

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmgafa-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/L13

1.3 Pin Configuration (Top View)

<R> 1.3.1 64-pin products

- 64-pin plastic LQFP (12 \times 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

1.5.2 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/L13 User's Manual.

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VDD				1	μA
	Ілна	P20 and P21, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port mode and when external clock is input			1	μA
				Resonator connected			10	μΑ
Input leakage current, low	Ilul1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VSS				-1	μA
	Ilil2	P20 and P21, RESET	VI = VSS				-1	μA
	Ilil3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μA
				Resonator connected			-10	μA
On-chip pull-up	Ru1	P00 to P07, P10 to P17,	VI = Vss	$2.4~V \leq V_{\text{DD}} < 5.5~V$	10	20	100	kΩ
resistance		P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130		$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	10	30	100	kΩ
	Ru2	P40 to P44	VI = VSS		10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/2)

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	fHOCO = 48 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		2.0		mA
current ^{Note}		mode	speed main)	f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.0		mA
			mode		Normal	V _{DD} = 5.0 V		3.8	6.5	mA
					operation	V _{DD} = 3.0 V		3.8	6.5	mA
				f _{HOCO} = 24 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		1.7		mA
				f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA
					Normal	V _{DD} = 5.0 V		3.6	6.1	mA
					operation	V _{DD} = 3.0 V		3.6	6.1	mA
				f _{HOCO} = 16 MHz ^{Note 3} ,	Normal	V _{DD} = 5.0 V		2.7	4.7	mA
				f⊪ = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	4.7	mA
			LS (low-	fHOCO = 8 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V		1.2	2.1	mA
			speed main) mode ^{Note 5}	f⊮ = 8 MHz ^{Note 3}	operation	V _{DD} = 2.0 V		1.2	2.1	mA
			LV (low-	fHOCO = 4 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			voltage main) mode ^{Note 5}	f⊪ = 4 MHz ^{Note 3}	operation	V _{DD} = 2.0 V		1.2	1.8	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	5.1	mA
			speed main)	V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.2	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.9	5.1	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.2	mA
				$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 5.0 \text{ V}$	Normal	Square wave input		2.5	4.4	mA
					operation	Resonator connection		2.7	4.5	mA
				$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	4.4	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.7	4.5	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 5.0 \text{ V}$ $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{MA} = 2.0 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	3.0	mA
					Normal	Resonator connection		1.9	3.0	mA
						Square wave input		1.9	3.0	mA
				VDD = 3.0 V	operation	Resonator connection		1.9	3.0	mA
			LS (low-	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.1	2.0	mA
			mode ^{Note 5}		operation	Resonator connection		1.1	2.0	mA
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 2.0 \text{ V}$	Normal	Square wave input		1.1	2.0	mA
			<u>.</u>			Resonator connection		1.1	2.0	mA
			Subsystem	tsub = 32.768 KHZ	Normal operation	Square wave input		4.0	5.4	μΑ
			operation	$T_A = -40^{\circ}C$		Resonator connection		4.3	5.4	μΑ
				fsub = 32.768 kHz ^{Note} 4	Normal	Square wave input		4.0	5.4	μΑ
				, T _A = +25°C	operation	Resonator connection		4.3	5.4	μA
				fsub = 32.768 kHz ^{Note} 4	Normal	Square wave input		4.1	7.1	μA
				, T _A = +50°C	operation	Resonator connection		4.4	7.1	μA
				fsue = 32.768 kHz ^{Note}	Normal	Square wave input		4.3	8.7	μA
			4 7 6: 4 7	, T _A = +70°C	operation	Resonator connection		4.7	8.7	μA
				fsue = 32.768 kHz ^{Note}	Normal	Square wave input		4.7	12.0	μA
				, T _A = +85°C	operation	Resonator connection		5.2	12.0	μA

(Notes and Remarks are listed on the next page.)

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2Note 2	HALT	HS (high-speed	fHOCO = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	1.95	mA
current ^{Note 1}		mode	main) mode ^{note} 7	fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	1.95	
				fносо = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.64	mA
				fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.64	
				fносо = 16 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.43	1.11	mA
				fı⊢ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.11	
			LS (low-speed	fносо = 8 MHz ^{Note 4} ,	V _{DD} = 3.0 V		280	770	μA
	r main) mode ^{Note} 7 fiH = 8 MHz ^{Note 4}	fiH = 8 MHz Note 4	V _{DD} = 2.0 V		280	770			
			LV (low-voltage	f _{HOCO} = 4 MHz ^{Note 4} ,	V _{DD} = 3.0 V		430	700	μA
			main) mode ^{Note 7}	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 2.0 V		430	700	
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.42	mA
			main) mode ^{Note} 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.42	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.26	0.86	mA
	$V_{DD} = 5.0 V$ $f_{MX} = 16 \text{ MHz}^{Note 3},$ $V_{DD} = 3.0 V$ $f_{MX} = 10 \text{ MHz}^{Note 3},$ $V_{DD} = 5.0 V$	V _{DD} = 5.0 V	Resonator connection		0.45	1.15			
		Square wave input		0.25	0.86	mA			
		V _{DD} = 3.0 V	Resonator connection		0.44	1.15			
		f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.63	mA		
			V _{DD} = 5.0 V	Resonator connection		0.28	0.71		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.63	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71	
			LS (low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
			main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	560	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
				V _{DD} = 2.0 V	Resonator connection		160	560	
			Subsystem	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μA
			clock operation	T _A = -40°C	Resonator connection		0.51	0.80	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μA
				T _A = +25°C	Resonator connection		0.57	0.80	
				fsuв = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μA
				T _A = +50°C	Resonator connection		0.67	2.49	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μA
		TA = +70°C	Resonator connection		0.91	4.22			
			fsub = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μA	
				TA - +03 C	Resonator connection		1.31	8.23	
	I_{DD3} Note 6 STOP $T_A = -40^{\circ}C$					0.18	0.52	μA	
	mode∾	mode	T _A = +25°C				0.24	0.52	
		$T_A = +50^{\circ}C$			0.33	2.21			
			$I_A = +70^{\circ}C$				0.53	3.94	
			I _A = +85°C				0.93	7.95	

(Notes and Remarks are listed on the next page.)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit	
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	ion $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$			fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			$\begin{array}{c} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$			fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			1.8 V, 1.6	$3 V (2.4 V^{Note 4}) \le V_{DD} < 3.3$ $3 V \le V_b \le 2.0 V$		fмск/6 Note s1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in SNOOZE mode is 4800 bps only.

 $\textbf{2. Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode:	24 MHz (2.7 V \leq V _{DD} \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

- 4. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Vb[V]: Communication line voltage
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

- RL78/L13
- **Notes 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V (2.4 V^{Note 8}) \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (higl main)	n-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 2 /fc∟к		200		1150		1150		ns
			$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array} \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 — 50		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, = 2.7 kΩ	tксү1/2 — 120		tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	tĸ∟1			tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b =	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiĸ1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	58		479		479		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array} \end{array} \label{eq:eq:constraint}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
1		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array} \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	23		110		110		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.$ C _b = 20 pF, R _b =	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
2		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b =	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ p\text{F}, \ R_{\text{b}} = \end{array} \end{array}$	5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Co	nditions	HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	12/fмск		_		_		ns
time ^{Note 1}		$\begin{array}{l} 2.7 \ V \leq V_b \leq \\ 4.0 \ V \end{array}$	8 MHz < fмск ≤ 20 MHz	10/fмск		_		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		-		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/ f мск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$	20 MHz < fмск	16/fмск		_		_		ns
	$2.3~V \leq V_b \leq$	16 MHz < fмск ≤ 20 MHz	14/fмск		-		-		ns	
	2.7 V	8 MHz < fмск ≤ 16 MHz	12/fмск		_		-		ns	
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		-		ns
		fмск ≤ 4 MHz	6/fмск		10/fмск		10/ f мск		ns	
	1.8 V (2.4 V ^{Not} V _{DD} < 3.3 V,	1.8 V (2.4 V ^{Note 2}) ≤	20 MHz < fмск	36/fмск		_		-		ns
		V _{DD} < 3.3 V,	16 MHz < fмск ≤ 20 MHz	32/fмск		_		_		ns
	$\begin{array}{l} 1.6 \ V \leq V_b \leq \\ 2.0 \ V^{\text{Note 3}} \end{array}$		8 MHz < $f_{MCK} \le 16$ MHz	26/fмск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		-		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/ f мск		ns
SCKp high- /low-level width	CKp high- w-level width t_{KH2} , $4.0 V \le V_{DD} \le 5.5 V$,		$2.7~V \leq V_b \leq 4.0~V$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns	
	$1.8 \vee (2.4 \vee^{\text{Note 2}}) \le$ $1.6 \vee () < 2.0 \vee^{\text{Note 2}}$		″ _{DD} < 3.3 V, ₃ ₃	tксү2/2 – 50		tксү2/2 – 50		tксү2/2 – 50		ns
SIp setup time (to SCKp↑) ^{Note 4}	tsık2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 3$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns	
		$1.8 \vee (2.4 \vee^{Note 2}) \leq V$ $1.6 \vee \leq V_b \leq 2.0 \vee^{Note}$	″ _{DD} < 3.3 V, ₃	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from	tksi2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
SCKp↑) ^{Note 5}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 3$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{c} 1.8 \ V \ (2.4 \ V^{\text{Note 2}}) \leq V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \end{array}$	″ _{DD} < 3.3 V, ₃	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tĸso2	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2$ $C_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 1.4$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$ kΩ		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
SOp output ^{Note 6}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2$ $C_b = 30 \text{ pF}, R_b = 2.7$	$2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ kΩ		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
	$C_{b} = 30 \text{ pF}, R_{b} = 2.7$ $1.8 \text{ V} (2.4 \text{ V}^{\text{Note } 2}) \leq \text{ V}$ $1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}^{\text{Not}}$ $C_{b} = 30 \text{ pF}, R_{b} = 5.5$		/dd < 3.3 V, 33, kΩ		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD13	Vpoc2,	VPOC1, VPOC0 = 0, 0, 0,	falling reset voltage	1.60	1.63	1.66	V
mode	VLVD12		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVD11		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVD4		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVD11	Vpoc2,	VPOC1, VPOC0 = 0, 0, 1,	falling reset voltage	1.80	1.84	1.87	V
	VLVD10		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVD9		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V	
	VLVD2		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVD8	Vpoc2,	VPOC1, VPOC0 = 0, 1, 0,	2.40	2.45	2.50	V	
	VLVD7		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVD6		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVD1		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVD5	Vpoc2,	VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.70	2.75	2.81	V
	VLVD4		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVD3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVD0		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.6 Supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VDD rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit	
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V	
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V	
			VLCD = 06H	1.00	1.10	1.18	V	
			VLCD = 07H	1.05	1.15	1.23	V	
			VLCD = 08H	1.10	1.20	1.28	V	
			VLCD = 09H	1.15	1.25	1.33	V	
			VLCD = 0AH	1.20	1.30	1.38	V	
			VLCD = 0BH	1.25	1.35	1.43	V	
			VLCD = 0CH	1.30	1.40	1.48	V	
			VLCD = 0DH	1.35	1.45	1.53	V	
			VLCD = 0EH	1.40	1.50	1.58	V	
			VLCD = 0FH	1.45	1.55	1.63	V	
				VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V	
			VLCD = 12H	1.60	1.70	1.78	V	
			VLCD = 13H	1.65	1.75	1.83	V	
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} - 0.10	2 VL1	2 VL1	V	
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} - 0.15	3 VL1	3 VL1	V	
Reference voltage setup time ^{Note 2}	tvwait1			5			ms	
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms	

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 $\mu F \pm 30$ %

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.1 Absolute Maximum Ratings

Absolute	Maximum	Ratings	(1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	–0.3 to +2.8 and –0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	–0.3 to V_{DD} +0.3 ^{Note 2}	V
	Vı2	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	–0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	–0.3 to V_{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANIO, ANI1, ANI16 to ANI26	-0.3 to V_{DD} +0.3 and -0.3 to $AV_{\text{REF}(+)}$ +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V∟1 voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	VL2	VL2 voltage ^{Note 1}		–0.3 to VL4 +0.3Note 2	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to VL4 +0.3Note 2	V
	VL4	V _{L4} voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to VL4 +0.3Note 2	V
	Vout	COM0 to COM7 SEG0 to SEG50 output voltage	External resistance division method	-0.3 to V_DD +0.3 Note 2	V
			Capacitor split method	-0.3 to V_DD +0.3 $^{\rm Note\ 2}$	V
			Internal voltage boosting method	-0.3 to V _{L4} +0.3 ^{Note 2}	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	Vdd - 0.7			V
		P70 to P77, P125 to P127, P130	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	Vdd - 0.6			V
	V _{0H2} Р20 and Р21		2.4 V \leq V _{DD} \leq 5.5 V, Іон1 = -1.5 mA	Vdd - 0.5			V
	Vон2	P20 and P21	2.4 V \leq V _{DD} \leq 5.5 V, Іон2 = -100 μ А	Vdd - 0.5			V
Output voltage, Vol.1 low Vol.2 Vol.3	V _{OL1} P00 to P07 P30 to P35	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DD}$			0.7	V
		P70 to P77, P125 to P127, P130	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
	Vol2	P20 and P21	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol2 = 400 μ A			0.4	V
	Vol3	P60 and P61	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ \text{mA} \end{array}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array}$			0.4	V

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 6. The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 24 MHz

2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Denemeter	Currente e l	Conditions				MINI		MANY	1.1.4.14
Parameter	Symbol		Conditio	ons		MIIN.	TYP.	MAX.	Unit
Low-speed on-	FIL Note 1						0.20		μA
operating current									
BTC2 operating	IDTONOTES 1, 2, 3	feur = 32 768 kHz				0.02		Δ	
current	IRIC	ISUB - 32.700 KHZ					0.02		μΑ
12-bit interval	ITMKANOTES 1, 2, 4						0.04		μA
timer operating									
current									
Watchdog timer	WDT ^{Notes 1, 2, 5}	f⊾ = 15 kHz	ı∟ = 15 kHz						μA
operating current	Notos 1 6							<u> </u>	<u> </u>
A/D converter	ADC Notes 1, 6	When conversion Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$				1.3	1.7	mA	
		at maximum speed	Low voltage	mode, AVREFP	= V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter	ADREF ^{Note 1}						75.0		μA
voltage current									
Temperature	ITMPS ^{Note 1}						75.0		μA
sensor operating							10.0		ματ
current									
LVD operating	LVD ^{Notes 1, 7}						0.08		μA
current									
Comparator	ICMP ^{Notes 1, 11}	V _{DD} = 5.0 V,	Window mod	le			12.5		μA
operating current		Regulator output	Comparator I	high-speed m	ode		6.5		μA
		vollage – 2.1 v	Comparator I	low-speed mo	de		1.7		μA
		V _{DD} = 5.0 V,	Window mode				8.0		μA
		Regulator output	Comparator I	Comparator high-speed mode			4.0		μA
		voltage = 1.8 v	Comparator I	low-speed mo	de		1.3		μA
Self-	IFSP ^{Notes 1, 9}						2.00	12.20	mA
programming									
operating current									
BGO operating current	BGO ^{Notes 1, 8}						2.00	12.20	mA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	While the mc	ode is shifting [*]	Note 10		0.50	0.60	mA
operating current			Durina A/D c	onversion. in	low voltage		1.20	1.44	mA
			mode, AV _{REF}	$P = V_{DD} = 3.0$	V				
		CSI/UART operation	.				0.70	0.84	mA
LCD operating	LCD1 Notes 1, 12,	External resistance	fico = fsus	1/3 bias	$V_{DD} = 5.0 V_{.}$		0.04	0.20.	μA
current	13	division method	LCD clock	four time	$V_{L4} = 5.0 V$		0101	0.201	jui i
			= 128 Hz	slices					
	LCD2Note 1, 12	Internal voltage	flcd = fsub	1/3 bias,	V _{DD} = 3.0 V,		0.85	2.20	μA
		boosting method	LCD clock	four time	VL4 = 3.0 V				,
			= 128 Hz	slices	(V _{LCD} = 04H)				
					V _{DD} = 5.0 V,		1.55	3.70	μA
					V _{L4} = 5.1 V				
					(V _{LCD} = 12H)				
	LCD3Note 1, 12	Capacitor split	flcd = fsub	1/3 bias,	V _{DD} = 3.0 V,		0.20	0.50	μA
		method	LCD clock	four time	V _{L4} = 3.0 V				
			= 128 Hz	slices		1			

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Conditions	HS (high-spee	HS (high-speed main) Mode	
			MIN.	MAX.	
SCKp cycle time	tkCY1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334 ^{Note 1}		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500 ^{Note 1}		ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 – 24		ns
	tĸ∟ı	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 — 36		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 – 76		ns
SIp setup time (to SCKp↑) ^{Note 2}	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	113		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi1		38		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	C = 30 pF ^{Note 5}		50	ns

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. The value must also be equal to or more than 4/fcLK.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	24/f мск		ns
		$2.7 \ V {\le} V_b {\le} 4.0 \ V$	8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$	20 MHz < fмск	32/f мск		ns
		$2.3 V {\leq} V_b {\leq} 2.7 V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < f_MCK \leq 16 MHz	24/f мск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск	72/fмск		ns
		$1.6 V \le V_b \le 2.0 V$	16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			8 MHz < fмск ≤ 16 MHz	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/f мск		ns
			fмск ≤ 4 MHz	20/ f мск		ns
SCKp high-/low-level width	tkh2, tkl2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 24		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{PD}}$	$2.3~V \leq V_{b} \leq 2.7~V$	tkcy2/2 - 36		ns
		$2.4~\text{V} \leq \text{V}_\text{DD}$ < 3.3 V, 1.6 V $\leq \text{V}_\text{b} \leq 2.0~\text{V}$		tkcy2/2 – 100		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{PD}}$	$2.3~V \leq V_{b} \leq 2.7~V$	1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V$	1/fмск + 60		ns
SIp hold time	tksi2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 62		ns
(from SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} \leq 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	1/fмск + 62		ns
		$2.4 \text{ V} \le V_{\text{DD}} \le 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{\text{b}} \le 2.0 \text{ V}$		1/fмск + 62		ns
Delay time from SCKp \downarrow to	tkso2	$4.0~V \le V_{\text{DD}} \le 5.5~V,$	$2.7~V \leq V_{b} \leq 4.0~V,$		2/fмск + 240	ns
SOp output ^{Note 4}		C _b = 30 pF, R _b = 1.4	ŧkΩ			
		$2.7 V \le V_{DD} < 4.0 V$, $C_b = 30 pF$, $R_b = 2.7$, 2.3 V \leq V _b \leq 2.7 V, 7 k Ω		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ s}$	$1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ 5 kΩ		2/fмск + 1146	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

RL78/L13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

3.6.3 Comparator

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		Vdd – 1.4	V
	lvcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V_{DD} = 3.0 V Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode, window mode	,	0.66Vdd	0.76Vdd	0.86Vdd	V
Low-electric-potential reference voltage	VTW–	Comparator high-speed mode, window mode	,	0.14Vdd	0.24V _{DD}	0.34Vdd	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	VBGR	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ HS}$ (high-s	speed main) mode	1.38	1.45	1.50	V

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Note Cannot be used in subsystem clock operation and STOP mode.

3.6.4 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	When power supply rises	1.45	1.51	1.57	V
	VPDR	When power supply falls	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

