		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tks⊨1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
2		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V \le V _b \le 4.0 V, = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$


Parameter	Symbol	Cor	nditions	HS (hig main)	h-speed Mode		/-speed Mode	LV (low main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	12/fмск		_		_		ns
time ^{Note 1}		$2.7~V \leq V_b \leq$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		-		ns
	4.0	4.0 V	4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	20 MHz < fмск	16/fмск		-		-		ns
		$2.3~V \leq V_b \leq$	16 MHz < fмск ≤ 20 MHz	14/fмск		_		_		ns
		2.7 V	8 MHz < fмск ≤ 16 MHz	12/fмск		-		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		1.8 V (2.4 V ^{Note 2}) ≤	20 MHz < fмск	36/f мск		_		_		ns
		V_{DD} < 3.3 V,	16 MHz < fмск ≤ 20 MHz	32/fмск		_		_		ns
		1.6 V ≤ V _b ≤ 2.0 V ^{Note 3}	8 MHz < fмск ≤ 16 MHz	26/fмск		_		_		ns
	2.0 Views	4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		_		ns	
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high- /low-level width	tкн2, tкL2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 – 50		ns
	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 3$	$2.3~V \leq V_b \leq 2.7~V$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns	
		$1.8 \vee (2.4 \vee^{Note 2}) \leq \vee$ $1.6 \vee \leq V_b \leq 2.0 \vee^{Note}$		tксү2/2 - 50		tксү2/2 – 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 4}	tsık2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
、 、 、 、		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2$	$2.3~V \leq V_b \leq 2.7~V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$1.8 \vee (2.4 \vee^{Note 2}) \leq V$ $1.6 \vee \leq V_b \leq 2.0 \vee^{Note}$	-	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from	tĸsı2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
SCKp↑) ^{Note 5}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 200 \text{ V}$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 2}}) \leq V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \end{array}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \end{array}$			2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
SOp output ^{Note 6}		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{Note 2}) \leq V \\ 1.6 \; V \leq V_b \leq 2.0 \; V^{Note} \\ C_b = 30 \; pF, \; R_b = 5.5 \end{array}$	e 3 ,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode		w-speed) Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		300 ^{Note 1}		300 ^{Note 1}	kHz
				400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note } 2}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note } 3}, \\ & C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
Hold time when SCLr = "L"	t LOW		475		1550		1550		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
			1150		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$ \begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note} \ 2}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note} \ 3}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	1550		1550		1550		ns
Hold time when SCLr = "H"	t ніgн		245		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
		$ \begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note } 2}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note } 3}, \\ & C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	610		610		610		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Fields of Application	A: Consumer applications	G: Industrial applications
Operating ambient temperature	$T_{A} = -40$ to +85°C	TA = -40 to +105°C
Operation mode operating voltage range	$ \begin{array}{l} \text{HS (high-speed main) mode:} \\ 2.7 \ \text{V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 24 MHz} \\ 2.4 \ \text{V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 16 MHz} \\ \text{LS (low-speed main) mode:} \\ 1.8 \ \text{V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 8 MHz} \\ \text{LV (low-voltage main) mode:} \\ 1.6 \ \text{V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 4 MHz} \\ \end{array} $	HS (high-speed main) mode only: 2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 24 MHz 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	$\begin{array}{l} 1.8 \ V \leq V_{DD} \leq 5.5 \ V: \\ \pm 1.0 \ \% \ @ \ TA = -20 \ to \ +85^{\circ}C \\ \pm 1.5 \ \% \ @ \ TA = -40 \ to \ -20^{\circ}C \\ 1.6 \ V \leq V_{DD} < 1.8 \ V: \\ \pm 5.0 \ \% \ @ \ TA = -20 \ to \ +85^{\circ}C \\ \pm 5.5 \ \% \ @ \ TA = -40 \ to \ -20^{\circ}C \end{array}$	$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 5.5 \ V: \\ \pm 2.0 \ \% \ @ \ T_A = +85 \ to \ +105^\circ C \\ \pm 1.0 \ \% \ @ \ T_A = -20 \ to \ +85^\circ C \\ \pm 1.5 \ \% \ @ \ T_A = -40 \ to \ -20^\circ C \end{array}$
Serial array unit	UART CSI: fcLk/2 (16 Mbps supported), fcLk/4 Simplified I ² C	UART CSI: fcLk/4 Simplified I ² C
IICA	Standard mode Fast mode Fast mode plus	Standard mode Fase mode
Voltage detector	 Rising: 1.67 V to 4.06 V (14 levels) Falling: 1.63 V to 3.98 V (14 levels) 	 Rising: 2.61 V to 4.06 V (8 levels) Falling: 2.55 V to 3.98 V (8 levels)

"G: Industrial applications (T_A = -40 to +105°C) differ from "A: Consumer applications" in function as follows:

Remark Electrical specifications of G: Industrial applications (T_A = -40 to +105°C) differ from "A: Consumer applications". For details, see **3.1** to **3.11** below.

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	VL1	V∟1 voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	VL2	VL2 voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to VL4 +0.3Note 2	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	Vout	COM0 to COM7	External resistance division method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
		SEG0 to SEG50	Capacitor split method	-0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
		output voltage	Internal voltage boosting method	–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		16.0	
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/L13 User's Manual.

3.2.2 On-chip oscillator characteristics

Parameter Symbol Conditions MIN. TYP. MAX. Unit 1 24 MHz High-speed on-chip oscillator fн clock frequencyNotes 1, 2 +85 to +105°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -2 +2 % High-speed on-chip oscillator clock frequency accuracy –20 to +85°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1 +1 % -40 to -20°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1.5 +1.5 % fı∟ 15 kHz Low-speed on-chip oscillator clock frequency Low-speed on-chip oscillator -15 +15 % clock frequency accuracy

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for the instruction execution time.

Parameter	Symbol	Conc	ditions	HS (high-speed	d main) Mode	Unit	
				MIN.	MAX.		
SCKp cycle time ^{Note 5}	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 20 MHz	16/fмск		ns	
			fмск ≤ 20 MHz	12/f мск		ns	
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 16 MHz	16/f мск		ns	
			f мск ≤	fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	$2.4 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$			ns	
SCKp high-/low-level width	t кн2, t кL2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–14		ns	
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–16		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–36		ns	
SIp setup time	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+40		ns	
(to SCKp↑) ^{Note 1}		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+60		ns	
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+62		ns	
Delay time from SCKp \downarrow to	tkso2	C = 30 pF ^{Note 4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+66	ns	
SOp output ^{Note 3}			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+113	ns	

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the SOp output lines.
- 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

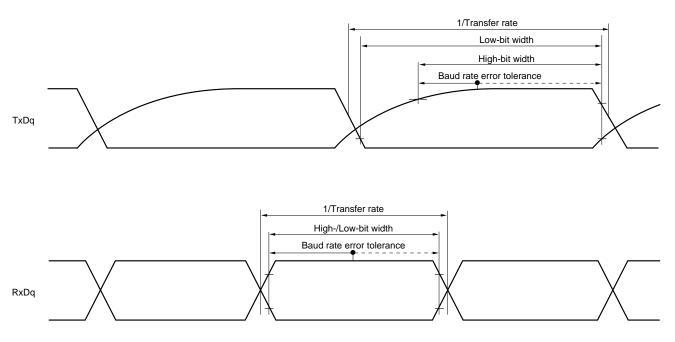
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 3 \ \text{k}\Omega \end{array}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1/f _{MCK} + 220 ^{Note 2}		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	1/f _{MCK} + 580 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	770	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	0	1420	ns

(4) During communication at same potential (simplified I²C mode)


Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-speed	l main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fclк		600		ns
			$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\label{eq:VD} \begin{split} & 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 1.8 \ V, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	2300		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$\le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ R _b = 1.4 k Ω	tксү1/2 – 150		ns
		$2.7 V \le V_{DD} \le C_b = 30 pF, F$	$< 4.0 V$, 2.3 V $\le V_b \le 2.7 V$, R _b = 2.7 kΩ	tkcy1/2 – 340		ns
		$2.4 V \le V_{DD} \le C_b = 30 \text{ pF}, \text{ F}$	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ	tĸcy1/2 – 916		ns
SCKp low-level width t _{KL1}		$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}, $ R _b = 1.4 kΩ	tkcy1/2 - 24		ns
	C 2	$2.7 \text{ V} \le \text{V}_{\text{DD}} <$ C_{b} = 30 pF, F	$4.0 V, 2.3 V \le V_b \le 2.7 V,$ R _b = 2.7 kΩ	tkcy1/2 - 36		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < \\ C_b = 30 \ pF, \ F \end{array}$		tkcy1/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	≤ 5.5 V, 2.7 V \leq Vb ≤ 4.0 V, Rb = 1.4 k\Omega	162		ns
		$2.7 V \le V_{DD} \le C_b = 30 pF, F$	$ 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}, $ R _b = 2.7 kΩ	354		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ	958		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}, $ R _b = 1.4 kΩ	38		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, F$	$< 4.0 V, 2.3 V \le V_b \le 2.7 V,$ R _b = 2.7 kΩ	38		ns
		$2.4 V \le V_{DD} \le C_b = 30 pF, F$	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}, $ R _b = 1.4 kΩ		200	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} <$ C_{b} = 30 pF, F	$< 4.0 V$, 2.3 V $\le V_b \le 2.7 V$, R _b = 2.7 kΩ		390	ns
		$2.4 V \le V_{DD} \le C_b = 30 \text{ pF}, \text{ F}$	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ		966	ns

(Note, Caution and Remark are listed on the next page.)

(8)	Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)
-----	---

(T _A = -40 to +105°C,	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V. Vss = 0 V)
(1A - 10.0010000)		•,••• • • •

Parameter	Symbol	Conditions	HS (high-spe	ed main) Mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟			400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 ^{Note 1}	kHz
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		100 ^{Note 1} H	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1200		ns
			4600		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	4600		ns
		$\label{eq:VDD} \begin{split} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	620		ns
		$\label{eq:VDD} \begin{split} 2.7 \; V &\leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{\text{b}} < 2.7 \; V, \\ C_{\text{b}} &= 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{split}$	500		ns
			2700		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1830		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Parameter	Symbol	Conditions	Conditions HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{мск} + 340 ^{Note 2}		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{мск} + 340 ^{Note 2}		ns
			1/f _{мск} + 760 ^{Note 2}		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{мск} + 760 ^{Note 2}		ns
		$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	1/f _{мск} + 570 ^{Note 2}		ns
Data hold time (transmission) thd:dat	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; \text{V}, \; 2.7 \; \text{V} \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ C_{\text{b}} = 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{array}$	0	770	ns	
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V , \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	0	1215	ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

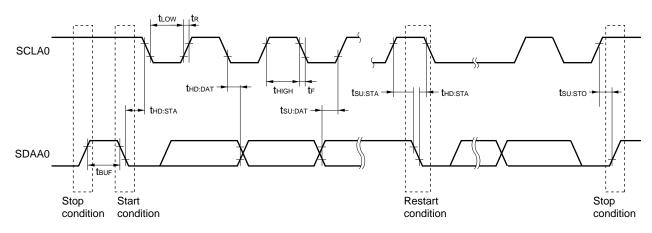
Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

3.5.2 Serial interface IICA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	HS (high-speed main) Mode			Unit
			Standar	d Mode	Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz	_	_	0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100	_	-	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	t hd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	t HIGH		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0 ^{Note 3}	3.45	0 ^{Note 3}	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ R}_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

3.7 LCD Characteristics

3.7.1 External resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(T_A = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.