

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmeafa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

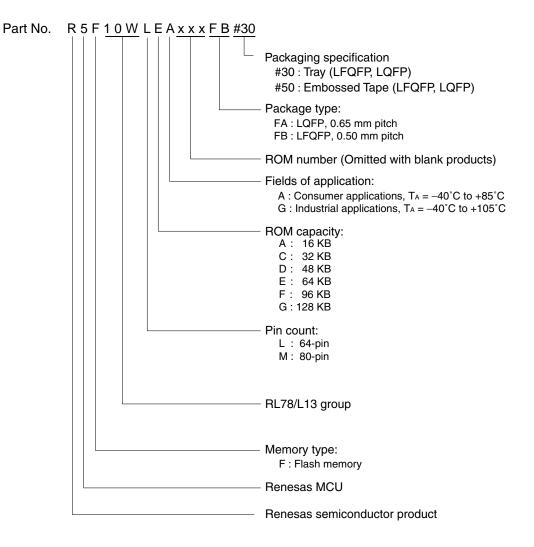
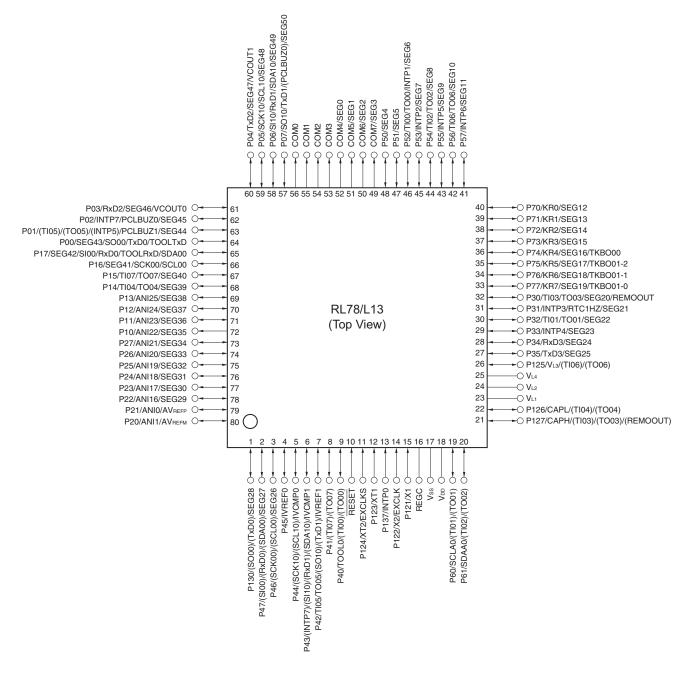



Figure 1-1. Part Number, Memory Size, and Package of RL78/L13

<R> 1.3.2 80-pin products

- 80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

1.4 Pin Identification

ANIO, ANI1,		PCLBUZ0, PCLBUZ1:	Programmable Clock Output/
ANI16 to ANI25:	Analog Input		Buzzer Output
AVREFM:	Analog Reference Voltage	REGC:	Regulator Capacitance
	Minus	REMOOUT:	Remote control Output
AVREFP:	Analog Reference Voltage	RESET:	Reset
	Plus	RTC1HZ:	Real-time Clock 2 Correction Clock
CAPH, CAPL:	Capacitor for LCD		(1 Hz) Output
COM0 to COM7:	LCD Common Output	RxD0 to RxD3:	Receive Data
EXCLK:	External Clock Input	SCK00, SCK10, SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL10:	Serial Clock Output
EXCLKS:	External Clock Input	SDAA0, SDA00, SDA10:	Serial Data Input/Output
	(Subsystem Clock)	SEG0 to SEG50:	LCD Segment Output
INTP0 to INTP7:	External Interrupt Input	SI00, SI10:	Serial Data Input
IVCMP0, IVCMP1:	Comparator Input	SO00, SO10:	Serial Data Output
IVREF0, IVREF1:	Comparator Reference Input	TI00 to TI07:	Timer Input
KR0 to KR7:	Key Return	TO00 to TO07,	
P00 to P07:	Port 0	TKBO00, TKBO01-0,	
P10 to P17:	Port 1	TKBO01-1, TKBO01-2:	Timer Output
P20 to P27:	Port 2	TOOL0:	Data Input/Output for Tool
P30 to P35:	Port 3	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P40 to P47:	Port 4	TxD0 to TxD3:	Transmit Data
P50 to P57:	Port 5	VCOUT0, VCOUT1:	Comparator Output
P60, P61:	Port 6	Vdd:	Power Supply
P70 to P77:	Port 7	VL1 to VL4:	LCD Power Supply
P121 to P127:	Port 12	Vss:	Ground
P130, P137:	Port 13	X1, X2:	Crystal Oscillator (Main System Clock)
		XT1, XT2:	Crystal Oscillator (Subsystem Clock)

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vi1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	Vı2	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage			-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI0, ANI1, ANI16 to ANI26	-0.3 to V_DD +0.3 and -0.3 to AV_REF(+) +0.3 $^{Notes 2, 3}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

<R>

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130				20.0 ^{Note 2}	mA
		Per pin for P60 and P61				15.0 ^{Note 2}	mA
		Total of P40 to P47, P130 (When duty = 70% ^{Note 3})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			70.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			9.0	mA
			$1.6~V \leq V_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P70 to P77, P125 to P127	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			90.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			20.0	mA
		(When duty = $70\%^{\text{Note 3}}$)	$1.6~V \leq V_{\text{DD}} < 1.8~V$			10.0	mA
		Total of all pins (When duty = 70% ^{Note 3})				160.0	mA
	IOL2	Per pin for P20 and P21				0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$1.6~V \le V_{\text{DD}} \le 5.5~V$			0.8	mA

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Notes 1. Value of the current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and I_{OL} = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \cong 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped.
 When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. However, not including the current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - **6.** Not including the current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 24 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

2.4 AC Characteristics

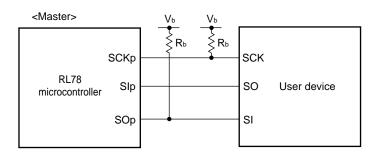
(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
instruction execution time)		clock (fmain)	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6~V \le V_{\text{DD}} \le 5.5~V$	0.25		1	μs
		Subsystem clo operation ^{Note}	ock (fsuв)	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	28.5	30.5	31.3	μs
		In the self	HS (high-speed	$2.7~V \le V_{\text{DD}} \le 5.5~V$	0.0417		1	μs
		programming	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 2.7 V	0.0625		1	μs
		mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fex	$2.7~V \leq V_{\text{DD}} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq V_{\text{DD}} <$	2.7 V		1.0		16.0	MHz
		$1.8 V \le V_{DD} <$	2.4 V		1.0		8.0	MHz
		$1.6 V \le V_{DD} <$	1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	t _{EXH} ,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			24			ns
high-level width, low-level	texL	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$			30			ns
width		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$			60			ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			120			ns
	texhs, texls				13.7			μs
TI00 to TI07 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск+10			ns
TO00 to TO07, TKBO00,	fто					12	MHz	
TKBO01-0 to TKBO01-2						8	MHz	
output frequency				$2.4~V \leq V_{\text{DD}} < 2.7~V$			4	MHz
		LV (low-voltag	ge main) mode	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			2	MHz
		LS (low-speed main) mode $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$					4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spee	ed main) mode	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			16	MHz
frequency			,	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$			8	MHz
				$2.4 \text{ V} \leq \text{V}_{\text{DD}}$ < 2.7 V			4	MHz
		LV (low-voltag	ge main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$			4	MHz
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed	d main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTE	77	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	1			μs
Key interrupt input high-level	tkrh, tkrl	KR0 to KR7		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	250			ns
width, low-level width				$1.6~V \leq V_{\text{DD}} < 1.8~V$	1			μs
IH-PWM output restart input high-level width	t ihr	INTP0 to INTE	77		2			fськ
TMKB2 forced output stop input high-level width	tihr	INTP0 to INTF	2		2			fськ
RESET low-level width	trsl				10			μs

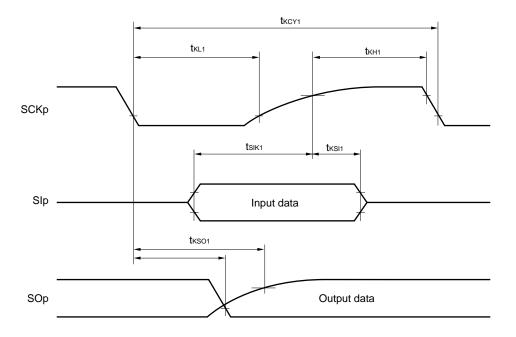
(Note and Remark are listed on the next page.)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - 4. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

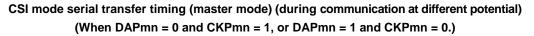
Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 4}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	44		110		110		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	44		110		110		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	19		19		19		ns
4		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	19		19		19		ns
Delay time from SCKp↑ to	tkso1			25		25		25	ns
SOp output ^{Note 4}		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		25		25		25	ns

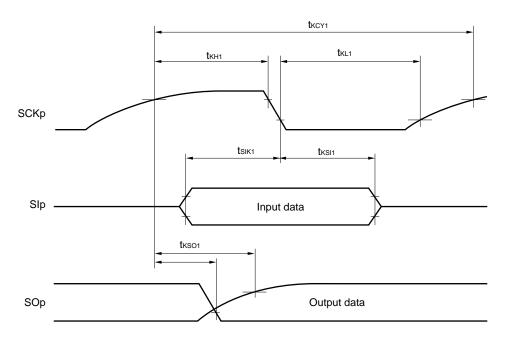

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

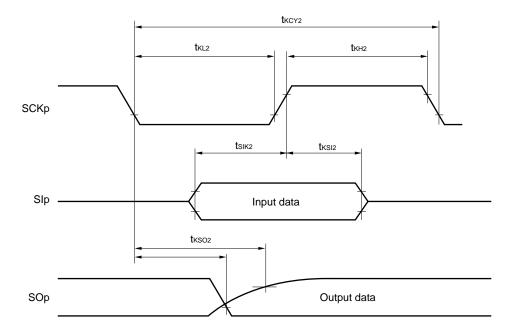
Notes 1. Condition in HS (high-speed main) mode

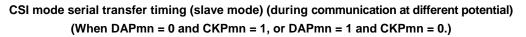

2. Use it with $V_{DD} \ge V_b$.

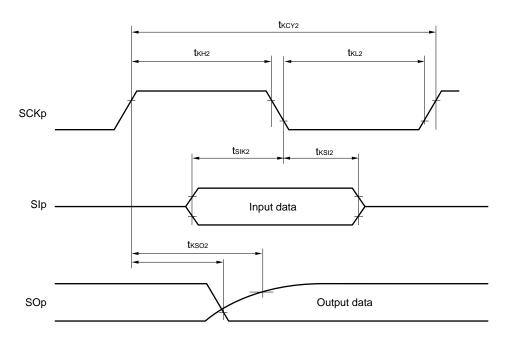
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- **4.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

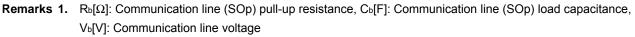

CSI mode connection diagram (during communication at different potential)



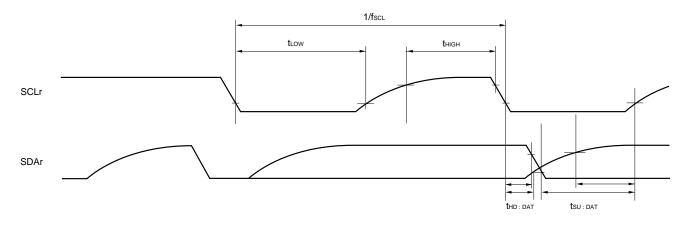

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)




- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 10), m: Unit number , n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00)



CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


- p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn)
 m: Unit number, n: Channel number (mn = 00, 02))

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$

R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB

- Cautions 1. The RL78/L13 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.
 - Consult Renesas salesperson and distributor for derating when the product is used at T_A = +85°C to +105°C. Note that derating means "systematically lowering the load from the rated value to improve reliability".
- Remark When RL78/L13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

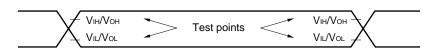
3.1 Absolute Maximum Ratings

Absolute	Maximum	Ratings	(1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 Note1	V
Input voltage V _{I1}		P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V ₁₂	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage VAI1		ANI0, ANI1, ANI16 to ANI26	-0.3 to V_{DD} +0.3 and -0.3 to $AV_{\text{REF}(*)}$ +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock
 - **2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)

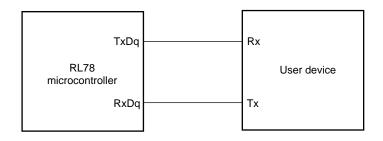

frequency)

- 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
- **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

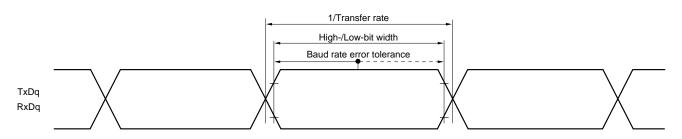
3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit


(1) During communication at same potential (UART mode) ($T_A = -40$ to $\pm 105^{\circ}$ C, 2.4 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

Parameter	Symbol	Conditions HS (high-speed main) Mode		ed main) Mode	Unit
			MIN.	MAX.	
Transfer rate ^{Note}				fмск/12	bps
		Theoretical value of the maximum transfer rate f_{CLK} = 24 MHz, f_{MCK} = f_{CLK}		2.0	Mbps


Note Transfer rate in the SNOOZE mode is 4800 bps only.

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

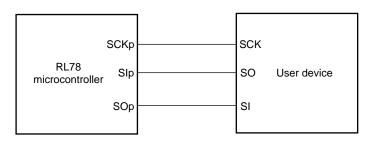
UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00 to 03, 10 to 13))

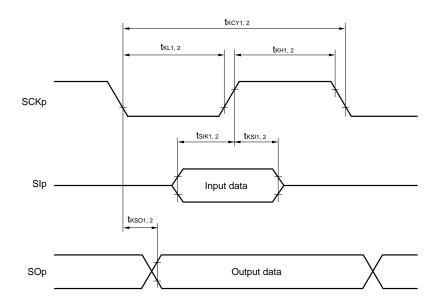
Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) Mode		
			MIN.	MAX.		
SCKp cycle time	tkCY1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334 ^{Note 1}		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500 ^{Note 1}		ns	
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 – 24		ns	
	t ĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 – 36		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 – 76		ns	
SIp setup time (to SCKp↑) ^{Note 2}	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns	
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	113		ns	
SIp hold time (from SCKp↑) ^{Note 3}	tksi1		38		ns	
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	C = 30 pF ^{Note 5}		50	ns	

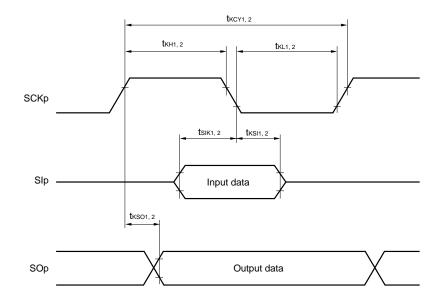
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

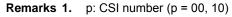

Notes 1. The value must also be equal to or more than 4/fcLK.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))




CSI mode connection diagram (during communication at same potential)

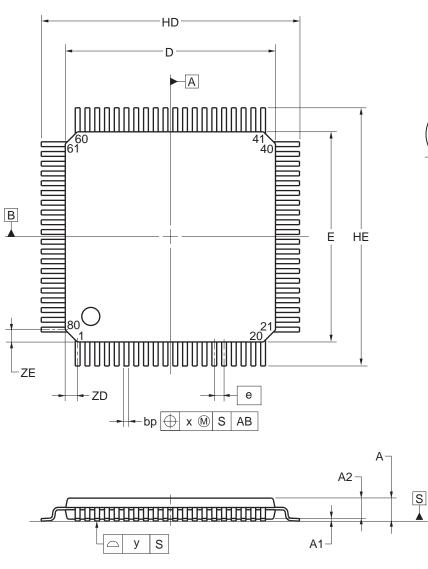
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

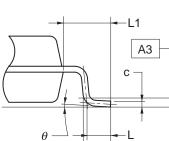
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 02)

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
	(T _A = −40 to +105°C, 2.4 V ≤ V _{DD} ≤ 5.5 V, Vss = 0 V)

Parameter	Symbol	0	Conditions	HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	24/f мск		ns
		$2.7 \ V {\le} V_b {\le} 4.0 \ V$	8 MHz < fмск ≤ 20 MHz	20/ f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$	20 MHz < fмск	32/fмск		ns
		$2.3 \ V \le V_b \le 2.7 \ V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < $f_{MCK} \le 16$ MHz	24/ f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск	72/fмск		ns
		$1.6 V \le V_b \le 2.0 V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	64/fмск		ns
			8 MHz < fmck \leq 16 MHz	52/f мск		ns
			4 MHz < $f_{MCK} \le 8$ MHz	32/fмск		ns
			fмск ≤ 4 MHz	20/f мск		ns
SCKp high-/low-level width	t кн2, t кL2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V_{\text{H}}$, 2.7 V \leq Vb \leq 4.0 V	tkcy2/2 – 24		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{DD}}$, 2.3 V \leq V_b \leq 2.7 V	tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}$, 1.6 V \leq V_b \leq 2.0 V	tkcy2/2 - 100		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V_{\text{H}}$, 2.7 V \leq Vb \leq 4.0 V	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{DD}}$, 2.3 V \leq V_b \leq 2.7 V	1/fмск + 40		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}$, 1.6 V \leq V_b \leq 2.0 V	1/fмск + 60		ns
SIp hold time	tksi2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V_{\text{H}}$, 2.7 V \leq Vb \leq 4.0 V	1/fмск + 62		ns
(from SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} \leq 4.0~V_{\text{PD}}$	$2.3~V \leq V_b \leq 2.7~V$	1/fмск + 62		ns
		$2.4~V \leq V_{\text{DD}} \leq 3.3~V_{\text{PD}}$	1.6 V \leq V_b \leq 2.0 V	1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 30 \; pF, \; R_{\text{b}} = 1.4 \end{array}$			2/fмск + 240	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{D}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ c}_{\text{b}}$			2/fмск + 428	ns
		$2.4 V \le V_{DD} < 3.3 V_{Cb}$ $C_b = 30 \text{ pF}, R_b = 5.8$			2/fмск + 1146	ns


(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)



4.2 80-pin Products

R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMEAFA, R5F10WMFAFA, R5F10WMGAFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

detail of lead end

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	13.80	14.00	14.20	
E	13.80	14.00	14.20	
HD	17.00	17.20	17.40	
HE	17.00	17.20	17.40	
А			1.70	
A1	0.05	0.125	0.20	
A2	1.35	1.40	1.45	
A3		0.25		
bp	0.26	0.32	0.38	
С	0.10	0.145	0.20	
L		0.80		
Lp	0.736	0.886	1.036	
L1	1.40	1.60	1.80	
	0°	3°	8°	
е		0.65		
х			0.13	
У			0.10	
ZD		0.825		
ZE		0.825		

Lp