

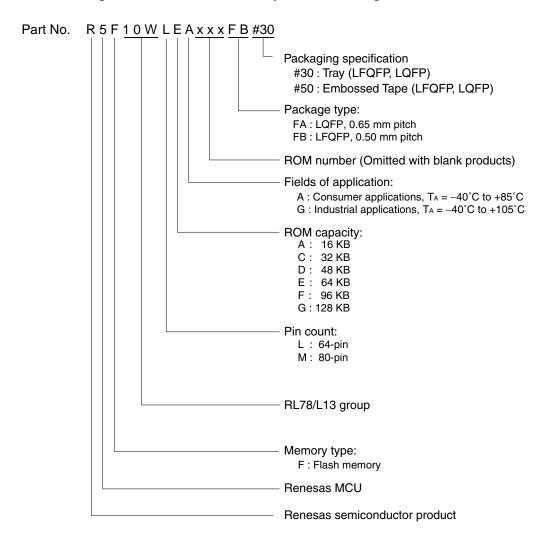
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

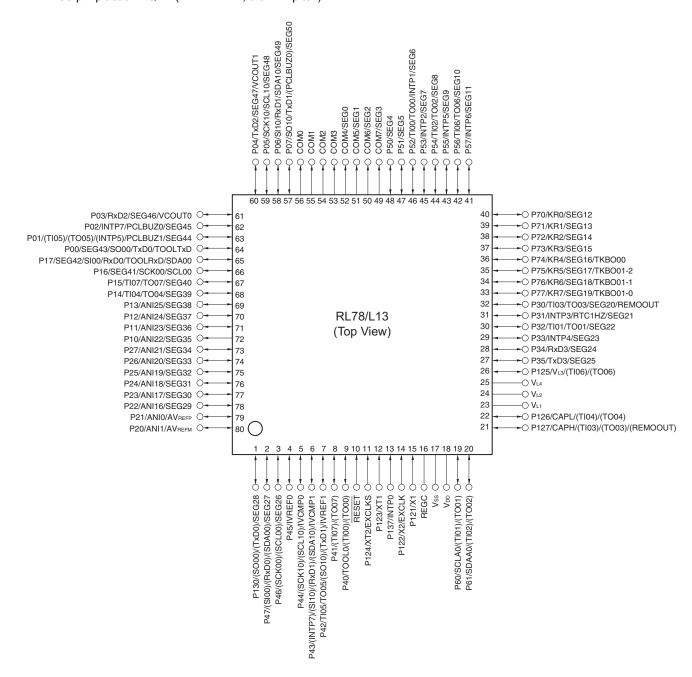
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmeafb-50


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/L13 1. OUTLINE

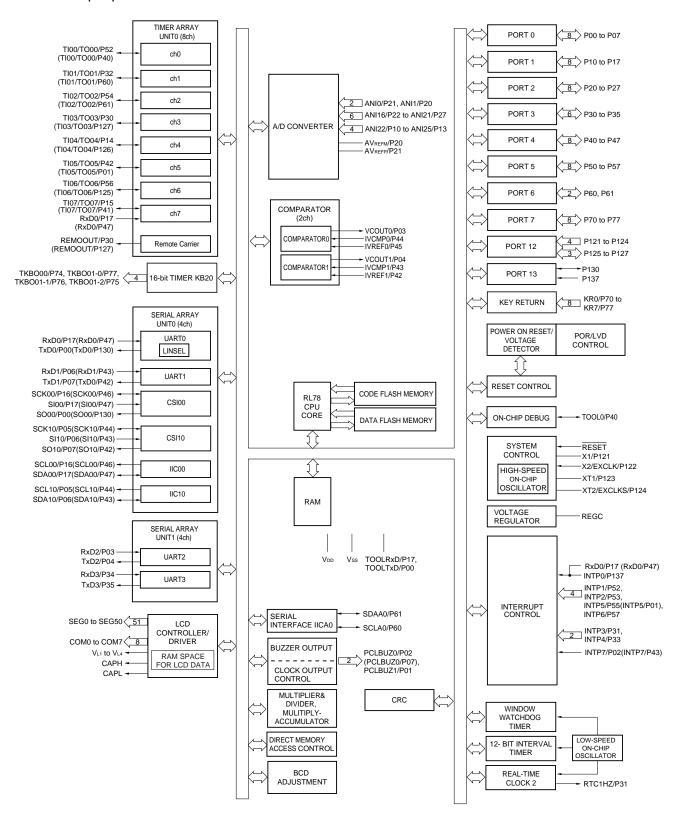
1.2 List of Part Numbers


Figure 1-1. Part Number, Memory Size, and Package of RL78/L13

RL78/L13 1. OUTLINE

<R> 1.3.2 80-pin products

- 80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

RL78/L13 1. OUTLINE

1.5.2 80-pin products

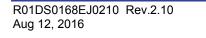
Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/L13 User's Manual.

<R>

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _L 1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130				20.0 ^{Note 2}	mA
		Per pin for P60 and P61				15.0 ^{Note 2}	mA
		Total of P40 to P47, P130	$4.0~V \leq V_{DD} \leq 5.5~V$			70.0	mA
		(When duty = 70% ^{Note 3})	$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}$			15.0	mA
			$1.8 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V}$			4.5	mA
		Total of P00 to P07, P10 to P17, P22 to P27,	$4.0~V \leq V_{DD} \leq 5.5~V$			90.0	mA
			$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}$			35.0	mA
		P30 to P35, P50 to P57, P70 to P77, P125 to P127	$1.8 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			20.0	mA
		(When duty = 70% ^{Note 3})	$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V}$			10.0	mA
		Total of all pins (When duty = 70% ^{Note 3})				160.0	mA
	lo _{L2}	Per pin for P20 and P21				0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$1.6~V \le V_{DD} \le 5.5~V$			0.8	mA

- **Notes 1**. Value of the current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor $\leq 70\%$.


The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

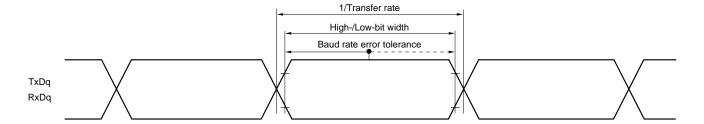
- Total output current of pins = (IoL × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped.
 When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - **6.** Not including the current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz

 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V@1 MHz to 16 MHz}$

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 4 \text{ MHz}$

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fhoco: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fil: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	ditions	` •	h-speed Mode	`	v-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkcy2	4.0 V ≤ V _{DD} ≤ 5.5	V fmck > 20 MHz	8/fмск		_		_		ns
time ^{Note 5}			fмcк ≤ 20 MHz	6/fмск		6/fмск		6/ƒмск		ns
		2.7 V ≤ V _{DD} ≤ 5.5	V f _{MCK} > 16 MHz	8/fмск		_		_		ns
			fмcк ≤ 16 MHz	6/fмск		6/fмск		6/ƒмск		ns
		2.4 V ≤ V _{DD} ≤ 5.5	V	6/fмск and 500		6/ƒмск		6/ƒмск		ns
		1.8 V ≤ V _{DD} ≤ 5.5	V	_		6/ƒмск		6/ƒмск		ns
		1.6 V ≤ V _{DD} ≤ 5.5	V	_		_		6/ƒмск		ns
SCKp high-/low-	t кн2,	4.0 V ≤ V _{DD} ≤ 5.5	V	tkcy2/2-7		tkcy2/2-7		tkcy2/2-7		ns
level width	t _{KL2}	2.7 V ≤ V _{DD} ≤ 5.5	V	tkcy2/2-8		tkcy2/2-8		tkcy2/2-8		ns
		2.4 V ≤ V _{DD} ≤ 5.5	V	tkcy2/2-18		tkcy2/2-18		tkcy2/2-18		ns
		1.8 V ≤ V _{DD} ≤ 5.5	_		tkcy2/2-18		tkcy2/2-18		ns	
		1.6 V ≤ V _{DD} ≤ 5.5	V	_		_		tkcy2/2-66		ns
SIp setup time	tsık2	$2.7 \text{ V} \leq V_{DD} \leq 5.5$	V	1/fмск+20		1/fмск+30		1/fмск+30		ns
(to SCKp↑) ^{Note 1}		2.4 V ≤ V _{DD} ≤ 5.5	V	1/fмск+30		1/fмск+30		1/fмск+30		ns
		1.8 V ≤ V _{DD} ≤ 5.5	V	_		1/fмск+30		1/fмск+30		ns
		1.6 V ≤ V _{DD} ≤ 5.5	V	_		_		1/fмск+40		ns
SIp hold time	tksi2	2.4 V ≤ V _{DD} ≤ 5.5	V	1/fмск+31		1/fмск+31		1/fмск+31		ns
(from SCKp↑) ^{Note 2}		1.8 V ≤ V _{DD} ≤ 5.5	V	_		1/fмск+31		1/fмск+31		ns
SCKp1)Mate2		1.6 V ≤ V _{DD} ≤ 5.5	V	_		_		1/fмск+250		ns
Delay time from	tkso2	C = 30 pF ^{Note 4}	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$		2/f _{MCK} +44		2/fмск+110		2/fмск+110	ns
SCKp↓ to SOp output ^{Note 3}			$2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}$		2/fмск+75		2/fмск+110		2/fмск+110	ns
output			$1.8~V \le V_{DD} \le 5.5~V$		_		2/fмск+110		2/fмск+110	ns
			$1.6~V \leq V_{DD} \leq 5.5~V$		_		_		2/fмск+220	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

(4) During communication at same potential (simplified I²C mode)

(Ta = -40 to +85°C, 1.6 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		h-speed Mode	-	v-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 ^{Note}		400 ^{Note 1}		400 ^{Note 1}	kHz
		$ \begin{array}{c} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 3 \; k\Omega \end{array} $		400 ^{Note 1}		400 ^{Note 1}		400 ^{Note 1}	kHz
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ		_		-		250 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 3 \; k\Omega \end{array}$	1150		1150		1150		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	1550		1550		1550		ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_		_		1850		ns
Hold time when SCLr = "H"	t HIGH	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
			1150		1150		1150		ns
			1550		1550		1550		ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_		_		1850		ns
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/f _{MCK} + 85 ^{Note 2}		1/f _{MCK} + 145 ^{Note 2}		1/f _{MCK} + 145 ^{Note 2}		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 3 \; k\Omega \end{array}$	1/f _{MCK} + 145 ^{Note 2}		1/f _{MCK} + 145 ^{Note 2}		1/f _{MCK} + 145 ^{Note 2}		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	1/f _{MCK} + 230 ^{Note 2}		1/f _{MCK} + 230 ^{Note 2}		1/f _{MCK} + 230 ^{Note 2}		ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_		_		1/f _{MCK} + 290 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	ns
		$ \begin{array}{c} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 3 \; k\Omega \end{array} $	0	355	0	355	0	355	ns
		$\begin{array}{c} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	0	405	0	405	0	405	ns
		1.6 V \leq V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-	_	-	-	0	405	ns

(Notes, Caution, and Remarks are listed on the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (higl main)	-	LS (low main)	/-speed Mode	LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	1/f _{MCK} + 135 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ \begin{aligned} &2.7 \text{ V} \leq V_{DD} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}, \\ &C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 135 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ \begin{aligned} &1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{split} 2.7 & \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{split}$	0	305	0	305	0	305	ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned} $	0	355	0	355	0	355	ns
		$ 2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}, \\ C_b = 100 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega $	0	355	0	355	0	355	ns
		$ \begin{aligned} &1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	0	405	0	405	0	405	ns

- **Notes 1.** The value must also be equal to or less than fmck/4.
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - 4. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

2.7 LCD Characteristics

2.7.1 External resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		V _{DD}	V

(2) 1/2 bias method, 1/4 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.7		V _{DD}	V

(3) 1/3 bias method

(T_A = -40 to +85°C, V_{L4} (MIN.) \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.5		V _{DD}	V

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} – 0.10	2 V _{L1}	2 VL1	V
Tripler output voltage	V _{L4}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} – 0.15	3 VL1	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between V_{L4} and GND
- C1 = C2 = C3 = C4 = 0.47 μ F \pm 30 %
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2} Note 2	HALT	HS (high-	fHOCO = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	2.55	mA
current Note 1		mode	speed main) mode ^{Note 7}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	2.55	mA
				fHOCO = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.95	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.95	mA
				fHOCO = 16 MHzNote 4,	V _{DD} = 5.0 V		0.43	1.50	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.50	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.76	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	1.92	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.76	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.92	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.96	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	1.07	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.96	mA
			Subsystem clock	V _{DD} = 3.0 V	Resonator connection		0.28	1.07	mA
				f _{SUB} = 32.768 kHz ^{Note 5} , T _A = -40°C	Square wave input		0.34	0.62	μΑ
					Resonator connection		0.51	0.80	μΑ
			operation	$f_{SUB} = 32.768 \text{ kHz}^{\text{Note 5}},$	Square wave input		0.38	0.62	μΑ
			T _A = +2	T _A = +25°C	Resonator connection		0.57	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μΑ
				T _A = +50°C	Resonator connection		0.67	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μΑ
				T _A = +70°C	Resonator connection		0.91	4.22	μΑ
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μΑ
				T _A = +85°C	Resonator connection		1.31	8.23	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		3.05	27.00	μΑ
				T _A = +105°C	Resonator connection		3.24	27.00	μΑ
	I _{DD3} Note 6	STOP	T _A = -40°C				0.18	0.52	μΑ
		mode ^{Note 8} $T_A = +25^{\circ}C$				0.24	0.52	μΑ	
	$T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$				0.33	2.21	μΑ		
		T _A = +70°C				0.53	3.94	μΑ	
		T _A = +85°C				0.93	7.95	μΑ	
			T _A = +105°C				2.91	25.00	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped.
 When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - **6.** The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 24 MHz

 $2.4~V \leq V_{DD} \leq 5.5~V@1~MHz$ to 16 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

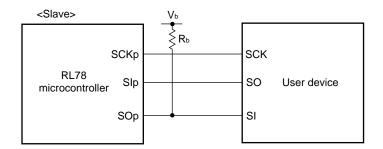
Parameter	Symbol		Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
Transfer rate		Reception	$\begin{split} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{split}$		fmck/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps
			$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V \end{split}$		fmck/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		fmck/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps

Note Transfer rate in SNOOZE mode is 4800 bps only.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)


(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high-spec	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$	20 MHz < fmck	24/fмск		ns
		$2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	8 MHz < f _{MCK} ≤ 20 MHz	20/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$	20 MHz < f _{MCK}	32/fмск		ns
		$2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	16 MHz < fмck ≤ 20 MHz	28/fмск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$	20 MHz < f _{MCK}	72/fмск		ns
		$1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	16 MHz < f _{MCK} ≤ 20 MHz	64/fмск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	52/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	32/fмск		ns
			fmck ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkH2, tkL2	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$, $2.7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 24		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$, $2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	tkcy2/2 - 36		ns
		2.4 V ≤ V _{DD} < 3.3 V	, $1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	tkcy2/2 - 100		ns
SIp setup time	tsık2	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$, $2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}_{SD}$, $2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	1/fмcк + 40		ns
		2.4 V ≤ V _{DD} < 3.3 V	, $1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	1/fmck + 60		ns
SIp hold time	tksi2	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$, $2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	1/fmck + 62		ns
(from SCKp↑) ^{Note 3}		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{ V}_{\text{S}}$, $2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	1/fmck + 62		ns
		$2.4 \text{ V} \leq \text{V}_{DD} \leq 3.3 \text{ V}$, $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	1/fmck + 62		ns
Delay time from SCKp↓ to SOp outputNote 4	t KSO2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{DD}$ $C_b = 30 \text{ pF}, R_b = 1.4$, 2.7 V \leq Vb \leq 4.0 V, 4 k Ω		2/fмск + 240	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7$, 2.3 V \leq V _b \leq 2.7 V, 7 k Ω		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 5.5$, 1.6 V \leq V _b \leq 2.0 V, 5 k Ω		2/fмск + 1146	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

CSI mode connection diagram (during communication at different potential)

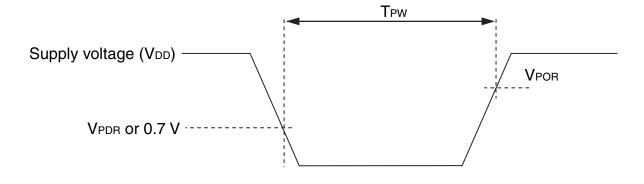
- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

3.6.3 Comparator

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		V _{DD} – 1.4	V
	Ivcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V_{DD} = 3.0 V Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μS
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode, window mode		0.66V _{DD}	0.76V _{DD}	0.86V _{DD}	V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mode, window mode		0.14V _{DD}	0.24V _{DD}	0.34V _{DD}	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	V _{BGR}	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V},~\text{HS}$ (high-speed main) mode		1.38	1.45	1.50	V

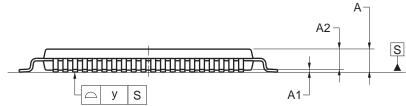

Note Cannot be used in subsystem clock operation and STOP mode.

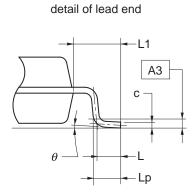
3.6.4 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR}	When power supply rises	1.45	1.51	1.57	V
	V _{PDR}	When power supply falls	1.44	1.50	1.56	V
Minimum pulse widthNote	T _{PW}		300			μs


Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.




4.2 80-pin Products

R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMEAFA, R5F10WMFAFA, R5F10WMGAFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	13.80	14.00	14.20		
Е	13.80	14.00	14.20		
HD	17.00	17.20	17.40		
HE	17.00	17.20	17.40		
Α		—	1.70		
A1	0.05	0.125	0.20		
A2	1.35	1.40	1.45		
A3		0.25			
bp	0.26	0.32	0.38		
С	0.10	0.145	0.20		
L		0.80			
Lp	0.736	0.886	1.036		
L1	1.40	1.60	1.80		
	0°	3°	8°		
е		0.65			
х			0.13		
у			0.10		
ZD		0.825			
ZE		0.825			

Revision History

RL78/L13 Data Sheet

		Description		
Rev.	Date	Page	Summary	
0.01	Apr 13, 2012	-	First Edition issued	
0.02	Oct 31, 2012	-	Change of the number of segment pins	
			• 64-pin products: 36 pins	
			• 80-pin products: 51 pins	
2.10	Aug 12, 2016	1	Modification of features of 16-bit timer and 16-bit timer KB20 (IH) in 1.1 Features	
		5	Addition of product name (RL78/L13) and description (Top View) in 1.3.1 64-pin products	
		6	Addition of product name (RL78/L13) and description (Top View) in 1.3.2 80-pin products	
		10	Modification of functional overview of main system clock in 1.6 Outline of Functions	
		15	Modification of description in Absolute Maximum Ratings (3/3)	
		17, 18	Modification of description in 2.3.1 Pin characteristics	
		38	Modification of remark 3 in 2.5.1 (4) During communication at same potential (simplified I ² C mode)	
		68	Modification of the title and note, and addition of caution in 2.8 RAM Data Retention Characteristics	
		70	Addition of Remark	
		74	Modification of description in Absolute Maximum Ratings (T _A = 25 °C) (3/3)	
		76	Modification of description in 3.3.1 Pin characteristics	
		95	Modification of remark 3 in 3.5.1 (4) During communication at same potential (simplified I ² C mode)	
		118	Modification of the title and note, and addition of caution in 3.8 RAM Data Retention Characteristics	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza. No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Treireads Electronics from Knotig Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B. Menara Amcorp, Amco

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141