

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

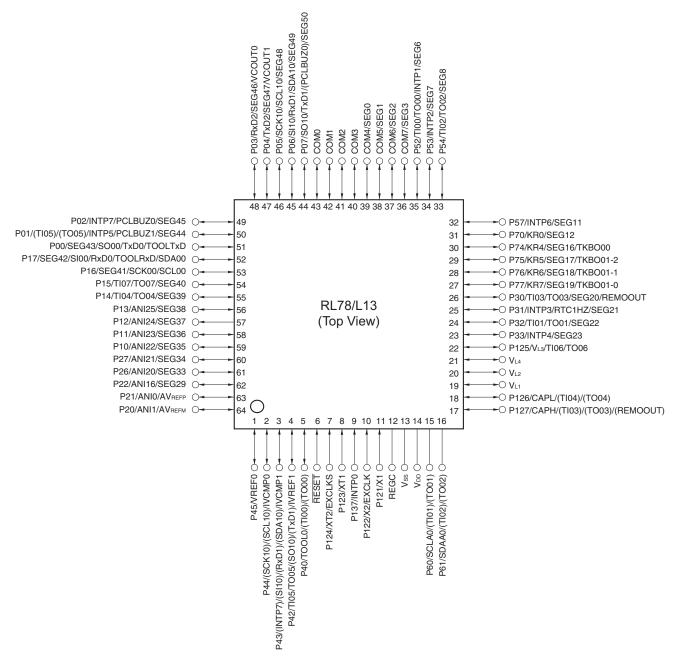
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmeafa-x0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

<R> 1.3.1 64-pin products

- 64-pin plastic LQFP (12 \times 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

<R>

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, IoL1 Iow ^{Note 1}	Iol1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130				20.0 ^{Note 2}	mA
		Per pin for P60 and P61				15.0 ^{Note 2}	mA
		Total of P40 to P47, P130	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			70.0	mA
		(When duty = 70% ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			9.0	mA
			$1.6~V \leq V_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P00 to P07, P10 to P17, P22 to P27,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			90.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
		P30 to P35, P50 to P57, P70 to P77, P125 to P127	$1.8~V \leq V_{\text{DD}} < 2.7~V$			20.0	mA
		(When duty = $70\%^{\text{Note 3}}$)	$1.6~V \leq V_{\text{DD}} < 1.8~V$			10.0	mA
		Total of all pins (When duty = 70% ^{Note 3})				160.0	mA
	IOL2	Per pin for P20 and P21				0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$1.6~V \le V_{\text{DD}} \le 5.5~V$			0.8	mA

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Notes 1. Value of the current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and I_{OL} = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \cong 61.25$ mA

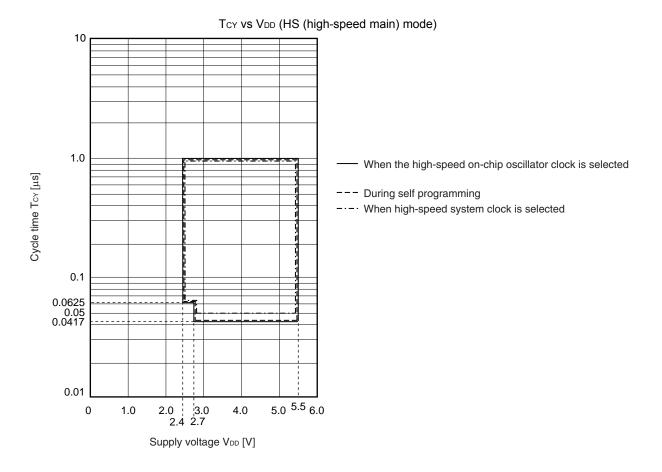
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

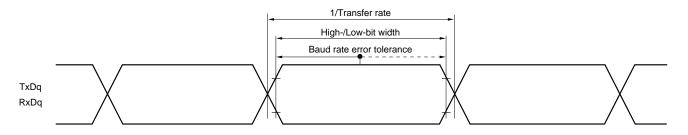
Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 6. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
 - 10. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode in the RL78/L13 User's Manual.
- **11.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
- 12. Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsuB for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
- **13.** Not including the current flowing into the external division resistor when using the external resistance division method.

Remarks 1. fiL: Low-speed on-chip oscillator clock frequency

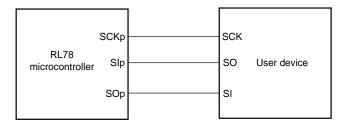

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fcLK: CPU/peripheral hardware clock frequency
- **4.** The temperature condition for the TYP. value is $T_A = 25^{\circ}C$.

Note Operation is not possible if 1.6 V ≤ V_{DD} < 1.8 V in LV (low-voltage main) mode while the system is operating on the subsystem clock.


Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

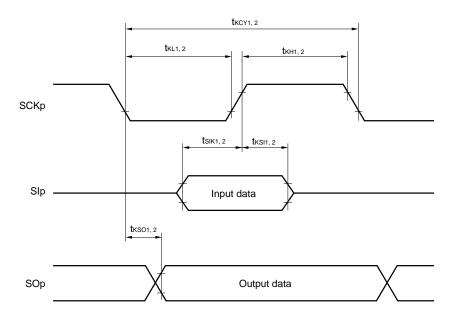
Minimum Instruction Execution Time during Main System Clock Operation

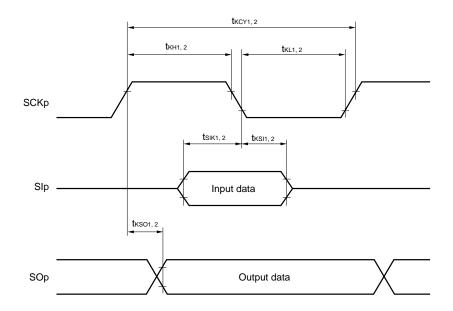
UART mode bit width (during communication at same potential) (reference)

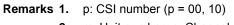


Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))




CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 02)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (higl main)	•	LS (low main)	•	LV (low main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	300		1150		1150		ns
			2.7 V \leq V _{DD} $<$ 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b $=$ 30 pF, R _b $=$ 2.7 k Ω	500		1150		1150		ns
			$\begin{split} & 1.8 \; V \; (2.4 \; V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \\ & V, \\ & 1.6 \; V \leq V_b \leq 1.8 \; V^{\text{Note 2}}, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1150		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq \\ C_{\text{b}} = 30 \ \text{pF, R} \end{array}$	5.5 V, 2.7 V \leq Vb \leq 4.0 V, Hb = 1.4 k\Omega	tксү1/2 — 75		tксү1/2 — 75		tксү1/2 — 75		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le C_{\text{b}} = 30 \text{ pF}, \text{ R}$	4.0 V, 2.3 V \leq Vb \leq 2.7 V, lb = 2.7 k\Omega	tксү1/2 — 170		tксү1/2 — 170		tксү1/2 — 170		ns
		$1.8 V (2.4 V^{Nc})$ $1.6 V \le V_b \le 2$ $C_b = 30 \text{ pF, R}$,	tkcy1/2 458		tkcy1/2 - 458		tkcy1/2 - 458		ns
SCKp low-level t _{KL1} width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq \\ C_{\text{b}} = 30 \ \text{pF}, \ R \end{array}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, ₅ = 1.4 kΩ	tксү1/2 — 12		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, R$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, hb = 2.7 kΩ	tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
		$1.8 V (2.4 V^{No})$ $1.6 V \le V_b \le 2$ $C_b = 30 \text{ pF, R}$		tксү1/2 — 50		tkcy1/2 - 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsıĸı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq Vb \leq 4.0 V, Hb = 1.4 k\Omega	81		479		479		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, R$	4.0 V, 2.3 V \leq Vb \leq 2.7 V, lb = 2.7 k\Omega	177		479		479		ns
		$1.8 V (2.4 V^{No})$ $1.6 V \le V_b \le 2$ $C_b = 30 \text{ pF, R}$		479		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_{b} = 30 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, h _b = 1.4 kΩ	19		19		19		ns
3		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq Vb \leq 2.7 V, Hb = 2.7 k\Omega	19		19		19		ns
		$1.8 V (2.4 V^{No})$ $1.6 V \le V_b \le 2$ $C_b = 30 \text{ pF, R}$		19		19		19		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 kΩ		100		100		100	ns
SOp output ^{Note 3}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < C_{\text{b}} = 30 \text{ pF}, \text{ R}$	4.0 V, 2.3 V \leq Vb \leq 2.7 V, lb = 2.7 k\Omega		195		195		195	ns
		$1.8 V (2.4 V^{Nc})$ $1.6 V \le V_b \le 2$ $C_b = 30 \text{ pF, R}$			483		483		483	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	HS (hig main)	h-speed Mode		/-speed Mode	LV (low main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	12/fмск		_		_		ns
time ^{Note 1}		$2.7~V \leq V_b \leq$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		-		ns
		4.0 V	4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	20 MHz < fмск	16/fмск		-		-		ns
		$2.3~V \leq V_b \leq$	16 MHz < fмск ≤ 20 MHz	14/fмск		_		_		ns
		2.7 V	8 MHz < fмск ≤ 16 MHz	12/fмск		-		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$1.8 \vee (2.4 \vee^{Note 2}) \le V_{DD} < 3.3 \vee,$ 1.6 $\vee < 1.6 \vee < 1$	20 MHz < fмск	36/f мск		_		_		ns
			16 MHz < fмск ≤ 20 MHz	32/fмск		_		_		ns
		1.6 V ≤ V _b ≤ 2.0 V ^{Note 3}	8 MHz < fмск ≤ 16 MHz	26/fмск		_		_		ns
		2.0 V	4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high- /low-level width tkl2	,	$4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V$		tксү2/2 – 12		tксү2/2 – 50		tксү2/2 – 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 3$	$2.3~V \leq V_b \leq 2.7~V$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 2}}) \leq V_{\text{DD}} < 3.3 \; V, \\ 1.6 \; V \leq V_{\text{b}} \leq 2.0 \; V^{\text{Note 3}} \end{array}$		tксү2/2 - 50		tксү2/2 – 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 4}	tsık2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
、 、 、 、		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2$	$2.3~V \leq V_b \leq 2.7~V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$1.8 \vee (2.4 \vee^{Note 2}) \leq V$ $1.6 \vee \leq V_b \leq 2.0 \vee^{Note}$	-	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from	tĸsı2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
SCKp↑) ^{Note 5}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 200 \text{ V}$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 2}}) \leq V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \end{array}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \end{array}$			2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
SOp output ^{Note 6}		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{Note 2}) \leq V \\ 1.6 \; V \leq V_b \leq 2.0 \; V^{Note} \\ C_b = 30 \; pF, \; R_b = 5.5 \end{array}$	e 3 ,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

2.7 LCD Characteristics

2.7.1 External resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$

R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB

- Cautions 1. The RL78/L13 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.
 - Consult Renesas salesperson and distributor for derating when the product is used at T_A = +85°C to +105°C. Note that derating means "systematically lowering the load from the rated value to improve reliability".
- Remark When RL78/L13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		16.0	
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/L13 User's Manual.

3.2.2 On-chip oscillator characteristics

Parameter Symbol Conditions MIN. TYP. MAX. Unit 1 24 MHz High-speed on-chip oscillator fн clock frequencyNotes 1, 2 +85 to +105°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -2 +2 % High-speed on-chip oscillator clock frequency accuracy –20 to +85°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1 +1 % -40 to -20°C $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ -1.5 +1.5 % fı∟ 15 kHz Low-speed on-chip oscillator clock frequency Low-speed on-chip oscillator -15 +15 % clock frequency accuracy

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for the instruction execution time.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0.8V _{DD}		Vdd	V
	VIH2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer $4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	2.2		Vdd	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	2.0		Vdd	V
			TTL input buffer 2.4 V \leq V_DD $<$ 3.3 V	1.5		V _{DD}	V
	VIH3	P20, P21		0.7VDD		Vdd	V
	VIH4	P60, P61		0.7V _{DD}		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	S, RESET	0.8VDD		VDD	V
Input voltage, low	VIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0		0.2VDD	V
	VIL2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V \leq V _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 2.4 V \leq V_DD $<$ 3.3 V	0		0.32	V
	VIL3	P20, P21		0		0.3VDD	V
	VIL4	P60, P61		0		0.3VDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	S, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Caution The maximum value of V_I of pins P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock
 - **2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)

frequency)

- 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
- **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

		-,		, v 33 = 0 v)				(2,2)	
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2Note 2	HALT	HS (high-	f _{HOCO} = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	2.55	mA
current Note 1		mode	speed main) mode ^{Note 7}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	2.55	mA
				f _{HOCO} = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.95	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.95	mA
				fHOCO = 16 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.43	1.50	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.50	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.76	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	1.92	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.76	mA
			V _{DD} = 3.0 V	Resonator connection		0.48	1.92	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.20	0.96	mA	
			V _{DD} = 5.0 V	Resonator connection		0.28	1.07	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.19	0.96	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	1.07	mA
			Subsystem	fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μA
		clock	T _A = -40°C	Resonator connection		0.51	0.80	μA	
			operation	f _{SUB} = 32.768 kHz ^{Note 5} , T _A = +25°C	Square wave input		0.38	0.62	μA
					Resonator connection		0.57	0.80	μA
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μA
				T _A = +50°C	Resonator connection		0.67	2.49	μA
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μA
				T _A = +70°C	Resonator connection		0.91	4.22	μA
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μA
				T _A = +85°C	Resonator connection		1.31	8.23	μA
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		3.05	27.00	μA
				T _A = +105°C	Resonator connection		3.24	27.00	μA
	DD3 ^{Note 6}	STOP	T _A = −40°C				0.18	0.52	μA
		mode ^{Note 8}	T _A = +25°C				0.24	0.52	μA
			T _A = +50°C				0.33	2.21	μA
		T _A = +70°C				0.53	3.94	μA	
			T _A = +85°C				0.93	7.95	μA
			T _A = +105°C				2.91	25.00	μA

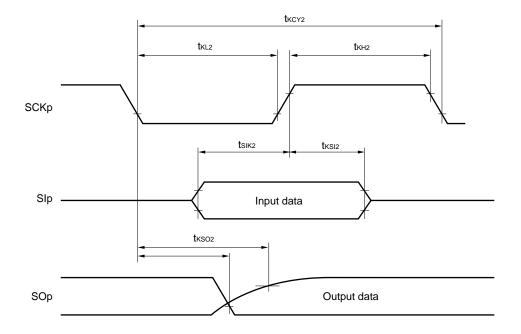
(Notes and Remarks are listed on the next page.)



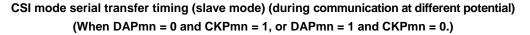
- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 6. The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 24 MHz

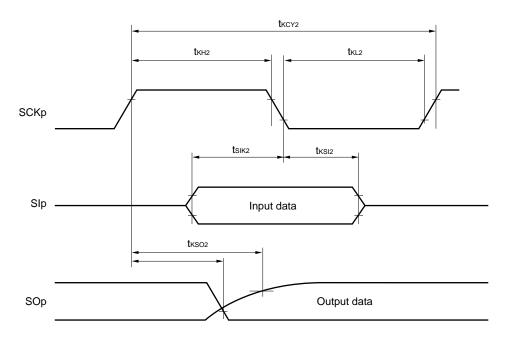
2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

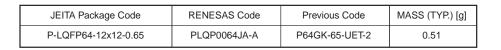


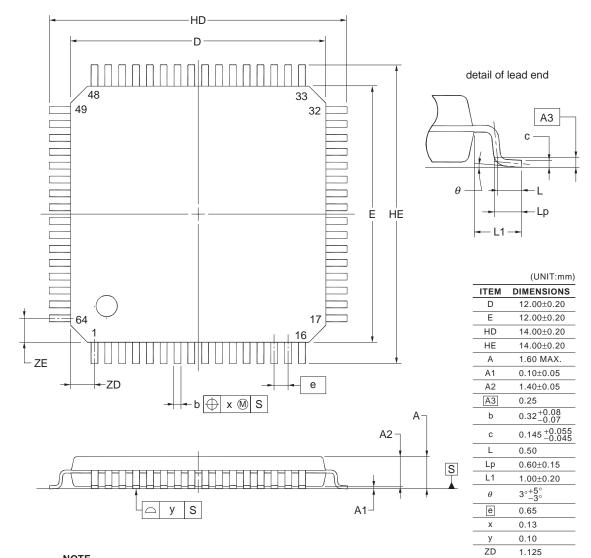
UART mode bit width (during communication at different potential) (reference)


- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)


3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


- **Remarks 1.** $R_b[\Omega]$: Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn) m: Unit number, n: Channel number (mn = 00, 02))



4. PACKAGE DRAWINGS

4.1 64-pin Products

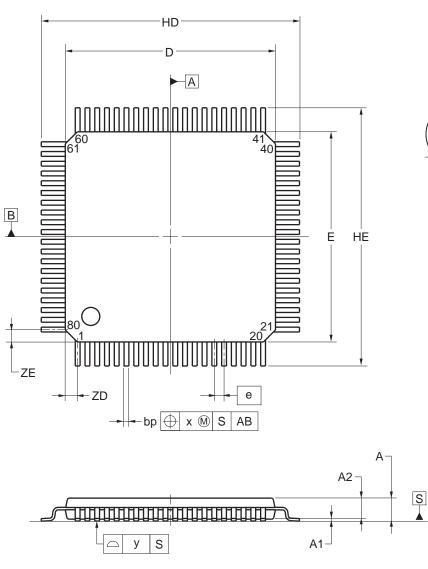
R5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA, R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA

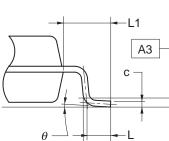
NOTE

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ZE

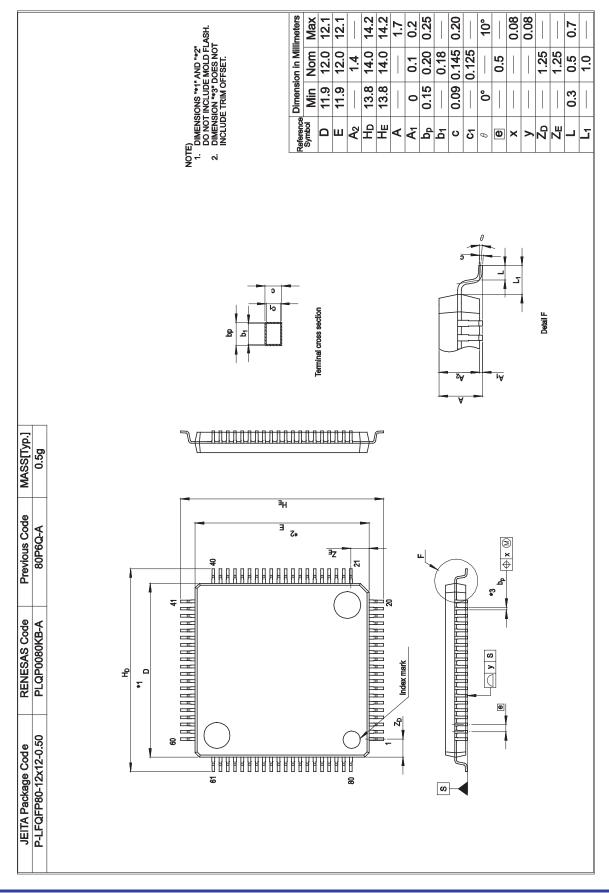

1.125



4.2 80-pin Products

R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMEAFA, R5F10WMFAFA, R5F10WMGAFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69



detail of lead end

Referance	Dimens	sion in Mill	imeters
Symbol	Min	Nom	Max
D	13.80	14.00	14.20
Е	13.80	14.00	14.20
HD	17.00	17.20	17.40
HE	17.00	17.20	17.40
А			1.70
A1	0.05	0.125	0.20
A2	1.35	1.40	1.45
A3		0.25	
bp	0.26	0.32	0.38
С	0.10	0.145	0.20
L		0.80	
Lp	0.736	0.886	1.036
L1	1.40	1.60	1.80
	0°	3°	8°
е		0.65	
х			0.13
У			0.10
ZD		0.825	
ZE		0.825	

Lp

R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB, R5F10WMEAFB, R5F10WMFAFB, R5F10WMGAFB, R5F10WMCGFB, R5F10WMCGAFB, R5W10WCGAFB, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10W

