

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wmgafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

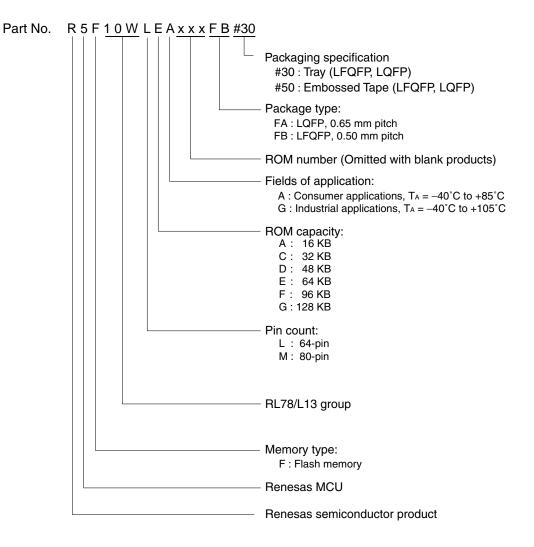


Figure 1-1. Part Number, Memory Size, and Package of RL78/L13

Pin Count	Package	Data Flash	Fields of Application ^{Note}	Ordering Part Number
64 pins	64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)	Mounted	A	R5F10WLAAFA#30, R5F10WLAAFA#50, R5F10WLCAFA#30, R5F10WLCAFA#50, R5F10WLDAFA#30, R5F10WLDAFA#50, R5F10WLEAFA#30, R5F10WLEAFA#50, R5F10WLFAFA#30, R5F10WLFAFA#50, R5F10WLGAFA#30, R5F10WLGAFA#50
	64-pin plastic LFQFP (10×10 mm, 0.5 mm pitch)	Mounted	A	R5F10WLAAFB#30, R5F10WLAAFB#50, R5F10WLCAFB#30, R5F10WLCAFB#50, R5F10WLDAFB#30, R5F10WLDAFB#50, R5F10WLEAFB#30, R5F10WLEAFB#50, R5F10WLFAFB#30, R5F10WLFAFB#50, R5F10WLGAFB#30, R5F10WLGAFB#50,
			G	R5F10WLAGFB#30, R5F10WLAGFB#50, R5F10WLCGFB#30, R5F10WLCGFB#50, R5F10WLDGFB#30, R5F10WLDGFB#50, R5F10WLEGFB#30, R5F10WLEGFB#50, R5F10WLFGFB#30, R5F10WLFGFB#50, R5F10WLGGFB#30, R5F10WLGGFB#50
80 pins	80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)	Mounted	A	R5F10WMAAFA#30, R5F10WMAAFA#50, R5F10WMCAFA#30, R5F10WMCAFA#50, R5F10WMDAFA#30, R5F10WMDAFA#50, R5F10WMEAFA#30, R5F10WMEAFA#50, R5F10WMFAFA#30, R5F10WMFAFA#50, R5F10WMGAFA#30, R5F10WMGAFA#50
	80-pin plastic LFQFP (12×12 mm, 0.5 mm pitch)	Mounted	A	R5F10WMAAFB#30, R5F10WMAAFB#50, R5F10WMCAFB#30, R5F10WMCAFB#50, R5F10WMDAFB#30, R5F10WMDAFB#50, R5F10WMEAFB#30, R5F10WMEAFB#50, R5F10WMFAFB#30, R5F10WMFAFB#50, R5F10WMGAFB#30, R5F10WMGAFB#50,
			G	R5F10WMAGFB#30, R5F10WMAGFB#50, R5F10WMCGFB#30, R5F10WMCGFB#50, R5F10WMDGFB#30, R5F10WMDGFB#50, R5F10WMEGFB#30, R5F10WMEGFB#50, R5F10WMFGFB#30, R5F10WMFGFB#50, R5F10WMGGFB#30, R5F10WMGGFB#50

Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/L13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ mA \end{array} \end{array} \label{eq:VDD}$	Vdd - 1.5			V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -3.0 mA	$V_{\text{DD}}-0.7$			V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -2.0 mA	$V_{\text{DD}} - 0.6$			V
			1.8 V \leq V _{DD} \leq 5.5 V, Іон1 = -1.5 mA	V _{DD} - 0.5			V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -1.0 mA	$V_{\text{DD}} - 0.5$			V
	V _{OH2}	P20 and P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH2 = -100 μ A	V _{DD} - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL1}} = 20 \ \text{mA} \end{array}$			1.3	V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 8.5 mA			0.7	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 0.6 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $I_{\text{OL1}} = 0.3 \text{ mA}$			0.4	V
	Vol2	P20 and P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL2}} = 400 \ \mu\text{A}$			0.4	V
	Vol3	P60 and P61	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol3 = 5.0 mA			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ Iol3 = 1.0 mA			0.4	V

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Con	ditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ілні	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VDD				1	μΑ
	ILIH2	P20 and P21, RESET	$V_{I} = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_1 = V_{DD}$	In input port mode and when external clock is input			1	μA
				Resonator connected			10	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VSS				-1	μA
		P20 and P21, RESET	VI = VSS				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μA
				Resonator connected			-10	μA
On-chip pull-up	Ruı	P00 to P07, P10 to P17,	VI = VSS	$2.4~V \leq V_{\text{DD}} < 5.5~V$	10	20	100	kΩ
resistance	P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130		$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	10	30	100	kΩ	
	Ru2	P40 to P44	VI = VSS		10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot}$ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot} 1 \text{ MHz}$ to 4 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Parameter	Symbol Conditions		Conditions		gh-speed) Mode	•	w-speed) Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MIN. MAX. MI		MAX.	
Transfer rate		Trans mission	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V \end{array}$		Note 1	bps				
			$\label{eq:constraint} \hline Theoretical value of the maximum transfer rate \\ (C_b = 50 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega, \mbox{ V}_b = 2.7 \mbox{ V}) \\ \hline$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V})$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbp
			$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 8}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V})$		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

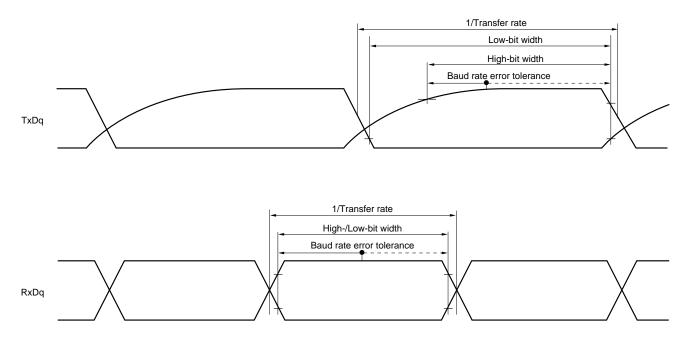
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

UART mode bit width (during communication at different potential) (reference)

- Remarks 1.
 R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode		w-speed) Mode	•	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 ^{Note} 1		300 ^{Note 1}		300 ^{Note 1}	kHz
				400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note } 2}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ & C_b = 100 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{split}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
Hold time when SCLr = "L"	t LOW		475		1550		1550		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
			1150		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$ \begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note} \ 2}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note} \ 3}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	1550		1550		1550		ns
Hold time when SCLr = "H"	t ніgн		245		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
		$ \begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note } 2}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note } 3}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	610		610		610		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

Parameter	Symbol	Conditions	HS (high main)		LS (low main)	•	LV (low- main)	Ũ	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{МСК} + 135 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{мск+} 135 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 3}}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
Data hold time (transmission)	thd:dat		0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$ \begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 2}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 3}}, \\ & C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	0	405	0	405	0	405	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Condition in HS (high-speed main) mode
- 3. Use it with $V_{DD} \ge V_b$.
- **4.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD13	Vpoc2, Vf	POC1, VPOC0 = 0, 0, 0,	falling reset voltage	1.60	1.63	1.66	V
mode	VLVD12	Ľ	VIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVD11	Ľ	VIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVD4	Ľ	VIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVD11	VPOC2, VF	POC1, VPOC0 = 0, 0, 1,	1.80	1.84	1.87	V	
	VLVD10	Ľ	VIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVD9	Ľ	VIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVD2	Ľ	VIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V	
	VLVD8	Vpoc2, Vf	POC1, VPOC0 = 0, 1, 0,	2.40	2.45	2.50	V	
	VLVD7	LVIS1, LVIS0 = 1, 0		Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVD6	Ľ	VIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVD1	Ľ	VIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVD5	VPOC2, VF	POC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.70	2.75	2.81	V
	VLVD4	Ľ	VIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVD3	Ľ	VIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVD0	Ľ	VIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.6 Supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VDD rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

Parameter	Symbol	Condition	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ілні	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VDD				1	μΑ
	ILIH2	P20 and P21, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port mode and when external clock is input			1	μA
				Resonator connected			10	μA
Input leakage current, low	Iliili 1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VSS				-1	μΑ
		P20 and P21, RESET	VI = VSS				-1	μA
	Ilili3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μA
				Resonator connected			-10	μA
On-chip pull-up resistance	Ruı	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130	VI = VSS		10	20	100	kΩ
	Ru2	P40 to P44	VI = VSS		10	20	100	kΩ

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 6. The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 24 MHz

2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Conditions	HS (high-speed	l main) Mode	Unit
			MIN.	MAX.	
SCKp cycle time	tkCY1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334 ^{Note 1}		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500 ^{Note 1}		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 – 24		ns
	t ĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 – 36		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2 – 76		ns
SIp setup time (to SCKp↑) ^{Note 2}	tsiĸ1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	113		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi1		38		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	C = 30 pF ^{Note 5}		50	ns

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. The value must also be equal to or more than 4/fcLK.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

Parameter	Symbol		Conditions	HS (high-spe	Unit		
				MIN.	MAX.		
Transfer rate		Reception	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		fмск/12 ^{Note}	bps	
			Theoretical value of the maximum transfer rate f _{CLK} = 24 MHz, f _{MCK} = f _{CLK}		2.0	Mbps	
			$2.7 V \le V_{DD} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		fмск/12 ^{Note}	bps	
			Theoretical value of the maximum transfer rate f_{CLK} = 24 MHz, f_{MCK} = f_{CLK}		2.0	Mbps	
			$2.4 V \le V_{DD} < 3.3 V,$ 1.6 V $\le V_b \le 2.0 V$	fmcr		bps	
			Theoretical value of the maximum transfer rate f_{CLK} = 24 MHz, f_{MCK} = f_{CLK}		2.0	Mbps	

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Note Transfer rate in SNOOZE mode is 4800 bps only.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Parameter Symb			Conditions	HS (high-spee	Unit	
				MIN.	MAX.	
Transfer rate		Transmission	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.0 ^{Note 2}	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 ^{Note 4}	Mbps
			$2.4 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 5	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 ^{Note 6}	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_DD \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times In (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

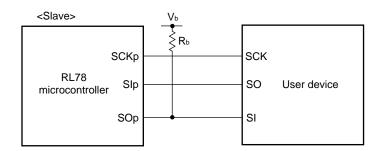
Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

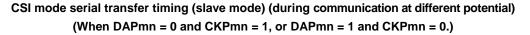

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
	(T _A = −40 to +105°C, 2.4 V ≤ V _{DD} ≤ 5.5 V, Vss = 0 V)

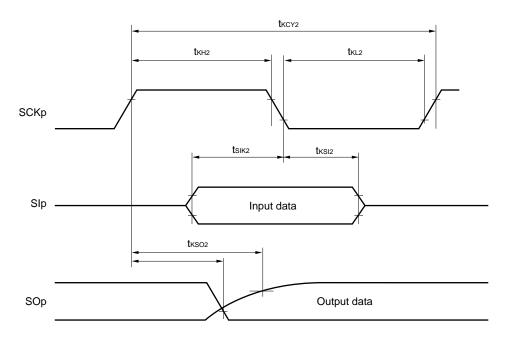
Parameter	Symbol	0	Conditions	HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	24/f мск		ns
		$2.7 \ V {\leq} V_b {\leq} 4.0 \ V$	8 MHz < fмск ≤ 20 MHz	20/fмск		ns
			4 MHz < fмск ≤ 8 MHz	16/ f мск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$	20 MHz < fмск	32/fмск		ns
		$2.3 V \le V_b \le 2.7 V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < $f_{MCK} \le 16$ MHz	24/ f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	20 MHz < fмск	72/fмск		ns
			16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/fмск		ns
			fмск ≤ 4 MHz	20/f мск		ns
SCKp high-/low-level width	t кн2, t кL2	$4.0~V \le V_{\text{DD}} \le 5.5~V_{\text{PD}}$, 2.7 V \leq V $_{b}$ \leq 4.0 V	tkcy2/2 - 24		ns
		$2.7 \text{ V} \leq V_{\text{DD}} < 4.0 \text{ V}$, 2.3 V \leq V $_{b}$ \leq 2.7 V	tkcy2/2 – 36		ns
	$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V, 2.3 V $\le \text{V}_{\text{b}}$, 1.6 V \leq V_b \leq 2.0 V	tkcy2/2 - 100		ns
SIp setup time	tsik2	$4.0~V \le V_{\text{DD}} \le 5.5~V_{\text{PD}}$, 2.7 V \leq V $_{b}$ \leq 4.0 V	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < $4.0 \text{ V}_{\text{DD}}$, 2.3 V \leq V $_{b}$ \leq 2.7 V	1/fмск + 40		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ $t_{KCY2/2} - 100$ $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$ $1/f_{MCK} + 40$			ns	
SIp hold time	tksi2	$4.0~V \le V_{\text{DD}} \le 5.5~V_{\text{PD}}$, 2.7 V \leq V $_{b}$ \leq 4.0 V	1/fмск + 62		ns
(from SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} \leq 4.0~V_{\text{PD}}$	$2.3~V \leq V_b \leq 2.7~V$	1/fмск + 62		ns
		$2.4~V \le V_{\text{DD}} \le 3.3~V_{\text{PD}}$, 1.6 V \leq V_b \leq 2.0 V	1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V_{,} \\ C_{b} = 30 \ pF, \ R_{b} = 1.4 \end{array}$			2/fмск + 240	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{D}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ c}$			2/fмск + 428	ns
		$2.4 V \le V_{DD} < 3.3 V_{Cb}$ $C_b = 30 \text{ pF}, R_b = 5.8$			2/fмск + 1146	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)



CSI mode connection diagram (during communication at different potential)




- **Notes 1.** Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** $R_b[\Omega]$: Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn) m: Unit number, n: Channel number (mn = 00, 02))

(2) 1/4 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} -0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND
- C1 = C2 = C3 = C4 = C5 = 0.47 μ F ± 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.7.3 Capacitor split method

(1) 1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_D \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V₋₄ voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
V _{L1} voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} – 0.1	1/3 VL4	1/3 V _{L4} + 0.1	V
Capacitor split wait time ^{Note 1}	t vwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

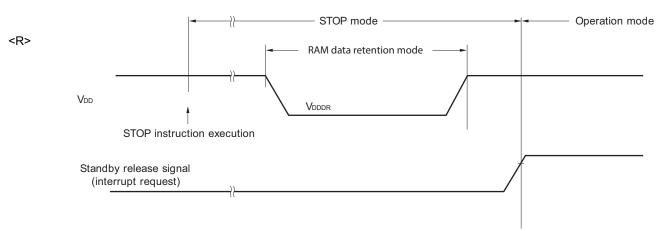
2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND
- C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 pF±30 %


3.8 RAM Data Retention Characteristics

<R>

(T_A = -40 to +105°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.9 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclк	$2.4 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	1		24	MHz
Number of code flash rewrites ^{Note 1, 2, 3}	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	1,000			Times
Number of data flash rewrites ^{Note 1, 2, 3}		Retained for 1 year T _A = 25°C		1,000,000		-
		Retained for 5 years T _A = 85°C ^{Note 4}	100,000			
		Retained for 20 years T _A = 85°C ^{Note 4}	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.
- 4. This temperature is the average value at which data are retained.

Remark When updating data multiple times, use the flash memory as one for updating data.

3.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

