

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e3016psc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{CC}	V _{DD}
Ground	GND	V _{SS}

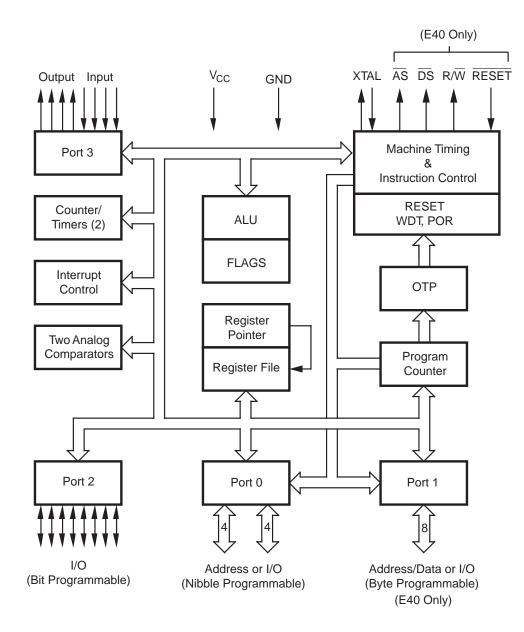
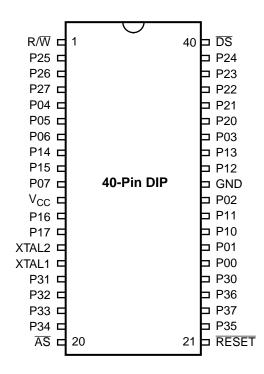



Figure 1. Z86E30/E31/E40 Functional Block Diagram

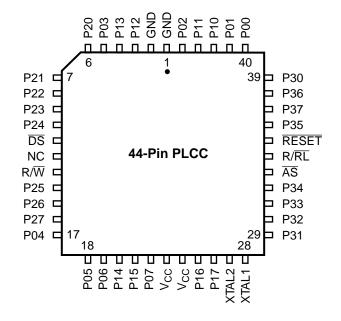
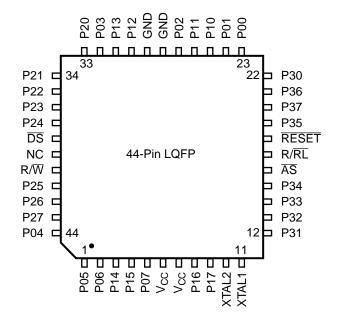

PIN IDENTIFICATION

Figure 3. 40-Pin DIP Pin Configuration Standard Mode

Table 1. 40-Pin DIP Pin IdentificationStandard Mode

D: "	<u> </u>	– .:	D : /:
Pin #	Symbol	Function	Direction
1	R/W	Read/Write	Output
2–4	P25–P27	Port 2, Pins 5,6,7	In/Output
5–7	P04–P06	Port 0, Pins 4,5,6	In/Output
8–9	P14–P15	Port 1, Pins 4,5	In/Output
10	P07	Port 0, Pin 7	In/Output
11	V _{CC}	Power Supply	
12–13	P16–P17	Port 1, Pins 6,7	In/Output
14	XTAL2	Crystal Oscillator	Output
15	XTAL1	Crystal Oscillator	Input
16–18	P31–P33	Port 3, Pins 1,2,3	Input
19	P34	Port 3, Pin 4	Output
20	AS	Address Strobe	Output
21	RESET	Reset	Input
22	P35	Port 3, Pin 5	Output
23	P37	Port 3, Pin 7	Output
24	P36	Port 3, Pin 6	Output
25	P30	Port 3, Pin 0	Input
26–27	P00–P01	Port 0, Pins 0,1	In/Output
28–29	P10–P11	Port 1, Pins 0,1	In/Output
30	P02	Port 0, Pin 2	In/Output
31	GND	Ground	
32–33	P12–P13	Port 1, Pins 2,3	In/Output
34	P03	Port 0, Pin 3	In/Output
35–39	P20-P24	Port 2, Pins 0,1,2,3,4	In/Output
40	DS	Data Strobe	Output

Figure 4. 44-Pin PLCC Pin Configuration Standard Mode


Table 2. 44-Pin PLCC Pin Identification

Pin #	Symbol	Function	Direction
1–2	GND	Ground	
3–4	P12–P13	Port 1, Pins 2,3	In/Output
5	P03	Port 0, Pin 3	In/Output
6–10	P20–P24	Port 2, Pins 0,1,2,3,4	In/Output
11	DS	Data Strobe	Output
12	NC	No Connection	
13	R/W	Read/Write	Output
14–16	P25–P27	Port 2, Pins 5,6,7	In/Output
17–19	P04–P06	Port 0, Pins 4,5,6	In/Output
20–21	P14–P15	Port 1, Pins 4,5	In/Output
22	P07	Port 0, Pin 7	In/Output
23–24	V _{CC}	Power Supply	
25–26	P16–P17	Port 1, Pins 6,7	In/Output
27	XTAL2	Crystal Oscillator	Output
28	XTAL1	Crystal Oscillator	Input
29–31	P31–P33	Port 3, Pins 1,2,3	Input
32	P34	Port 3, Pin 4	Output

Table 2. 44-Pin PLCC Pin Identification

Pin #	Symbol	Function	Direction
33	ĀS	Address Strobe	Output
34	R/RL	ROM/ROMless select	Input
35	RESET	Reset	Input
36	P35	Port 3, Pin 5	Output
37	P37	Port 3, Pin 7	Output
38	P36	Port 3, Pin 6	Output
39	P30	Port 3, Pin 0	Input
40–41	P00–P01	Port 0, Pins 0,1	In/Output
42–43	P10–P11	Port 1, Pins 0,1	In/Output
44	P02	Port 0, Pin 2	In/Output

PIN IDENTIFICATION (Continued)

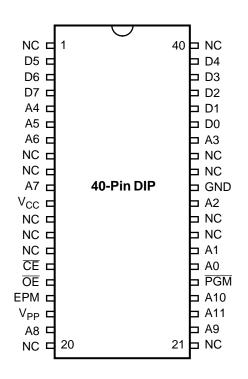

Figure 5. 44-Pin LQFP Pin Configuration Standard Mode

Table 3. 44-Pin LQFP Pin Identification

Pin #	Symbol	Function	Direction
1–2	P05-P06	Port 0, Pins 5,6	In/Output
3–4	P14–P15	Port 1, Pins 4,5	In/Output
5	P07	Port 0, Pin 7	In/Output
6–7	V _{CC}	Power Supply	
8–9	P16–P17	Port 1, Pins 6,7	In/Output
10	XTAL2	Crystal Oscillator	Output
11	XTAL1	Crystal Oscillator	Input
12–14	P31–P33	Port 3, Pins 1,2,3	Input
15	P34	Port 3, Pin 4	Output
16	ĀS	Address Strobe	Output
17	R/RL	ROM/ROMless select	Input
18	RESET	Reset	Input
19	P35	Port 3, Pin 5	Output
20	P37	Port 3, Pin 7	Output
21	P36	Port 3, Pin 6	Output
22	P30	Port 3, Pin 0	Input
23–24	P00-P01	Port 0, Pin 0,1	In/Output
25–26	P10-P11	Port 1, Pins 0,1	In/Output

Table 3. 44-Pin LQFP Pin Identification

Pin #	Symbol	Function	Direction
27	P02	Port 0, Pin 2	In/Output
28–29	GND	Ground	
30–31	P12–P13	Port 1, Pins 2,3	In/Output
32	P03	Port 0, Pin 3	In/Output
33–37	P20–4	Port 2, Pins 0,1,2,3,4	In/Output
38	DS	Data Strobe	Output
39	NC	No Connection	
40	R/W	Read/Write	Output
41–43	P25–P27	Port 2, Pins 5,6,7	In/Output
44	P04	Port 0, Pin 4	In/Output

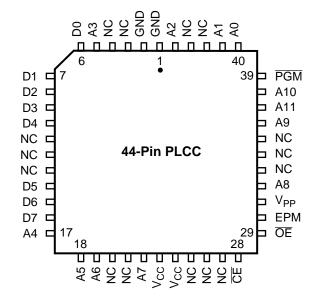


Figure 6. 40-Pin DIP Pin Configuration EPROM Mode

Table 4. 40-Pin DIP Package Pin IdentificationEPROM Mode

Pin #	Symbol	Function	Direction
1	NC	No Connection	
2–4	D5–D7	Data 5,6,7	In/Output
5–7	A4–A6	Address 4,5,6	Input
8–9	NC	No Connection	
10	A7	Address 7	Input
11	V _{CC}	Power Supply	
12–14	NC	No Connection	
15	CE	Chip Select	Input
16	ŌĒ	Output Enable	Input
17	EPM	EPROM Prog. Mode	Input
18	V _{PP}	Prog. Voltage	Input
19	A8	Address 8	Input
20–21	NC	No Connection	
22	A9	Address 9	Input
23	A11	Address 11	Input
24	A10	Address 10	Input
25	PGM	Prog. Mode	Input
26–27	A0–A1	Address 0,1	Input
28–29	NC	No Connection	
30	A2	Address 2	Input
31	GND	Ground	
32–33	NC	No Connection	
34	A3	Address 3	Input
35–39	D0–D4	Data 0,1,2,3,4	In/Output
40	NC	No Connection	

PIN IDENTIFICATION (Continued)

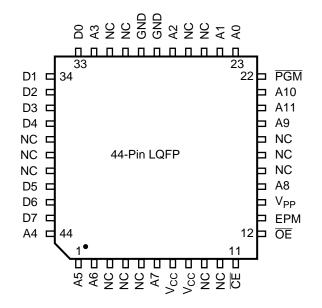


Table 5. 44-Pin PLCC Pin ConfigurationEPROM Programming Mode

Pin #	Symbol	Function	Direction
1–2	GND	Ground	
3–4	NC	No Connection	
5	A3	Address 3	Input
6–10	D0-D4	Data 0,1,2,3,4	In/Output
11–13	NC	No Connection	
14–16	D5–D7	Data 5,6,7	In/Output
17–19	A4–A6	Address 4,5,6	Input
20–21	NC	No Connection	
22	A7	Address 7	Input
23–24	V _{CC}	Power Supply	
25–27	NC	No Connection	
28	CE	Chip Select	Input
29	OE	Output Enable	Input
30	EPM	EPROM Prog. Mode	Input

Table 5. 44-Pin PLCC Pin Configuration EPROM Programming Mode

Pin #	Symbol	Function	Direction
31	V _{PP}	Prog. Voltage	Input
32	A8	Address 8	Input
33–35	NC	No Connection	
36	A9	Address 9	Input
37	A11	Address 11	Input
38	A10	Address 10	Input
39	PGM	Prog. Mode	Input
40–41	A0,A1	Address 0,1	Input
42–43	NC	No Connection	
44	A2	Address 2	Input

Figure 8. 44-Pin LQFP Pin Configuration EPROM Programming Mode

Table 6. 44-Pin LQFP Pin ConfigurationEPROM Programming Mode

Pin #	Symbol	Function	Direction
1–2	A5–A6	Address 5,6	Input
3–4	NC	No Connection	
5	A7	Address 7	Input
6–7	V _{CC}	Power Supply	
8–10	NC	No Connection	
11	CE	Chip Select	Input
12	ŌĒ	Output Enable	Input
13	EPM	EPROM Prog. Mode	Input
14	V _{PP}	Prog. Voltage	Input
15	A8	Address 8	Input
16–18	NC	No Connection	
19	A9	Address 9	Input
20	A11	Address 11	Input
21	A10	Address 10	Input
22	PGM	Prog. Mode	Input

Table 6. 44-Pin LQFP Pin ConfigurationEPROM Programming Mode

Pin #	Symbol	Function	Direction
23–24	A0,A1	Address 0,1	Input
25–26	NC	No Connection	
27	A2	Address 2	Input
28–29	GND	Ground	
30–31	NC	No Connection	
32	A3	Address 3	Input
33–37	D0–D4	Data 0,1,2,3,4	In/Output
38–40	NC	No Connection	
41–43	D5–D7	Data 5,6,7	In/Output
44	A4	Address 4	Input

ABSOLUTE MAXIMUM RATINGS

Parameter	Min	Мах	Units
Ambient Temperature under Bias	-40	+105	С
Storage Temperature	-65	+150	С
Voltage on any Pin with Respect to V _{SS} [Note 1]	-0.6	+7	V
Voltage on V _{DD} Pin with Respect to V _{SS}	-0.3	+7	V
Voltage on XTAL1 and RESET Pins with Respect to V _{SS} [Note 2]	-0.6	V _{DD} +1	V
Total Power Dissipation		1.21	W
Maximum Allowable Current out of V _{SS}		220	mA
Maximum Allowable Current into V _{DD}		180	mA
Maximum Allowable Current into an Input Pin [Note 3]	-600	+600	μΑ
Maximum Allowable Current into an Open-Drain Pin [Note 4]	-600	+600	μΑ
Maximum Allowable Output Current Sinked by Any I/O Pin		25	mA
Maximum Allowable Output Current Sourced by Any I/O Pin		25	mA
Maximum Allowable Output Current Sinked by RESET Pin		3 mA	

Notes:

1. This applies to all pins except XTAL pins and where otherwise noted.

- 2. There is no input protection diode from pin to V_{DD} .
- 3. This excludes XTAL pins.
- 4. Device pin is not at an output Low state.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability. Total power dissipation should not exceed 1.2 W for the package. Power dissipation is calculated as follows:

Total Power Dissipation = $V_{DD} \times [I_{DD} - (\text{sum of } I_{OH})]$ + sum of [($V_{DD} - V_{OH}$) × I_{OH}] + sum of ($V_{0L} \times I_{0L}$)

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Test Load).

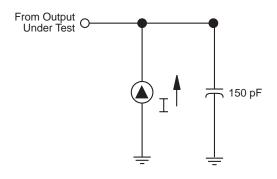


Figure 13. Test Load Diagram

CAPACITANCE

 T_A = 25°C, V_{CC} = GND = 0V, f = 1.0 MHz; unmeasured pins returned to GND.

Parameter	Min	Мах
Input capacitance	0	12 pF
Output capacitance	0	12 pF
I/O capacitance	0	12 pF

DC ELECTRICAL CHARACTERISTICS

	$T_A = 0 \ ^\circ C \ to \ +70 \ ^\circ C$							
Sym	Parameter	V _{CC} Note [3]	Min	Мах	Typical @ 25°C	Units	Conditions	Notes
	Clock Input High Voltage	3.5V	0.7 V _{CC}	V _{CC} +0.3	1.8	V	Driven by External	
V _{CH}	Clock input high voltage	5.5V 5.5V	0.7 V _{CC} 0.7 V _{CC}	V _{CC} +0.3 V _{CC} +0.3	2.5	V	Clock Generator	
	Clock Input Low Voltage	3.5V	GND -0.3		0.9	V	Driven by External	
V _{CL}	Clock input Low voltage	3.5V 4.5V	GND -0.3 GND -0.3	0.2 V _{CC}	0.9 1.5	V	Clock Generator	
				0.2 V _{CC}				
VIH	Input High Voltage	3.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
		5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
V _{IL}	Input Low Voltage	3.5V	GND -0.3	0.2 V _{CC}	1.5	V		
		5.5V	GND -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High Voltage	3.5V	V _{CC} -0.4		3.3	V	I _{OH} = – 0.5 mA	
	Low EMI Mode	5.5V	V _{CC} -0.4		4.8	V		
V _{OH1}	Output High Voltage	3.5V	V _{CC} -0.4		3.3	V	I _{OH} = -2.0 mA	
OIII		5.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	
V _{OL}	Output Low Voltage	3.5V	00	0.4	0.2	V	I _{OL} = 1.0 mA	
VOL	Low EMI Mode	4.5V		0.4	0.2	v	$I_{OL} = 1.0 \text{ mA}$	
		3.5V		0.4	0.1	V	$I_{OL} = +4.0 \text{ mA}$	8
V _{OL1}	Output Low Voltage	3.5V 4.5V		0.4	0.1	V		о 8
							$I_{OL} = +4.0 \text{ mA}$	
V _{OL2}	Output Low Voltage	3.5V		1.2	0.5	V	I _{OL} = + 12 mA	8
		4.5V		1.2	0.5	V	I _{OL} = + 12 mA	8
V _{RH}	Reset Input High	3.5V	.8 V _{CC}	V _{CC}	1.7	V		
	Voltage	5.5V	.8 V _{CC}	V _{CC}	2.1	V		
V _{RL}	Reset Input Low Voltage	3.5V	GND -0.3	0.2 V _{CC}	1.3	V		13
		5.5V	GND -0.3	0.2 V _{CC}	1.7	V		
V _{OLR}	Reset Output Low	3.5V		0.6	0.3	V	I _{OL} = 1.0 mA	
OER	Voltage	5.5V		0.6	0.2	V	I _{OL} = 1.0 mA	
V _{OFFSET}	Comparator Input	3.5V		25	10	mV		
OFFSEI	Offset Voltage	4.5V		25	10	mV		
V _{ICR}	Input Common Mode	3.5V	0	V _{CC} -1.0V		V		10
ICIX	Voltage Range	5.5V	0	V _{CC} -1.0V		V		10
IIL	Input Leakage	3.5V	-1	2	0.032	μA	$V_{IN} = 0V, V_{CC}$	
٦L	input Loundyo	4.5V	-1	2	0.032	μA	$V_{IN} = 0V, V_{CC}$	
	Output Lookaga	3.5V	-1	2	0.032			
I _{OL}	Output Leakage	3.5V 4.5V	-1 -1	2	0.032	μA	$V_{IN} = 0V, V_{CC}$	
						μA	$V_{IN} = 0V, V_{CC}$	
I _{IR}	Reset Input Current	3.5V	-20	-130	-65	μA		
		4.5V	-20	-180	-112	μA		

DC ELECTRICAL CHARACTERISTICS (Continued)

			T _A =–40 °C	to +105 °C				
Sym	Parameter	V _{CC} Note [3]	Min	Max	Typical @ 25°C	Units	Conditions	Notes
I _{ALH}	Auto Latch High	4.5V	-1.0	-10	-3.8	μA	$0V < V_{IN} < V_{CC}$	9
	Current	5.5V	-1.0	-10	-3.8	μA	$0V < V_{IN} < V_{CC}$	9
T _{POR}	Power On Reset	4.5V	2.0	14	4	mS		
1 OIX		5.5V	2.0	14	4	mS		
V _{LV}	Auto Reset Voltage		2.0	3.3	2.9	V		1

1. Device does function down to the Auto Reset voltage.

2. GND=0V

3. The V_{CC} voltage specification of 5.5V guarantees 5.0V \pm 0.5V.

4. All outputs unloaded, I/O pins floating, inputs at rail.

- 5. CL1= CL2 = 22 pF
- 6. Same as note [4] except inputs at V_{CC} .
- 7. Maximum temperature is 70°C
- 8. STD Mode (not Low EMI Mode)
- 9. Auto Latch (mask option) selected
- 10. For analog comparator inputs when analog comparators are enabled.
- 11. Clock must be forced Low, when XTAL1 is clock driven and XTAL2 is floating.
- 12. Typicals are at $V_{CC} = 5.0V$
- 13. Z86E40 only
- 14. WDT is not running.

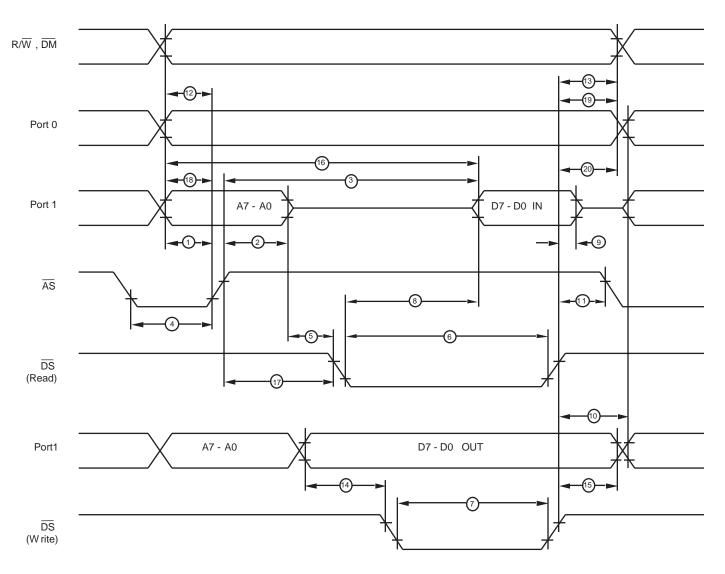


Figure 14. External I/O or Memory Read/Write Timing Z86E40 Only

DC ELECTRICAL CHARACTERISTICS (Continued)

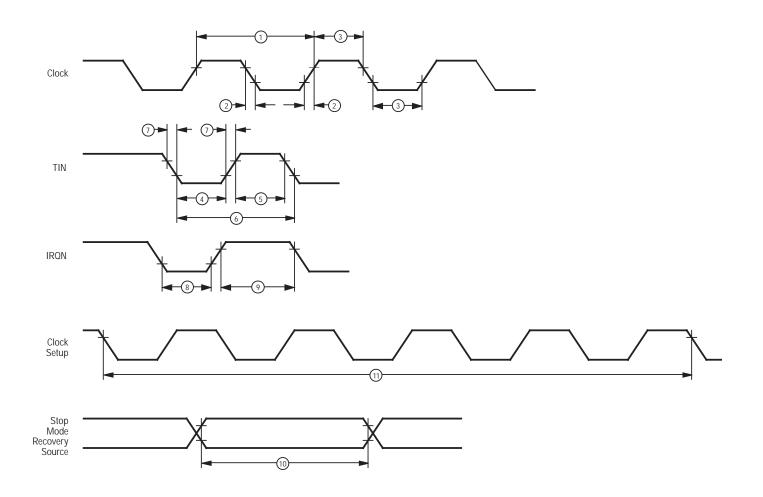
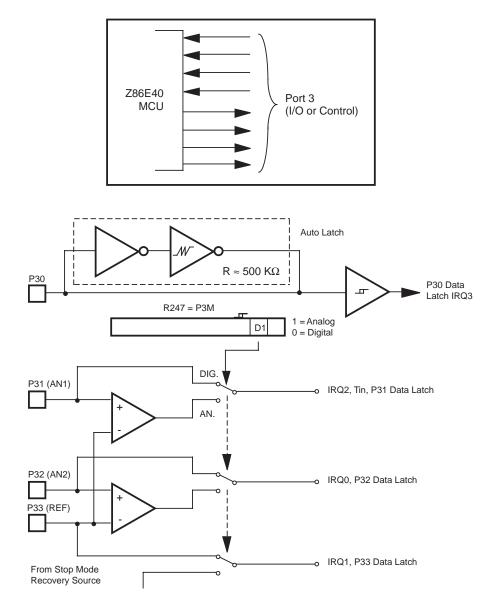
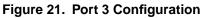




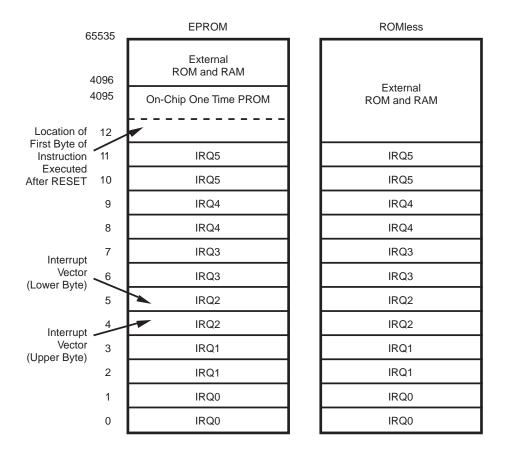
Figure 15. Additional Timing Diagram

D:	1/0	0704	Analan	Intonuut		D4 110	D0.110	Esst
Pin	I/O	CTC1	Analog	Interrupt	P0 HS	P1 HS	P2 HS	Ext
P30	IN			IRQ3				
P31	IN	T _{IN}	AN1	IRQ2		D/R		
P32	IN		AN2	IRQ0	D/R			
P33	IN		REF	IRQ1		D/R		
P34	OUT		AN1-Out			R/D		/DM
P35	OUT				R/D			
P36	OUT	T _{OUT}				R/D		
P37	OUT		An2-Out					

FUNCTIONAL DESCRIPTION

The MCU incorporates the following special functions to enhance the standard Z8 architecture to provide the user with increased design flexibility.

RESET. The device is reset in one of three ways:


- 1. Power-On Reset
- 2. Watch-Dog Timer
- 3. STOP-Mode Recovery Source

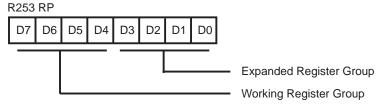
Note: Having the Auto Power-On Reset circuitry built-in, the MCU does not need to be connected to an external power-on reset circuit. The reset time is 5 ms (typical). The MCU does not reinitialize WDTMR, SMR, P2M, and P3M registers to their reset values on a STOP-Mode Recovery operation.

Note: The device V_{CC} must rise up to the operating V_{CC} specification before the TPOR expires.

Program Memory. The MCU can address up to 4 KB of Internal Program Memory (Figure 22). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. For EPROM mode, byte 12 (000CH) to address 4095 (0FFFH) consists of programmable EPROM. After reset, the program counter points at the address 000CH, which is the starting address of the user program.

In ROMless mode, the Z86E40 can address up to 64 KB of External Program Memory. The ROM/ROMless option is only available on the 44-pin devices.

Figure 22. Program Memory Map (ROMIess Z86E40 Only)


EPROM Protect. When in ROM Protect Mode, and executing out of External Program Memory, instructions LDC, LDCI, LDE, and LDEI cannot read Internal Program Memory.

When in ROM Protect Mode and executing out of Internal Program Memory, instructions LDC, LDCI, LDE, and LDEI can read Internal Program Memory.

Register File. The register file consists of three I/O port registers, 236/125 general-purpose registers, 15 control and status registers, and three system configuration registers in the expanded register group. The instructions can access registers directly or indirectly through an 8-bit address field. This allows a short 4-bit register address using the Register Pointer (Figure 24). In the 4-bit mode, the register file is divided into 16 working register groups, each

occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Note: Register Bank E0–EF can only be accessed through working register and indirect addressing modes. (This bank is available in Z86E30/E40 only.)

Default setting after RESET = 00000000

Figure 24. Register Pointer Register

Expanded Register File (ERF). The register file has been expanded to allow for additional system control registers, mapping of additional peripheral devices and input/output ports into the register address area. The Z8 register address space R0 through R15 is implemented as 16 groups of 16 registers per group (Figure 26). These register groups are known as the Expanded Register File (ERF).

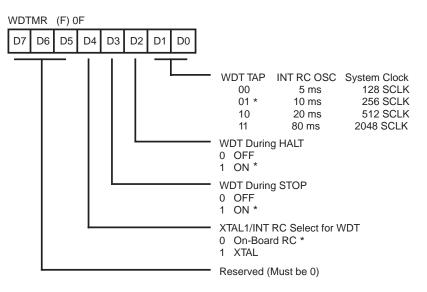
The low nibble (D3–D0) of the Register Pointer (RP) select the active ERF group, and the high nibble (D7–D4) of register RP select the working register group. Three system configuration registers reside in the Expanded Register File at bank FH: PCON, SMR, and WDTMR. The rest of the Expanded Register is not physically implemented and is reserved for future expansion. **Comparator Output Port 3** (D0). Bit 0 controls the comparator output in Port 3. A "1" in this location brings the comparator outputs to P34 and P37, and a "0" releases the Port to its standard I/O configuration. The default value is 0.

Port 1 Open-Drain (D1). Port 1 can be configured as an open-drain by resetting this bit (D1=0) or configured as push-pull active by setting this bit (D1=1). The default value is 1.

Port 0 Open-Drain (D2). Port 0 can be configured as an open-drain by resetting this bit (D2=0) or configured as push-pull active by setting this bit (D2=1). The default value is 1.

Low EMI Port 0 (D3). Port 0 can be configured as a Low EMI Port by resetting this bit (D3=0) or configured as a Standard Port by setting this bit (D3=1). The default value is 1.

Low EMI Port 1 (D4). Port 1 can be configured as a Low EMI Port by resetting this bit (D4=0) or configured as a Standard Port by setting this bit (D4=1). The default value is 1. **Note:** The emulator does not support Port 1 low EMI mode and must be set D4 = 1.


Low EMI Port 2 (D5). Port 2 can be configured as a Low EMI Port by resetting this bit (D5=0) or configured as a Standard Port by setting this bit (D5=1). The default value is 1.

Low EMI Port 3 (D6). Port 3 can be configured as a Low EMI Port by resetting this bit (D6=0) or configured as a Standard Port by setting this bit (D6=1). The default value is 1.

Low EMI OSC (D7). This bit of the PCON Register controls the low EMI noise oscillator. A "1" in this location configures the oscillator with standard drive. While a "0" configures the oscillator with low noise drive, however, it does not affect the relationship of SCLK and XTAL. The low EMI mode will reduce the drive of the oscillator (OSC). The default value is 1. **Note:** 4 MHz is the maximum external clock frequency when running in the low EMI oscillator mode.

Stop-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of Stop-Mode Recovery (Figure 31). All bits are Write Only except bit 7 which is a Read Only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a power-on cycle. Bit 6 controls whether a low or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4 of the SMR register specify the Stop-Mode Recovery Source. The SMR is located in Bank F of the Expanded Register Group at address 0BH.

cycles from the execution of the first instruction after Power-On Reset, Watch-Dog reset or a STOP-Mode Recovery (Figures 33 and 34). After this point, the register cannot be modified by any means, intentional or otherwise. The WDTMR cannot be read and is located in Bank F of the Expanded Register Group at address location 0FH.

* Default setting after RESET

Auto Reset Voltage. An on-board Voltage Comparator checks that V_{CC} is at the required level to ensure correct operation of the device. Reset is globally driven if V_{CC} is below V_{LV} (Figure 35).

Note: V_{CC} must be in the allowed operating range prior to the minimum Power-On Reset time-out (T_{POR}).

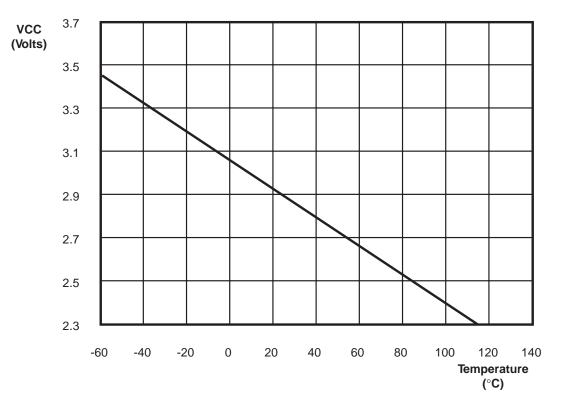


Figure 35. Typical Z86E40 V_{LV} Voltage vs. Temperature

Table 14. EPROM Programming Table

Programming Modes	V _{PP}	EPM	CE	ŌĒ	PGM	ADDR	DATA	V _{CC} *
EPROM READ1	Х	V _H	V _{IL}	V _{IL}	V _{IH}	ADDR	Out	4.5V†
EPROM READ2	Х	V _H	V _{IL}	V _{IL}	V _{IH}	ADDR	Out	5.5V†
PROGRAM	V _H	V _H	V_{IL}	V_{IH}	V_{IL}	ADDR	In	6.4V
PROGRAM VERIFY	V _H	V _H	V _{IL}	V _{IL}	V _{IH}	ADDR	Out	6.0V
OPTION BIT PGM	V _H	V _H	V_{IL}	VIH	V _{IL}	63	IN	6.4V
OPTION BIT READ	Х	V _H	V_{IL}	V _{IL}	V_{IH}	63	OUT	6.0V

Notes:

 $V_{H} = 13.0 \text{ V} \pm 0.1 \text{ V}$

 $V_{\mbox{\scriptsize IH}}$ = As per specific Z8 DC specification

VIL= As per specific Z8 DC specification

X=Not used, but must be set to V_H , V_{IH} , or V_{IL} level.

NU = Not used, but must be set to either V_{IH} or V_{IL} level.

 I_{PP} during programming = 40 mA maximum.

 I_{CC} during programming, verify, or read = 40 mA maximum.

 $^{*}V_{CC}$ has a tolerance of $\pm 0.25V$.

† Zilog recommends an EPROM read at V_{CC} = 4.5 V and 5.5 V to

ensure proper device operations during the $V_{\mbox{CC}}$ after programming,

but $V_{CC} = 5.0$ V is acceptable.

Parameters	Name	Min	Max	Units
1	Address Setup Time	2		μs
2	Data Setup Time	2		μs
3	V _{PP} Setup	2		μs
4	V _{CC} Setup Time	2		μs
5	Chip Enable Setup Time	2		μs
6	Program Pulse Width	0.95	1.05	ms
7	Data Hold Time	2		μs
8	OE Setup Time	2		μs
9	Data Access Time	200		ns
10	Data Output Float Time		100	ns
11	Overprogram Pulse Width/Option Program Pulse Width	2.85		ms
12	EPM Setup Time	2		μs
13	PGM Setup Time	2		μs
14	Address to OE Setup Time	2		μs
15	OE Width	250		ns
16	Address to OE Low	125		ns

Table 15. EPROM Programming Timing

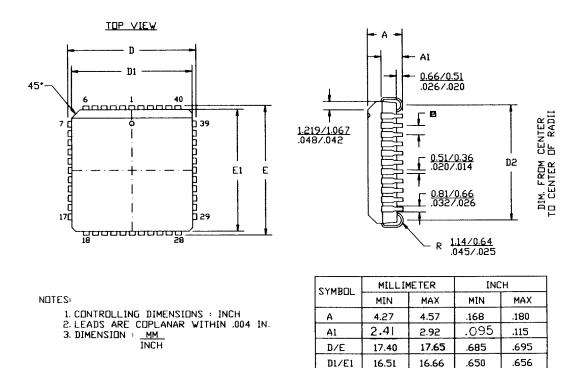
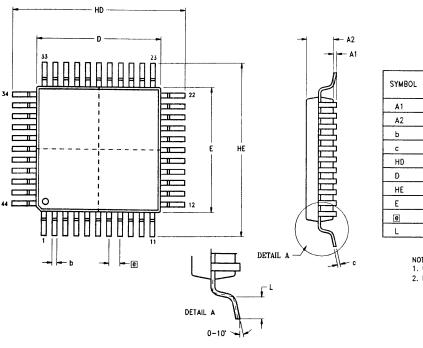


Figure 62. 44-Pin PLCC Package Diagram

D2


e

15.24

1.27 TYP

16.00

.600

SYMBOL	MILLI	METER	INCH			
STMDOL	MIN	МАХ	MIN	MAX		
A1	0.05	0.25	.002	.010		
A2	2.00	2.25	.078	.089		
b	0.25	0.45	.010	.018		
с	0.13	0.20	.005	.008		
HD	13.70	14.15	.539	.557		
D	9.90	10.10	.390	.398		
HE	13.70	14.15	.539	.557		
E	9.90	10.10	.390	.398		
θ	0.80	TYP	.0315	5 TYP		
L	0.60	1.20	.024	.047		

.630

.050 TYP

Figure 63. 44-Pin LQFP Package Diagram

NOTES: 1. CONTROLLING DIMENSIONS : MILLIMETER 2. LEAD COPLANARITY : MAX .10 .004"