

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	96КВ (96К х 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmfafa-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78/L13		
			64 pins	80 pins	
128 KB	4 KB	8 KB ^{Note}	R5F10WLG	R5F10WMG	
96 KB	4 KB	6 KB	R5F10WLF	R5F10WMF	
64 KB	4 KB	4 KB	R5F10WLE	R5F10WME	
48 KB	4 KB	2 KB	R5F10WLD	R5F10WMD	
32 KB	4 KB	1.5 KB	R5F10WLC	R5F10WMC	
16 KB	4 KB	1 KB	R5F10WLA	R5F10WMA	

Note This is about 7 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/L13 User's Manual.)

Pin Count	Package	Data Flash	Fields of	Ordering Part Number
			Application ^{Note}	
64 pins	64-pin plastic LQFP	Mounted	A	R5F10WLAAFA#30, R5F10WLAAFA#50, R5F10WLCAFA#30,
	$(12 \times 12 \text{ mm}, 0.65)$			R5F10WLCAFA#50, R5F10WLDAFA#30, R5F10WLDAFA#50,
	mm pitch)			R5F10WLEAFA#30, R5F10WLEAFA#50, R5F10WLFAFA#30,
				R5F10WLFAFA#50, R5F10WLGAFA#30, R5F10WLGAFA#50
	64-pin plastic LFQFP	Mounted	А	R5F10WLAAFB#30, R5F10WLAAFB#50, R5F10WLCAFB#30,
	(10 $ imes$ 10 mm, 0.5			R5F10WLCAFB#50, R5F10WLDAFB#30, R5F10WLDAFB#50,
	mm pitch)			R5F10WLEAFB#30, R5F10WLEAFB#50, R5F10WLFAFB#30,
				R5F10WLFAFB#50, R5F10WLGAFB#30, R5F10WLGAFB#50,
			G	R5F10WLAGFB#30, R5F10WLAGFB#50, R5F10WLCGFB#30,
				R5F10WLCGFB#50, R5F10WLDGFB#30, R5F10WLDGFB#50,
				R5F10WLEGFB#30, R5F10WLEGFB#50, R5F10WLFGFB#30,
				R5F10WLFGFB#50, R5F10WLGGFB#30, R5F10WLGGFB#50
80 pins	80-pin plastic LQFP	Mounted	А	R5F10WMAAFA#30, R5F10WMAAFA#50, R5F10WMCAFA#30,
	(14 $ imes$ 14 mm, 0.65			R5F10WMCAFA#50, R5F10WMDAFA#30, R5F10WMDAFA#50,
	mm pitch)			R5F10WMEAFA#30, R5F10WMEAFA#50, R5F10WMFAFA#30,
				R5F10WMFAFA#50, R5F10WMGAFA#30, R5F10WMGAFA#50
	80-pin plastic LFQFP	Mounted	А	R5F10WMAAFB#30, R5F10WMAAFB#50, R5F10WMCAFB#30,
	$(12 \times 12 \text{ mm}, 0.5$			R5F10WMCAFB#50, R5F10WMDAFB#30, R5F10WMDAFB#50,
	mm pitch)			R5F10WMEAFB#30, R5F10WMEAFB#50, R5F10WMFAFB#30,
				R5F10WMFAFB#50, R5F10WMGAFB#30, R5F10WMGAFB#50,
			G	R5F10WMAGFB#30, R5F10WMAGFB#50, R5F10WMCGFB#30,
				R5F10WMCGFB#50, R5F10WMDGFB#30, R5F10WMDGFB#50,
				R5F10WMEGFB#30, R5F10WMEGFB#50, R5F10WMFGFB#30,
				R5F10WMFGFB#50, R5F10WMGGFB#30, R5F10WMGGFB#50

Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/L13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

<R> 1.3.2 80-pin products

- 80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VDD				1	μA
	Ілна	P20 and P21, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port mode and when external clock is input			1	μA
				Resonator connected			10	μΑ
Input leakage current, low	Ilul1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VSS				-1	μA
	Ilil2	P20 and P21, RESET	VI = VSS				-1	μA
	Ilili	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μA
				Resonator connected			-10	μA
On-chip pull-up	Ru1	P00 to P07, P10 to P17,	VI = Vss	$2.4~V \leq V_{\text{DD}} < 5.5~V$	10	20	100	kΩ
resistance		P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130		$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	10	30	100	kΩ
	Ru2	P40 to P44	VI = VSS		10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot}$ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot} 1 \text{ MHz}$ to 4 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

Parameter	Symbol			Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	4.0 2.7	$V \leq V_{DD} \leq 5.5 V$, $V \leq V_b \leq 4.0 V$		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps
	2		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps	
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	$V \le V_{DD} < 4.0 V$, $V \le V_b \le 2.7 V$		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps	
1 V 1		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps		
	1.8 V, 1.6	$3 V (2.4 V^{Note 4}) \le V_{DD} < 3.3$ $3 V \le V_b \le 2.0 V$		fмск/6 Note s1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps		
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps	

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in SNOOZE mode is 4800 bps only.

 $\textbf{2. Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode:	24 MHz (2.7 V \leq V _{DD} \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

- 4. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Vb[V]: Communication line voltage
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

<u> </u>										
Parameter	Symbol	Conditions		HS (hig main)	h-speed Mode	LS (lov main)	v-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Trans mission			Note 1		Note 1		Note 1	bps
			$\label{eq:transfer} \begin{array}{l} Theoretical value of the maximum \\ transfer rate \\ (C_b = 50 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega, \mbox{ V}_b = 2.7 \mbox{ V}) \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3		Note 3		Note 3	bps
	TI tra (C 1.8 V 1.6 V	$\label{eq:transfer} \begin{array}{l} \mbox{Theoretical value of the maximum} \\ \mbox{transfer rate} \\ \mbox{(C}_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega, \mbox{ V}_b = 2.3 \mbox{ V}) \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps	
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 8}}) \leq V_{\text{DD}} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps	
			Theoretical value of the maximum transfer rate $(C_{b} = 50 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega, V_{b} = 1.6 \text{ V})$		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (higl main)	n-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 2 /fc∟к		200		1150		1150		ns
			$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \\ \\ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		tксү1/2 — 50		tксү1/2 — 50		tксү1/2 — 50		ns
				tксү1/2 — 120		tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	tĸ∟1	4.0 V \leq V _{DD} \leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, C _b = 20 pF, R _b = 1.4 k Ω		tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	tксү1/2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsiĸ1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		58		479		479		ns
	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4$ $C_b = 20 \text{ pF}, \text{ R}_b$		0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	p hold time tksi1 $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5$ om SCKp \uparrow) ^{Note} $C_b = 20 \text{ pF}, \text{ R}_b =$		5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
1		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array} \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	23		110		110		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.$ C _b = 20 pF, R _b =	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array} \end{array} \label{eq:VDD}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
2		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b =	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array} \end{array}$	5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn)
 m: Unit number, n: Channel number (mn = 00, 02))

2.5.2 Serial interface IICA

(1) I²C standard mode (1/2)

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fsc∟	Normal	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	kHz
frequency i	mode: fc∟κ ≥ 1 MHz	$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq \\ V_{\text{DD}} \leq 5.5 \ V \end{array}$	0	100	0	100	0	100	kHz	
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	Ι	_	Ι	-	0	100	kHz
Setup time of restart condition tsu:stA 2 1 1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.7		4.7		4.7		μs	
		1.8 V (2.4 V	$1.8~V~(2.4~V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5~V$			4.7		4.7		μs
		$1.6 V \le V_{DD} \le$	≦5.5 V	1	_	1	_	4.7		μs
Hold time ^{Note 1} thd:STA	thd:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.0		4.0		4.0		μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$1.6 V \le V_{DD} \le$	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		-	-	-	4.0		μs
Hold time when	t LOW	$2.7 V \le V_{DD} \le$	≤5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V (2.4 V	Note 3) \leq VDD \leq 5.5 V	4.7		4.7		4.7		μs
		$1.6 V \le V_{DD} \le$	≤5.5 V	-	-	-	-	4.7		μs
Hold time when	t high	$2.7 V \le V_{DD} \le$	≤5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		1.8 V (2.4 V	Note 3) \leq VDD \leq 5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤	5.5 V	_	_	-	_	4.0		μs

(Notes, Caution and Remark are listed on the next page.)

(1) I²C standard mode (2/2)

(T _A = −40 to +85°C,	$1.6 V \le V_{DD} \le 5.5$	V, Vss = 0 V)
---------------------------------	----------------------------	---------------

Parameter	Symbol	Conditions	Conditions HS (high-speed LS (high-speed main) Mode main		LS (low main)	-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	250		250		250		ns
(reception)		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	250		250		250		ns
		$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	-	-	-	-	250		ns
Data hold time thd:DAT (transmission) ^{Note 2}	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \le V_{DD} \le 5.5~V$	Ι	-	-	_	0	3.45	μs
Setup time of stop	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.0		4.0		4.0		μs
condition		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.6~V \le V_{DD} \le 5.5~V$	Ι	-	-	_	4.0		μs
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-	_	_	-	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- 3. Condition in HS (high-speed main) mode
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

2.7 LCD Characteristics

2.7.1 External resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

RL78/L13

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3.1 Absolute Maximum Ratings

Absolute	Maximum	Ratings	(1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	–0.3 to +2.8 and –0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	–0.3 to V_{DD} +0.3 ^{Note 2}	V
	Vı2	P60 and P61 (N-ch open-drain)	–0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	–0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	–0.3 to V_{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANIO, ANI1, ANI16 to ANI26	-0.3 to V_{DD} +0.3 and -0.3 to $AV_{\text{REF}(+)}$ +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 6. The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 24 MHz

2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Conditions		HS (high-spee	d main) Mode	Unit
					MAX.	
SCKp cycle time ^{Note 5}	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 20 MHz	16/fмск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 16 MHz	16/fмск		ns
			f _{мск} ≤ 16 MHz			ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		12/fмск and 1000		ns
SCKp high-/low-level width	tkh2, tkl2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–14		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–16		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–36		ns
SIp setup time	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+40		ns
(to SCKp↑) ^{Note 1}		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+62		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF ^{Note 4}	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		2/fмск+66	ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+113	ns

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the SOp output lines.
- 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

Parameter	Symbol		Conditions	HS (high-spee	Unit	
				MIN.	MAX.	
Transfer rate		Reception	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		fмск/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate f_{CLK} = 24 MHz, f_{MCK} = f_{CLK}		2.0	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		fмск/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate f_{CLK} = 24 MHz, f_{MCK} = f_{CLK}		2.0	Mbps
			$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		fмск/12 ^{Note}	bps
	Theoretical value of the maximum transfer rate f_{CLK} = 24 MHz, f_{MCK} = f_{CLK}		2.0	Mbps		

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Note Transfer rate in SNOOZE mode is 4800 bps only.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.

 Overall error:
 Add ±4 LSB to the MAX. value when AV_{REFP} = V_{DD}.

 Zero-scale error/Full-scale error:
 Add ±0.2%FSR to the MAX. value when AV_{REFP} = V_{DD}.

 Integral linearity error/ Differential linearity error:
 Add ±2 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. See 3.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pins: ANI0, ANI1, ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin:	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
		ANI0, ANI1, ANI16 to ANI25	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		(HS (high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±4.0	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANIO, ANI1, ANI16 to ANI25		0		Vdd	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode))			VBGR ^{Note 3}		V
		Temperature sensor output voltage (2.4 V < V_{DD} < 5.5 V HS (high-speed main) mode))		,	VTMPS25 ^{Note 3}	3	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

RL78/L13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

3.6.3 Comparator

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		Vdd – 1.4	V
	lvcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V_{DD} = 3.0 V Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode, window mode	Comparator high-speed mode, window mode			0.86Vdd	V
Low-electric-potential reference voltage	VTW–	Comparator high-speed mode, window mode	,	0.14Vdd	0.24V _{DD}	0.34Vdd	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	VBGR	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ HS}$ (high-s	speed main) mode	1.38	1.45	1.50	V

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Note Cannot be used in subsystem clock operation and STOP mode.

3.6.4 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	OR When power supply rises		1.51	1.57	V
	VPDR	When power supply falls	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

4. PACKAGE DRAWINGS

4.1 64-pin Products

R5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA, R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA

NOTE

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ZE

1.125

