

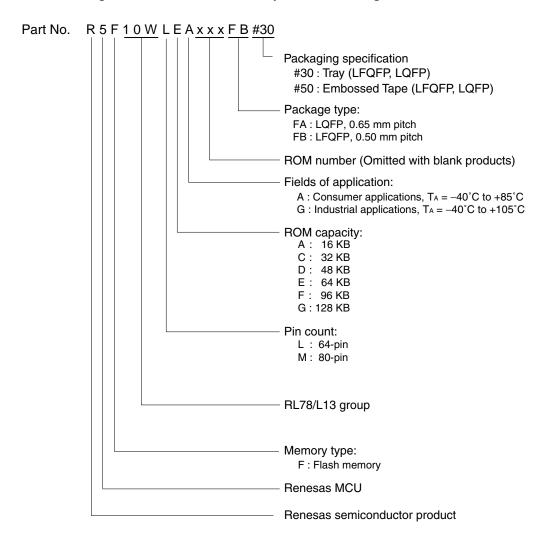
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmgafa-x0

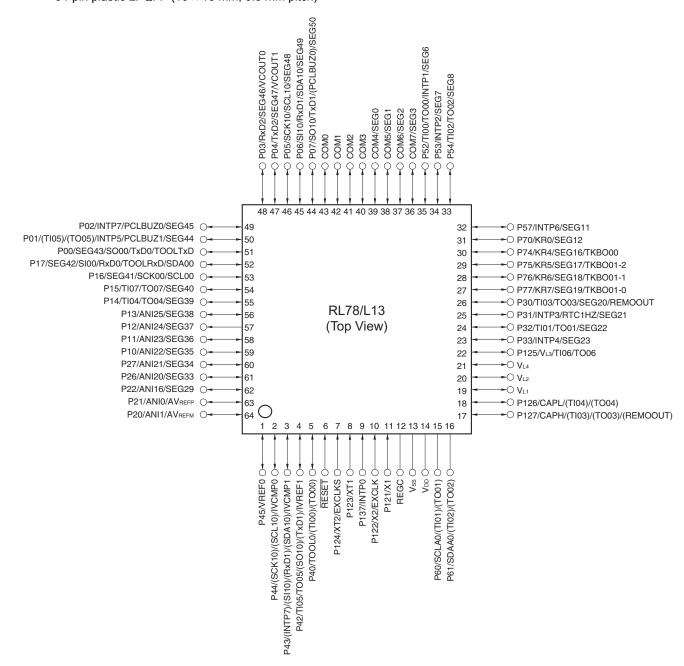

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/L13 1. OUTLINE

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/L13



RL78/L13 1. OUTLINE

1.3 Pin Configuration (Top View)

<R> 1.3.1 64-pin products

- 64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

RENESAS

RL78/L13 1. OUTLINE

(2/2)

	Item	64-pin	80-pin
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)
Clock outp	ut/buzzer output controller		2
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 (Main system clock: f_{Main} = 20 MHz operatio 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09 (Subsystem clock: f_{SUB} = 32.768 kHz operation) 	n) 6 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz
8/10-bit res	olution A/D converter	9 channels	12 channels
Comparato	r	2 channels	
Serial inter	face	 [64-pin] CSI: 1 channel/UART (UART supporting LIN- CSI: 1 channel/UART: 1 channel/simplified I² UART: 1 channel 	
		 [80-pin] CSI: 1 channel/UART (UART supporting LIN- CSI: 1 channel/UART: 1 channel/simplified I² UART: 2 channels 	
	I ² C bus	1 channel	
LCD contro	ller/driver	Internal voltage boosting method, capacitor sp method are switchable.	lit method, and external resistance division
	Segment signal output	36 (32) ^{Note 1}	51 (47) ^{Note 1}
	Common signal output	4 (8	Note 1
Multiplier a	nd divider/multiply-	• 16 bits × 16 bits = 32 bits (Unsigned or signe	
accumulato	or	• 32 bits ÷ 32 bits = 32 bits (Unsigned)	
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned	or signed)
DMA contro	oller	4 channels	
Vectored	Internal	32	35
interrupt so	urces External	11	11
Key interru	pt	5	8
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Internal reset by RAM parity error Internal reset by illegal-memory access 	Note 2
Power-on-r	eset circuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)	
Voltage de	tector	Rising edge: 1.67 V to 4.06 V (14 steps)Falling edge: 1.63 V to 3.98 V (14 steps)	
On-chip de	bug function	Provided	
Power sup	oly voltage	V _{DD} = 1.6 to 5.5 V (TA = -40 to +85°C)	
		V _{DD} = 2.4 to 5.5 V (TA = -40 to +105°C)	
Operating a	ambient temperature	Consumer applications: $T_A = -40 \text{ to } +85^{\circ}\text{C}$ Industrial applications: $T_A = -40 \text{ to } +105^{\circ}\text{C}$	

- **Notes 1.** The values in parentheses are the number of signal outputs when 8 com is used.
 - This reset occurs when instruction code FFH is executed.
 This reset does not occur during emulation using an in-circuit emulator or an on-chip debugging emulator.

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	1.0		16.0	
		1.8 V ≤ V _{DD} < 2.4 V	1.0		8.0	
		1.6 V ≤ V _{DD} < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, see **5.4 System Clock Oscillator** in the RL78/L13 User's Manual.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5.0		+5.0	%
		–40 to –20°C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
			1.6 V ≤ V _{DD} < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to **AC Characteristics** for the instruction execution time.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2} Note 2	HALT	HS (high-speed	fHOCO = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	1.95	mA
current ^{Note 1}		mode	main) mode ^{Note}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	1.95	
				fHOCO = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.64	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.64	
				fHOCO = 16 MHzNote 4,	V _{DD} = 5.0 V		0.43	1.11	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.11	
			LS (low-speed	f _{HOCO} = 8 MHz Note 4,	V _{DD} = 3.0 V		280	770	μA
			main) mode ^{Note}	f _{IH} = 8 MHz Note 4	V _{DD} = 2.0 V		280	770	,
			LV (low-voltage	f _{HOCO} = 4 MHz ^{Note 4} ,	V _{DD} = 3.0 V		430	700	μΑ
			main) mode ^{Note 7}	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 2.0 V		430	700	μι
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.42	m.A
			main) mode ^{Note}	V _{DD} = 5.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.42	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.42	
			f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.26	0.86	m/	
			V _{DD} = 5.0 V	Resonator connection		0.45	1.15		
			f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.25	0.86	m/	
			V _{DD} = 3.0 V	Resonator connection		0.44	1.15		
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.63	m/	
			V _{DD} = 5.0 V	Resonator connection		0.28	0.71		
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.63	m/
			V _{DD} = 3.0 V		Resonator connection		0.28	0.71	
			LS (low-speed	$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		100	560	μP
			main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	560	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μŀ
				V _{DD} = 2.0 V	Resonator connection		160	560	
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μP
			clock operation	T _A = -40°C	Resonator connection		0.51	0.80	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μF
				T _A = +25°C	Resonator connection		0.57	0.80	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μP
				T _A = +50°C	Resonator connection		0.67	2.49	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μP
				T _A = +70°C	Resonator connection		0.91	4.22	
I _{DD3} Note 6 STOP modeNote 8		f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μP		
			T _A = +85°C	Resonator connection		1.31	8.23		
	I _{DD3} Note 6		T _A = -40°C				0.18	0.52	μP
		mode ^{Note 8}	T _A = +25°C				0.24	0.52	
		T _A = +50°C				0.33	2.21		
		T _A = +70°C					0.53	3.94	
			T _A = +85°C				0.93	7.95	

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped.
 When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - **6.** Not including the current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz

 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 4 \text{ MHz}$

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fhoco: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fil: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol			Conditions	, -	h-speed Mode	•	v-speed Mode		-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception		$V \le V_{DD} \le 5.5 \text{ V},$ $V \le V_{b} \le 4.0 \text{ V}$		fмск/6 ^{Note} 1		fmck/6 ^{Note}		fmck/6 ^{Note}	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
				$V \le V_{DD} < 4.0 \text{ V},$ $V \le V_{b} \le 2.7 \text{ V}$		fмск/6 ^{Note} 1		fmck/6 ^{Note}		fmck/6 ^{Note}	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 3}$		4.0		1.3		0.6	Mbps
			V,	$3 \text{ V } (2.4 \text{ V}^{\text{Note 4}}) \le \text{V}_{\text{DD}} < 3.3$ $3 \text{ V } \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		fMCK/6 Note s1, 2		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps

Notes 1. Transfer rate in SNOOZE mode is 4800 bps only.

2. Use it with $V_{DD} \ge V_b$.

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

4. Condition in the HS (high-speed main) mode

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Vih and Vil, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

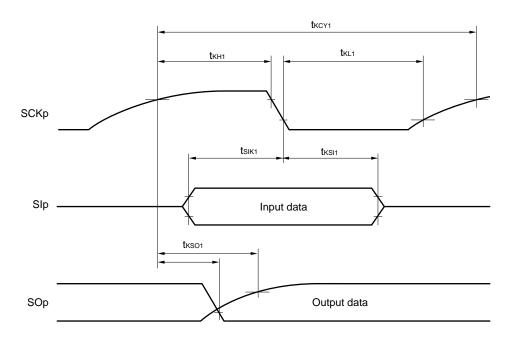
- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high	h-speed Mode	,	/-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tkcy1 ≥ 2/fcLk	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega $	200		1150		1150		ns
			$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega $	300		1150		1150		ns
SCKp high-level width	t кн1	$4.0 \text{ V} \le \text{V}_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	tkcy1/2 – 50		tксү1/2 — 50		txcy1/2 - 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 1.$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tkcy1/2 - 120		tксү1/2 — 120		tkcy1/2 - 120		ns
SCKp low-level width	t KL1	$4.0 \text{ V} \le \text{V}_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	tkcy1/2 –		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 1.$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tkcy1/2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$4.0 \text{ V} \le \text{V}_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	58		479		479		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 1.$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	$4.0 \text{ V} \le \text{V}_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	10		10		10		ns
1		$2.7 \text{ V} \le \text{V}_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 1.$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	tkso1	$4.0 \text{ V} \le \text{V}_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 \text{ V} \le \text{V}_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 1.$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$4.0 \text{ V} \le \text{V}_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	23		110		110		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 1.$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	t KSI1	$4.0 \text{ V} \le \text{V}_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	10		10		10		ns
2		2.7 V ≤ V _{DD} < 4. C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$4.0 \text{ V} \le \text{V}_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		2.7 V ≤ V _{DD} < 4. C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns

(Notes, Caution and Remarks are listed on the next page.)



- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - 4. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage

- 2. p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (higl main)	-	LS (low main)	/-speed Mode	LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	1/f _{MCK} + 135 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ \begin{aligned} &2.7 \text{ V} \leq V_{DD} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}, \\ &C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 135 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ \begin{aligned} &1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{split} 2.7 & \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{split}$	0	305	0	305	0	305	ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned} $	0	355	0	355	0	355	ns
		$ 2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}, \\ C_b = 100 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega $	0	355	0	355	0	355	ns
		$ \begin{aligned} &1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	0	405	0	405	0	405	ns

- **Notes 1.** The value must also be equal to or less than fmck/4.
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - 4. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(2) I2C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		` `	h-speed Mode	`	v-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk	2.7 V ≤ V _{DD} ≤ 5.5 V	0	400	0	400	0	400	kHz
		≥ 3.5 MHz	1.8 V $(2.4 \text{ V}^{\text{Note 3}})$ $\leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	400	0	400	0	400	kHz
Setup time of	tsu:sta	2.7 V ≤ V _{DD}	≤ 5.5 V	0.6		0.6		0.6		μS
restart condition		1.8 V (2.4 V	$^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$	0.6		0.6		0.6		μS
Hold time ^{Note 1}	thd:STA	$2.7 \text{ V} \leq V_{DD}$	≤ 5.5 V	0.6		0.6		0.6		μS
		1.8 V (2.4 V	$^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$	0.6		0.6		0.6		μS
Hold time when	tLOW	$2.7 \text{ V} \leq V_{DD}$	≤ 5.5 V	1.3		1.3		1.3		μS
SCLA0 ="L"		1.8 V (2.4 V	$^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$	1.3		1.3		1.3		μS
Hold time when	t HIGH	$2.7 \text{ V} \leq V_{DD}$	≤ 5.5 V	0.6		0.6		0.6		μS
SCLA0 ="H"		1.8 V (2.4 V	$^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$	0.6		0.6		0.6		μS
Data setup time	tsu:dat	2.7 V ≤ V _{DD}	≤ 5.5 V	100		100		100		ns
(reception)		1.8 V (2.4 V	$^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$	100		100		100		ns
Data hold time	thd:dat	2.7 V ≤ V _{DD}	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μS
(transmission)Note 2		1.8 V (2.4 V	$^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$	0	0.9	0	0.9	0	0.9	μS
Setup time of stop	tsu:sto	2.7 V ≤ V _{DD}	≤ 5.5 V	0.6		0.6		0.6		μS
condition		1.8 V (2.4 V	$^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$	0.6		0.6		0.6		μS
Bus-free time	t BUF	2.7 V ≤ V _{DD}	≤ 5.5 V	1.3		1.3		1.3		μs
		1.8 V (2.4 V	$^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$	1.3		1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

3. Condition in HS (high-speed main) mode

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

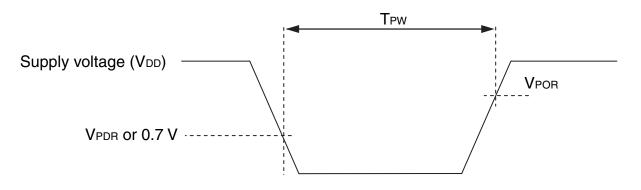
Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

^{2.} The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

2.6.3 Comparator characteristics

(Ta = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		V _{DD} – 1.4	V
	Ivcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	$V_{DD} = 3.0 \text{ V}$ Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mod window mode	le,	0.66V _{DD}	0.76V _{DD}	0.86V _{DD}	٧
Low-electric-potential reference voltage	VTW-	Comparator high-speed mod window mode	le,	0.14V _{DD}	0.24V _{DD}	0.34V _{DD}	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	V _{BGR}	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, HS (high$	n-speed main) mode	1.38	1.45	1.50	V


Note Cannot be used in LS (low-speed main) mode, LV (low-voltage main) mode, subsystem clock operation, and STOP mode.

2.6.4 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR}	When power supply rises	1.47	1.51	1.55	V
	V _{PDR}	When power supply falls	1.46	1.50	1.54	V
Minimum pulse widthNote	T _{PW}		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Condition	ons		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FILNote 1								μА
RTC2 operating current	IRTC Notes 1, 2, 3	f _{SUB} = 32.768 kHz					0.02		μΑ
12-bit interval timer operating current	_{TMKA} Notes 1, 2, 4						0.04		μΑ
Watchdog timer operating current	Notes 1, 2, 5	f∟ = 15 kHz					0.22		μΑ
A/D converter operating current	ADC Notes 1, 6	When conversion at maximum speed	-	e, AV _{REFP} = V _I	DD = 5.0 V P = VDD = 3.0 V		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	ADREF Note 1		1				75.0		μА
Temperature sensor operating current	TMPS Note 1						75.0		μА
LVD operating current	I _{LVD} Notes 1, 7						0.08		μΑ
Comparator	I _{CMP} Notes 1, 11	V _{DD} = 5.0 V,	Window mod	le			12.5		μΑ
operating current		Regulator output	Comparator	high-speed m	node		6.5		μΑ
		voltage = 2.1 V	Comparator	low-speed mo	ode		1.7		μΑ
		V _{DD} = 5.0 V,	Window mod	le			8.0		μΑ
		Regulator output voltage = 1.8 V	Comparator	high-speed m	node		4.0		μΑ
		Voltage = 1.6 V	Comparator	low-speed mo	ode		1.3		μΑ
Self- programming operating current	FSP ^{Notes 1, 9}						2.00	12.20	mA
BGO operating current	I _{BGO} Notes 1, 8						2.00	12.20	mA
SNOOZE	I _{SNOZ} Note 1	ADC operation	While the mo	de is shifting	Note 10		0.50	0.60	mA
operating current			_	onversion, in P = V _{DD} = 3.0	_		1.20	1.44	mA
		CSI/UART operation	l				0.70	0.84	mA
LCD operating current	LCD1 Notes 1, 12,	External resistance division method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 5.0 V, V _{L4} = 5.0 V		0.04	0.20.	μΑ
	LCD2Note 1, 12	Internal voltage boosting method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V (V _{LCD} = 04H)		0.85	2.20	μΑ
					$V_{DD} = 5.0 \text{ V},$ $V_{L4} = 5.1 \text{ V}$ $(V_{LCD} = 12\text{H})$		1.55	3.70	μА
	I _{LCD3} Note 1, 12	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20	0.50	μА

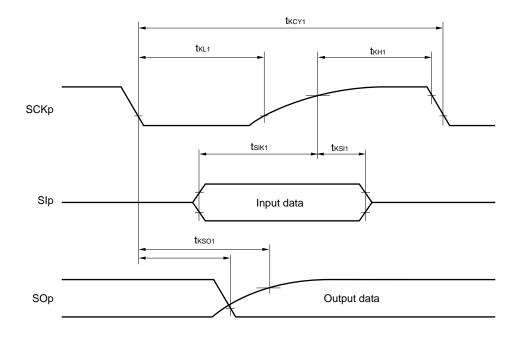
(Notes and Remarks are listed on the next page.)

(4) During communication at same potential (simplified I²C mode)

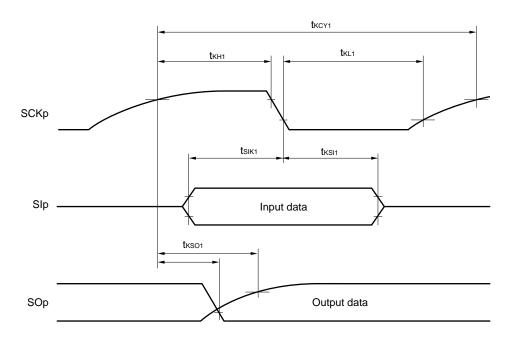
(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) Mode		
			MIN.	MIN. MAX.		
SCLr clock frequency	fscL	$2.7~V \leq V_{DD} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$		400 ^{Note 1}	kHz	
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ		100 ^{Note 1}	kHz	
Hold time when SCLr = "L"	tLOW	$2.7~V \leq V_{DD} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1200		ns	
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	4600		ns	
Hold time when SCLr = "H"	tнісн	$2.7~V \leq V_{DD} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1200		ns	
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	4600		ns	
Data setup time (reception)	tsu:DAT	$2.7~V \leq V_{DD} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1/f _{MCK} + 220 ^{Note 2}		ns	
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1/f _{MCK} + 580 ^{Note 2}		ns	
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	770	ns	
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	0	1420	ns	

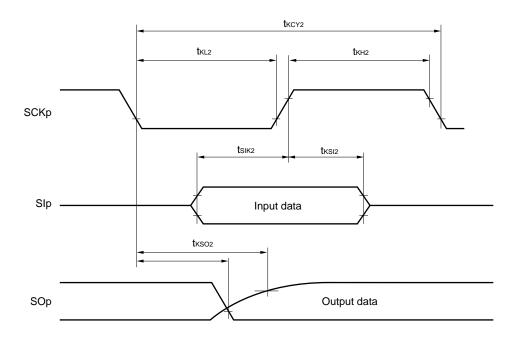
Notes 1. The value must also be equal to or less than fmck/4.


2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

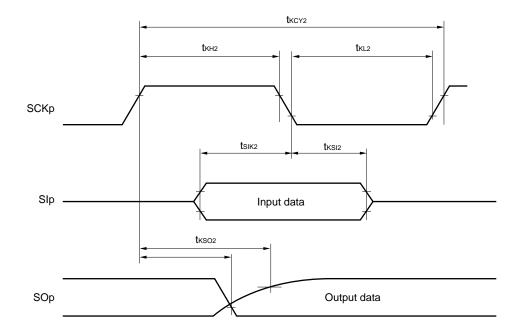
Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).


(Remarks are listed on the next page.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



Remark p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. $R_b[\Omega]$: Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage

- 2. p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn) m: Unit number, n: Channel number (mn = 00, 02))

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-) = AV _{REFM}
ANIO, ANI1	-	See 3.6.1 (2) .	See 3.6.1 (3).
ANI16 to ANI25	See 3.6.1 (1) .		
Internal reference voltage Temperature sensor output voltage	See 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \le V_{DD} \le 5.5~V$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI16 to ANI25	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution $AV_{REFP} = V_{DD}^{Note \ 3}$ 2.4 V \leq V _{DD} \leq 5.5 V				±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution 2.4 V \leq V _{DD} \leq 5.5 V AV _{REFP} = V _{DD} Note 3				±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution 2.4 V \leq V _{DD} \leq 5.5 V AV _{REFP} = V _{DD} Note 3				±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution 2.4 V \leq V _{DD} \leq 5.5 V AV _{REFP} = V _{DD} Note 3				±2.0	LSB
Analog input voltage	Vain ANI16 to ANI25		0		AVREFP	V	
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-	speed main) mode))	V _{BGR} Note 4			V
		Temperature sensor output vo (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-	· ·	V _{TMPS25} Note 4		V	

(Notes are listed on the next page.)

3.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	etection Supply voltage level		When power supply rises	3.90	4.06	4.22	V
voltage			When power supply falls	3.83	3.98	4.13	V
		V _{LVD1}	When power supply rises	3.60	3.75	3.90	V
			When power supply falls	3.53	3.67	3.81	V
		V _{LVD2}	When power supply rises	3.01	3.13	3.25	V
			When power supply falls	2.94	3.06	3.18	V
		V _{LVD3}	When power supply rises	2.90	3.02	3.14	V
			When power supply falls	2.85	2.96	3.07	V
		V _{LVD4}	When power supply rises	2.81	2.92	3.03	V
			When power supply falls	2.75	2.86	2.97	V
		V _{LVD5}	When power supply rises	2.71	2.81	2.92	V
			When power supply falls	2.64	2.75	2.86	V
		V _{LVD6}	When power supply rises	2.61	2.71	2.81	V
			When power supply falls	2.55	2.65	2.75	V
		V _{LVD7}	When power supply rises	2.51	2.61	2.71	V
			When power supply falls	2.45	2.55	2.65	V
Minimum pu	lse width	tuw		300			μs
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol		Cond	MIN.	TYP.	MAX.	Unit	
Interrupt and reset	V _{LVD5}	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.64	2.75	2.86	V
mode	V _{LVD4}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	V _{LVD3}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	V _{LVD0}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.6 Supply voltage rise time

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rise slope	SV _{DD}				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza. No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Treireads Electronics from Knotig Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B. Menara Amcorp, Amco

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141