E·XFL

Zilog - Z86E3116VEC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	2KB (2K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e3116vec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 6. 40-Pin DIP Pin Configuration EPROM Mode

Table 4. 40-Pin DIP Package Pin IdentificationEPROM Mode

Pin #	Symbol	Function	Direction
1	NC	No Connection	
2–4	D5–D7	Data 5,6,7	In/Output
5–7	A4–A6	Address 4,5,6	Input
8–9	NC	No Connection	
10	A7	Address 7	Input
11	V _{CC}	Power Supply	
12–14	NC	No Connection	
15	CE	Chip Select	Input
16	OE	Output Enable	Input
17	EPM	EPROM Prog. Mode	Input
18	V _{PP}	Prog. Voltage	Input
19	A8	Address 8	Input
20–21	NC	No Connection	
22	A9	Address 9	Input
23	A11	Address 11	Input
24	A10	Address 10	Input
25	PGM	Prog. Mode	Input
26–27	A0–A1	Address 0,1	Input
28–29	NC	No Connection	
30	A2	Address 2	Input
31	GND	Ground	
32–33	NC	No Connection	
34	A3	Address 3	Input
35–39	D0–D4	Data 0,1,2,3,4	In/Output
40	NC	No Connection	

CAPACITANCE

 T_A = 25°C, V_{CC} = GND = 0V, f = 1.0 MHz; unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	12 pF
Output capacitance	0	12 pF
I/O capacitance	0	12 pF

DC ELECTRICAL CHARACTERISTICS

			T _A = 0 °C	to +70 °C				
		V _{CC}			Typical			
Sym	Parameter	Note [3]	Min	Max	@ 25°C	Units	Conditions	Notes
V _{CH}	Clock Input High Voltage	3.5V	0.7 V _{CC}	V _{CC} +0.3	1.8	V	Driven by External	
0.1		5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	Clock Generator	
V _{CI}	Clock Input Low Voltage	3.5V	GND -0.3	0.2 V _{CC}	0.9	V	Driven by External	
02		4.5V	GND -0.3	0.2 V _{CC}	1.5	V	Clock Generator	
VIH	Input High Voltage	3.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
		5.5V	$0.7\mathrm{V_{CC}}$	V _{CC} +0.3	2.5	V		
V _{IL}	Input Low Voltage	3.5V	GND -0.3	0.2 V _{CC}	1.5	V		
		5.5V	GND -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High Voltage	3.5V	V _{CC} -0.4		3.3	V	I _{OH} = – 0.5 mA	
	Low EMI Mode	5.5V	V _{CC} -0.4		4.8	V		
V _{OH1}	Output High Voltage	3.5V	V _{CC} -0.4		3.3	V	I _{OH} = -2.0 mA	
		5.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	
V _{OL}	Output Low Voltage	3.5V		0.4	0.2	V	I _{OL} = 1.0 mA	
	Low EMI Mode	4.5V		0.4	0.2	V	I _{OL} = 1.0 mA	
V _{OL1}	Output Low Voltage	3.5V		0.4	0.1	V	I _{OL} = + 4.0 mA	8
		4.5V		0.4	0.1	V	$I_{OL} = +4.0 \text{ mA}$	8
V _{OL2}	Output Low Voltage	3.5V		1.2	0.5	V	I _{OL} = + 12 mA	8
		4.5V		1.2	0.5	V	I _{OL} = + 12 mA	8
V _{RH}	Reset Input High	3.5V	.8 V _{CC}	V _{CC}	1.7	V		
	Voltage	5.5V	.8 V _{CC}	V _{CC}	2.1	V		
V _{RL}	Reset Input Low Voltage	3.5V	GND -0.3	0.2 V _{CC}	1.3	V		13
		5.5V	GND -0.3	$0.2 V_{CC}$	1.7	V		
V _{OLR}	Reset Output Low	3.5V		0.6	0.3	V	I _{OL} = 1.0 mA	
	Voltage	5.5V		0.6	0.2	V	I _{OL} = 1.0 mA	
VOFFSET	Comparator Input	3.5V		25	10	mV		
	Offset Voltage	4.5V		25	10	mV		
V _{ICR}	Input Common Mode	3.5V	0	V _{CC} -1.0V		V		10
	Voltage Range	5.5V	0	V _{CC} -1.0V		V		10
IIL	Input Leakage	3.5V	-1	2	0.032	μA	$V_{IN} = 0V, V_{CC}$	
		4.5V	-1	2	0.032	μA	$V_{IN} = 0V, V_{CC}$	
I _{OL}	Output Leakage	3.5V	-1	2	0.032	μΑ	$V_{IN} = 0V, V_{CC}$	
		4.5V	-1	2	0.032	μA	$V_{IN} = 0V, V_{CC}$	
I _{IR}	Reset Input Current	3.5V	-20	-130	-65	μA		
		4.5V	-20	-180	-112	μA		

DC ELECTRICAL CHARACTERISTICS (Continued)

			T _A = 0°C to 70°C				
				16	MHz		
			Note [3]				
No	Symbol	Parameter	V _{CC}	Min	Max	Units	Notes
1	TdA(AS)	Address Valid to AS Rise	3.5V	25		ns	2
		Delay	5.5V	25		ns	
2	TdAS(A)	AS Rise to Address Float	3.5V	35		ns	2
		Delay	5.5V	35		ns	
3	TdAS(DR)	AS Rise to Read Data Req'd	3.5V		180	ns	1,2
		Valid	5.5V		180	ns	
4	TwAS	AS Low Width	3.5V	40		ns	2
			5.5V	40		ns	
5	TdAS(DS)	Address Float to DS Fall	3.5V	0		ns	
			5.5V	0		ns	
6	TwDSR	DS (Read) Low Width	3.5V	135		ns	1,2
			5.5V	135		ns	
7	TwDSW	DS (Write) Low Width	3.5V	80		ns	1,2
			5.5V	80		ns	
8	TdDSR(DR)	DS Fall to Read Data Req'd	3.5V		75	ns	1,2
		Valid	5.5V		75	ns	
9	ThDR(DS)	Read Data to DS Rise Hold	3.5V	0		ns	2
		Time	5.5V	0		ns	
10	TdDS(A)	DS Rise to Address Active	3.5V	50		ns	2
		Delay	5.5V	50		ns	
11	TdDS(AS)	DS Rise to AS Fall Delay	3.5V	35		ns	2
			5.5V	35		ns	
12	TdR/W(AS)	R/\overline{W} Valid to \overline{AS} Rise Delay	3.5V	25		ns	2
			5.5V	25		ns	
13	TdDS(R/W)	DS Rise to R/W Not Valid	3.5V	35		ns	2
			5.5V	35		ns	
14	TdDW(DSW)	Write Data Valid to $\overline{\text{DS}}$ Fall	3.5V	55	25	ns	2
		(Write) Delay	5.5V	55	25	ns	
15	TdDS(DW)	DS Rise to Write Data Not	3.5V	35		ns	2
		Valid Delay	5.5V	35		ns	
16	TdA(DR)	Address Valid to Read Data	3.5V		230	ns	1,2
		Req'd Valid	5.5V		230	ns	
17	TdAS(DS)	AS Rise to DS Fall Delay	3.5V	45		ns	2
			5.5V	45		ns	
18	TdDM(AS)	DM Valid to AS Fall Delay	3.5V	30		ns	2
			5.5V	30		ns	
20	ThDS(AS)	DS Valid to Address Valid	3.5V	35		ns	
		Hold Time	5.5V	35		ns	

Notes:

1. When using extended memory timing, add 2 TpC.

2. Timing numbers given are for minimum TpC.

3. The V_{CC} voltage specification of 5.5V guarantees 5.0V \pm 0.5V and the V_{CC} voltage specification of 3.5V guarantees only 3.5V

Standard Test Load

All timing references use 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0. For Standard Mode (not Low-EMI Mode for outputs) with SMR D1 = 0, D0 = 0. Zilog

Handshake Timing Diagrams

Figure 17. Output Handshake Timing

Zilog

Port 2 (P27–P20). Port 2 is an 8-bit, bidirectional, CMOScompatible I/O port. These eight I/O lines can be configured under software control as an input or output, independently. All input buffers are Schmitt-triggered. Bits programmed as outputs can be globally programmed as either push-pull or open-drain. Low EMI output buffers can be globally programmed by the software. When used as an I/O port, Port 2 can be placed under handshake control.

In Handshake Mode, Port 3 lines P31 and P36 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to bit 7 of Port 2 (Figure 20).

Figure 20. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3 (P37-P30). Port 3 is an 8-bit, CMOS-compatible port with four fixed inputs (P33-P30) and four fixed outputs (P37–P34). These eight lines can be configured by software for interrupt and handshake control functions. Port 3, Pin 0 is Schmitt- triggered. P31, P32, and P33 are standard CMOS inputs with single trip point (no Auto Latches) and P34, P35, P36, and P37 are push-pull output lines. Low EMI output buffers can be globally programmed by the software. Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by setting the D1 of Port 3 Mode Register (P3M). The comparator output can be outputted from P34 and P37, respectively, by setting PCON register Bit D0 to 1 state. For the interrupt function, P30 and P33 are falling edge triggered interrupt inputs. P31 and P32 can be programmed as falling, rising or both edges triggered interrupt inputs (Figure 21). Access to Counter/Timer 1 is made through P31 (T_{IN}) and P36 (T_{OUT}). Handshake lines for Port 0, Port 1, and Port 2 are also available on Port 3 (Table 9).

Note: When enabling/ or disabling analog mode, the following is recommended:

- 1. Allow two NOP delays before reading this comparator output.
- 2. Disable global interrupts, switch to analog mode, clear interrupts, and then re-enable interrupts.
- 3. IRQ register bits 3 to 0 must be cleared after enabling analog mode.

Note: P33–P30 differs from the Z86C30/C31/C40 in that there is no clamping diode to V_{CC} due to the EPROM high-voltage circuits. Exceeding the V_{IH} maximum specification during standard operating mode may cause the device to enter EPROM mode.

Table 9. Port 3 Pin Assignments	Table 9.	Port 3	Pin	Assignments
---------------------------------	----------	--------	-----	-------------

Pin	I/O	CTC1	Analog	Interrupt	P0 HS	P1 HS	P2 HS	Ext
P30	IN			IRQ3				
P31	IN	T _{IN}	AN1	IRQ2		D/R		
P32	IN		AN2	IRQ0	D/R			
P33	IN		REF	IRQ1		D/R		
P34	OUT		AN1-Out			R/D		/DM
P35	OUT				R/D			
P36	OUT	T _{OUT}				R/D		
P37	OUT		An2-Out					

FUNCTIONAL DESCRIPTION

The MCU incorporates the following special functions to enhance the standard Z8 architecture to provide the user with increased design flexibility.

RESET. The device is reset in one of three ways:

- 1. Power-On Reset
- 2. Watch-Dog Timer
- 3. STOP-Mode Recovery Source

Note: Having the Auto Power-On Reset circuitry built-in, the MCU does not need to be connected to an external power-on reset circuit. The reset time is 5 ms (typical). The MCU does not reinitialize WDTMR, SMR, P2M, and P3M registers to their reset values on a STOP-Mode Recovery operation.

Note: The device V_{CC} must rise up to the operating V_{CC} specification before the TPOR expires.

Program Memory. The MCU can address up to 4 KB of Internal Program Memory (Figure 22). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. For EPROM mode, byte 12 (000CH) to address 4095 (0FFFH) consists of programmable EPROM. After reset, the program counter points at the address 000CH, which is the starting address of the user program.

In ROMless mode, the Z86E40 can address up to 64 KB of External Program Memory. The ROM/ROMless option is only available on the 44-pin devices.

65535		EPROM	ROMless
4096		External ROM and RAM	External
4	4095	On-Chip One Time PROM	ROM and RAM
Location of	12	✓	
Instruction	11	IRQ5	IRQ5
After RESET	10	IRQ5	IRQ5
	9	IRQ4	IRQ4
	8	IRQ4	IRQ4
Interrupt	7	IRQ3	IRQ3
Interrupt (Lower Byte)	6	IRQ3	IRQ3
	5	IRQ2	IRQ2
	4	IRQ2	IRQ2
	3	IRQ1	IRQ1
	2	IRQ1	IRQ1
	1	IRQ0	IRQ0
	0	IRQ0	IRQ0

Figure 22. Program Memory Map (ROMIess Z86E40 Only)

EPROM Protect. When in ROM Protect Mode, and executing out of External Program Memory, instructions LDC, LDCI, LDE, and LDEI cannot read Internal Program Memory.

When in ROM Protect Mode and executing out of Internal Program Memory, instructions LDC, LDCI, LDE, and LDEI can read Internal Program Memory.

Figure 25. Register Pointer

Z8® STANDARD CONTROL REGISTERS

Figure 26. Expanded Register File Architecture

General-Purpose Registers (GPR). These registers are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the V_{CC} voltage-specified operating range. The register R254 is general-purpose on Z86E30/E31. R254 and R255 are set to 00H after any reset or STOP-Mode Recovery.

RAM Protect. The upper portion of the RAM's address spaces 80H to EFH (excluding the control registers) can be protected from reading and writing. This option can be selected during the EPROM Programming Mode. After this option is selected, the user can activate this feature from the internal EPROM. D6 of the IMR control register (R251) is used to turn off/on the RAM protect by loading a 0 or 1, respectively. A "1" in D6 indicates RAM Protect enabled. RAM Protect is not available on the Z86E31.

Stack. The Z86E40 external data memory or the internal register file can be used for the stack. The 16-bit Stack Pointer (R254–R255) is used for the external stack, which can reside anywhere in the data memory for ROMless mode, but only from 4096 to 65535 in ROM mode. An 8-bit Stack Pointer (R255) is used for the internal stack on the Z86E30/E31/E40 that resides within the 236 general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register when using internal stack only. R254 and R255 are set to 00H after any reset or Stop-Mode Recovery.

Counter/Timers. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only (Figure 27).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256), that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3 line P36 serves as a timer output (T_{OUT}) through which T0, T1, or the internal clock can be output. The counter/timers can be cascaded by connecting the T0 output to the input of T1.

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register (IPR). An interrupt machine cycle is activated when an interrupt request is granted. Thus, disabling all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in bits D7 and D6 of the IRQ Register (R250). The configuration is shown in Table 11. Table 11. IRQ Register Configuration

IRQ		Interru	pt Edge
D7	D6	P31	P32
0	0	F	F
0	1	F	R
1	0	R	F
1	1	R/F	R/F

R = Rising Edge

Clock. The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 10 KHz to 16 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the vendor's recommended capacitor values from each pin directly to device pin Ground. The RC oscillator option can be selected in the programming mode. The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL1 to Ground (Figure 29).

* Typical value including pin parasitics

Figure 29. Oscillator Configuration

* Default setting after RESET.

** Default setting after RESET and STOP-Mode Recovery.

Figure 31. STOP-Mode Recovery Register (Write-Only Except Bit D7, Which is Read-Only)

Figure 34. Resets and WDT

Auto Reset Voltage. An on-board Voltage Comparator checks that V_{CC} is at the required level to ensure correct operation of the device. Reset is globally driven if V_{CC} is below V_{LV} (Figure 35).

Note: V_{CC} must be in the allowed operating range prior to the minimum Power-On Reset time-out (T_{POR}).

Figure 35. Typical Z86E40 V_{LV} Voltage vs. Temperature

Z8 CONTROL REGISTER DIAGRAMS

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 54. Interrupt Priority Register F9H: Write Only

Figure 62. 44-Pin PLCC Package Diagram

D2

e

15.24

1.27 TYP

16.00

.600

SYMBOL	MILLI	METER	INCH		
STMDOL	MIN	МАХ	MIN	MAX	
A1	0.05	0.25	.002	.010	
A2	2.00	2.25	.078	.089	
b	0.25	0.45	.010	.018	
с	0.13	0.20	.005	.008	
HD	13.70	14.15	.539	.557	
D	9.90	10.10	.390	.398	
HE	13.70	14.15	.539	.557	
E	9.90	10.10	.390	.398	
θ	0.80	0.80 TYP		5 TYP	
L	0.60	1.20	.024	.047	

.630

.050 TYP

Figure 63. 44-Pin LQFP Package Diagram

NOTES: 1. CONTROLLING DIMENSIONS : MILLIMETER 2. LEAD COPLANARITY : MAX .10 .004"

Figure 64. 28-Pin DIP Package Diagram

Figure 65. 28-Pin SOIC Package Diagram

ORDERING INFORMATION

Z86E40 (16 MHz)

40-Pin DIP	44-Pin PLCC	44-Pin LQFP
Z86E4016PSC	Z86E4016VSC	Z86E4016FSC
Z86E4016PEC	Z86E4016VEC	Z86E4016FEC

Z86E30 (16 MHz)

28-Pin DIP	28-Pin SOIC	28-Pin PLCC
Z86E3016PSC	Z86E3016SSC	Z86E3016VSC
Z96E3016PEC	Z86E3016SEC	Z86E3016VEC

Z86E31 (16 MHz)

28-Pin DIP	28-Pin SOIC	28-Pin PLCC
Z86E3116PSC	Z86E3116SSC	Z86E3116VSC
Z86E3116PEC	Z86E3116SEC	Z86E3116VEC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package	Temperature	
P = Plastic DIP	S = 0 °C to +70 °C E = -40 °C to +105 °C	
V = Plastic Leaded Chip Carrier		
E - Plastia Quad Elat Back	Speed	
r = riastic Quau riat rack	16 = 16 MHz	
S = SOIC (Small Outline Integrated Circuit)	Environmental	
	C= Plastic Standard	

E = Hermetic Standard

Zilog