

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

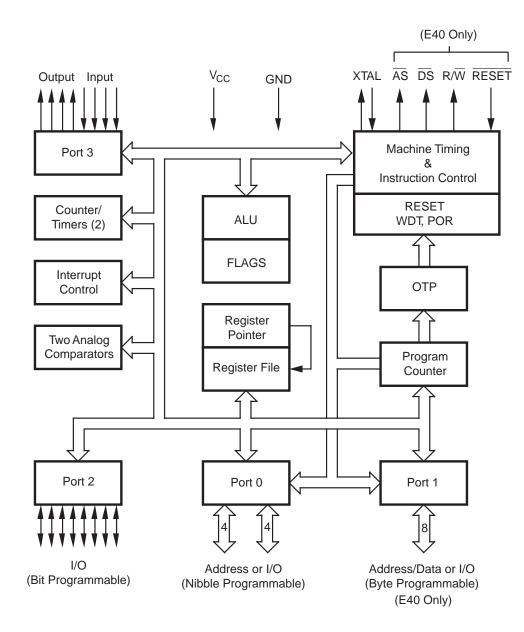
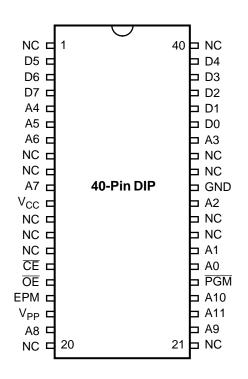
Product Status	Active
Core Processor	Z8
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	4KB (4K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e4016psg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{CC}	V _{DD}
Ground	GND	V _{SS}

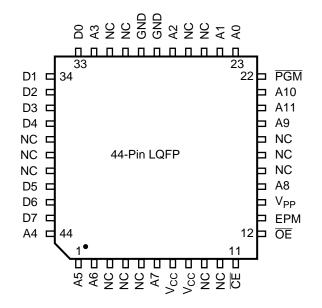

Figure 1. Z86E30/E31/E40 Functional Block Diagram

Figure 6. 40-Pin DIP Pin Configuration EPROM Mode

Table 4. 40-Pin DIP Package Pin IdentificationEPROM Mode

Pin # Symbol		Function	Direction
1	NC	No Connection	
2–4	D5–D7	Data 5,6,7	In/Output
5–7	A4–A6	Address 4,5,6	Input
8–9	NC	No Connection	
10	A7	Address 7	Input
11	V _{CC}	Power Supply	
12–14	NC	No Connection	
15	CE	Chip Select	Input
16	ŌĒ	Output Enable	Input
17	EPM	EPROM Prog. Mode	Input
18	V _{PP}	Prog. Voltage	Input
19	A8	Address 8	Input
20–21	NC	No Connection	
22	A9	Address 9	Input
23	A11	Address 11	Input
24	A10	Address 10	Input
25	PGM	Prog. Mode	Input
26–27	A0–A1	Address 0,1	Input
28–29	NC	No Connection	
30	A2	Address 2	Input
31	GND	Ground	
32–33	NC	No Connection	
34	A3	Address 3	Input
35–39	D0–D4	Data 0,1,2,3,4	In/Output
40	NC	No Connection	

Figure 8. 44-Pin LQFP Pin Configuration EPROM Programming Mode

Table 6. 44-Pin LQFP Pin ConfigurationEPROM Programming Mode

Pin #	Symbol	Function	Direction
1–2	A5–A6	Address 5,6	Input
3–4	NC	No Connection	
5	A7	Address 7	Input
6–7	V _{CC}	Power Supply	
8–10	NC	No Connection	
11	CE	Chip Select	Input
12	ŌĒ	Output Enable	Input
13	EPM	EPROM Prog. Mode	Input
14	V _{PP}	Prog. Voltage	Input
15	A8	Address 8	Input
16–18	NC	No Connection	
19	A9	Address 9	Input
20	A11	Address 11	Input
21	A10	Address 10	Input
22	PGM	Prog. Mode	Input

Table 6. 44-Pin LQFP Pin ConfigurationEPROM Programming Mode

Pin #	Symbol	Function	Direction
23–24	A0,A1	Address 0,1	Input
25–26	NC	No Connection	
27	A2	Address 2	Input
28–29	GND	Ground	
30–31	NC	No Connection	
32	A3	Address 3	Input
33–37	D0–D4	Data 0,1,2,3,4	In/Output
38–40	NC	No Connection	
41–43	D5–D7	Data 5,6,7	In/Output
44	A4	Address 4	Input

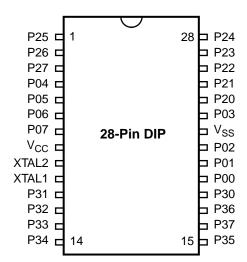
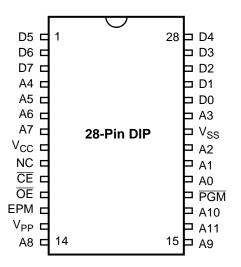



Figure 9. Standard Mode 28-Pin DIP/SOIC Pin Configuration

Table 7. 28-Pin DIP/SOIC/PLCC Pin Identification*

Pin #	Symbol	Function	Direction
1–3	P25–P27	Port 2, Pins 5,6,	In/Output
4–7	P04–P07	Port 0, Pins 4,5,6,7	7 In/Output
8	V _{CC}	Power Supply	
9	XTAL2	Crystal Oscillator	Output
10	XTAL1	Crystal Oscillator	Input
11–13	P31–P33	Port 3, Pins 1,2,3	Input
14–15	P34–P35	Port 3, Pins 4,5	Output
16	P37	Port 3, Pin 7	Output
17	P36	Port 3, Pin 6	Output
18	P30	Port 3, Pin 0	Input
19–21	P00-P02	Port 0, Pins 0,1,2	In/Output
22	V _{SS}	Ground	
23	P03	Port 0, Pin 3	In/Output
24–28	P20–P24	Port 2, Pins 0,1,2,3,4	In/Output

Figure 10. EPROM Programming Mode 28-Pin DIP/SOIC Pin Configuration

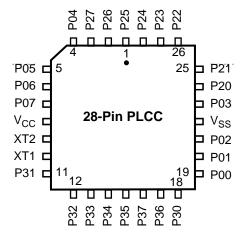


Figure 11. Standard Mode 28-Pin PLCC Pin Configuration

			T _A = 0 °C	to +70 °C				
		V _{CC}	~		Typical			
Sym	Parameter	Note [3]	Min	Мах	@ 25°C	Units	Conditions	Notes
I _{CC}	Supply Current	3.5V		20	7	mA	@ 16 MHz	4,5
		5.5V		25	20	mA	@ 16 MHz	4,5
I _{CC1}	Standby Current	3.5V		8	3.7	mA	$V_{IN} = 0V, V_{CC}$	4,5
	Halt Mode	5.5V		8	3.7	mA	@ 16 MHz	4,5
		3.5V		7.0	2.9	mA	Clock Divide by	4,5
		5.5V		7.0	2.9	mA	16 @ 16 MHz	4,5
I _{CC2}	Standby Current	3.5V		10	2	μΑ	$V_{IN} = 0V, V_{CC}$	6,11
001	Stop Mode	5.5V		10	3	μA	$V_{IN} = 0V, V_{CC}$	6,11
		3.5V		800	600	μΑ	$V_{IN} = 0V, V_{CC}$	6,11,1
		5.5V		800	600	μA	$V_{IN} = 0V, V_{CC}$	4
							$v_{\rm IN} = 0v, v_{\rm CC}$	6,11,1
								4
I _{ALL}	Auto Latch	3.5V	0.7	8	2.4	μΑ	0V <v<sub>IN<v<sub>CC</v<sub></v<sub>	9
	Low Current	5.5V	1.4	15	4.7	μA	0V <v<sub>IN<v<sub>CC</v<sub></v<sub>	9
I _{ALH}	Auto Latch	3.5V	-0.6	-5	-1.8	μA	0V <v<sub>IN<v<sub>CC</v<sub></v<sub>	9
, <u> </u>	High Current	5.5V	-1	-8	-3.8	μA	0V <v<sub>IN<v<sub>CC</v<sub></v<sub>	9
T _{POR}	Power On Reset	3.5V	3.0	24	7	ms		
		5.5V	2.0	13	4	ms		
VLV	Auto Reset Voltage		2.3	3.1	2.9	V		1,7

Notes:

- 1. Device does function down to the Auto Reset voltage.
- 2. GND=0V
- 3. The V_{CC} voltage specification of 5.5V guarantees 5.0V \pm 0.5V and the V_{CC} voltage specification of 3.5V guarantees only 3.5V.
- 4. All outputs unloaded, I/O pins floating, inputs at rail.
- 5. CL1= CL2 = 22 pF
- 6. Same as note [4] except inputs at $V_{\mbox{CC}.}$
- 7. Max. temperature is 70°C.
- 8. STD Mode (not Low EMI Mode)
- 9. Auto Latch (mask option) selected
- 10. For analog comparator inputs when analog comparators are enabled.
- 11. Clock must be forced Low, when XTAL1 is clock driven and XTAL2 is floating.
- 12. Typicals are at V_{CC} = 5.0V and V_{CC} = 3.5V
- 13. Z86E40 only
- 14. WDT running

			T _A =–40 °C	to +105 °C				
Sym	Parameter	V _{CC} Note [3]	Min	Max	Typical @ 25°C	Units	Conditions	Notes
V _{CH}	Clock Input High Voltage	4.5V 5.5V	0.7 V _{CC} 0.7 V _{CC}	V _{CC} +0.3 V _{CC} +0.3	2.5 2.5	V V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	4.5V 5.5V	GND-0.3 GND-0.3	0.2 V _{CC} 0.2 V _{CC}	1.5 1.5	V V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V 5.5V	0.7 V _{CC} 0.7 V _{CC}	V _{CC} +0.3 V _{CC} +0.3	2.5 2.5	V V		
/ _{IL}	Input Low Voltage	4.5V 5.5V	GND-0.3 GND-0.3	0.2 V _{CC} 0.2 V _{CC}	1.5 1.5	V V		
V _{OH}	Output High Voltage Low EMI Mode	4.5V 5.5V	V _{CC} -0.4 V _{CC} -0.4		4.8 4.8	V V	I _{OH} = – 0.5 mA I _{OH} = – 0.5 mA	8 8
V _{OH1}	Output High Voltage	4.5V 4.5V	V _{CC} -0.4 V _{CC} -0.4		4.8 4.8	V V	l _{OH} = -2.0 mA l _{OH} = -2.0 mA	8 8
V _{OL}	Output Low Voltage Low EMI Mode	4.5V 5.5V		0.4 0.4	0.2 0.2	V V	$I_{OL} = 1.0 \text{ mA}$ $I_{OL} = 1.0 \text{ mA}$	
V _{OL1}	Output Low Voltage	4.5V 5.5V		0.4 0.4	0.1 0.1	V V	$I_{OL} = +4.0 \text{ mA}$ $I_{OL} = +4.0 \text{ mA}$	8 8
V _{OL2}	Output Low Voltage	4.5V 5.5V		1.2 1.2	0.5 0.5	V V	$I_{OL} = + 12 \text{ mA}$ $I_{OL} = + 12 \text{ mA}$	8 8
V _{RH}	Reset Input High Voltage	3.5V 5.5V	.8 V _{CC} .8 V _{CC}	V _{CC} V _{CC}	1.7 2.1	V V		13 13
V _{OLR}	Reset Output Low Voltage	3.5V 5.5V		0.6	0.3 0.2	V V	I _{OL} = 1.0 mA I _{OL} = 1.0 mA	13 13
VOFFSET	Comparator Input Offset Voltage	4.5V 5.5V		25 25	10 10	mV mV		
/ _{ICR}	Input Common Mode Voltage Range	4.5V 5.5V	0 0	V _{CC} -1.5V V _{CC} -1.5V		V V		10 10
IL	Input Leakage	4.5V 5.5V	-1 -1	2 2	<1 <1	μΑ μΑ	$V_{IN} = 0V, V_{CC}$ $V_{IN} = 0V, V_{CC}$	
OL	Output Leakage	4.5V 5.5V	-1 -1	2 2	<1 <1	μΑ μΑ	$V_{IN} = 0V, V_{CC}$ $V_{IN} = 0V, V_{CC}$	
IR	Reset Input Current	4.5V 5.5V	-18 -18	-180 -180	-112 -112	μΑ μΑ		
СС	Supply Current	4.5V 5.5V		25 25	20 20	mA mA	@ 16 MHz @ 16 MHz	4,5 4,5
CC1	Standby Current Halt Mode	4.5V 5.5V		8 8	3.7 3.7	mA mA	$V_{IN} = 0V, V_{CC}$ @ 16 MHz $V_{IN} = 0V, V_{CC}$ @ 16 MHz	4,5 4,5
CC2	Standby Current (Stop Mode)	4.5V 5.5V		10 10	2 3	μΑ μΑ	@ 16 MHz V _{IN} = 0V, V _{CC} V _{IN} = 0V, V _{CC}	6,11,14 6,11,14
ALL	Auto Latch Low Current	4.5V 5.5V	1.4 1.4	20 20	4.7 4.7	μΑ μΑ	$0V < V_{IN} < V_{CC}$ $0V < V_{IN} < V_{CC}$	9

Additional Timing Table

				T _A = -40 16 N	0 °C to + 1Hz	105 °C		
			V _{CC}		11 12			
No	Symbol	Parameter	Note [6]	Min	Max	Units	Conditions	Notes
1	ТрС	Input Clock Period	3.5V	62.5	DC	ns		1,7,8
			5.5V	62.5	DC	ns		1,7,8
2	TrC,TfC	Clock Input Rise &	3.5V		15	ns		1,7,8
		Fall Times	5.5V		15	ns		1,7,8
3	TwC	Input Clock Width	3.5V	31		ns		1,7,8
			5.5V	31		ns		1,7,8
4	TwTinL	Timer Input Low	3.5V	70		ns		1,7,8
		Width	5.5V	70		ns		1,7,8
5	TwTinH	Timer Input High	3.5V	5TpC				1,7,8
		Width	5.5V	5TpC				1,7,8
6	TpTin	Timer Input Period	3.5V	8TpC				1,7,8
	·	I	5.5V	8TpC				1,7,8
7	TrTin, TfTir	n Timer Input Rise	3.5V		100	ns		1,7,8
	,	& Fall Timer	5.5V		100	ns		1,7,8
8A	TwIL	Int. Request Low	3.5V	70		ns		1,2,7,8
		Time	5.5V	70		ns		1,2,7,8
8B	TwIL	Int. Request Low	3.5V	5TpC				1,3,7,8
		Time	5.5V	5TpC				1,3,7,8
9	TwIH	Int. Request Input	3.5V	5TpC				1,2,7,8
		High Time	5.5V	- 1 -				, , , , -
10	Twsm	STOP Mode	3.5V	12		ns		4,8
-	-	Recovery Width	5.5V	12		ns		4,8
		Spec						
11	Tost	Oscillator Startup	3.5V		5TpC			4,8
		Time	5.5V		5TpC			4,8
12	Twdt	Watch-Dog Timer	3.5V	10		ms	D0 = 0	5,11
		Delay Time	5.5V	5		ms	D1 = 0	5,11
		Before Timeout	3.5V	20		ms	D0 = 1	5,11
			5.5V	10		ms	D1 = 0	5,11
		-	3.5V	40		ms	D0 = 0	5,11
			5.5V	20		ms	D1 = 1	5,11
		-	3.5V	160		ms	D0 = 1	5,11
			5.5V	80		ms	D1 = 1	5,11

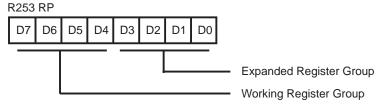
Notes:

- 1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.
- 2. Interrupt request via Port 3 (P31–P33)
- 3. Interrupt request via Port 3 (P30)
- 4. SMR-D5 = 1, POR STOP Mode Delay is on
- 5. Reg. WDTMR
- 6. The V_{CC} voltage spec. of 5.5V guarantees 5.0V \pm 0.5V.
- 7. SMR D1 = 0
- 8. Maximum frequency for internal system clock is 4 MHz when using XTAL divide-by-one mode.
- 9. For RC and LC oscillator, and for oscillator driven by clock driver.
- 10. Standard Mode (not Low EMI output ports)
- 11. Using internal RC

PIN FUNCTIONS (Continued)

Port 3 (P37-P30). Port 3 is an 8-bit, CMOS-compatible port with four fixed inputs (P33-P30) and four fixed outputs (P37–P34). These eight lines can be configured by software for interrupt and handshake control functions. Port 3, Pin 0 is Schmitt- triggered. P31, P32, and P33 are standard CMOS inputs with single trip point (no Auto Latches) and P34, P35, P36, and P37 are push-pull output lines. Low EMI output buffers can be globally programmed by the software. Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by setting the D1 of Port 3 Mode Register (P3M). The comparator output can be outputted from P34 and P37, respectively, by setting PCON register Bit D0 to 1 state. For the interrupt function, P30 and P33 are falling edge triggered interrupt inputs. P31 and P32 can be programmed as falling, rising or both edges triggered interrupt inputs (Figure 21). Access to Counter/Timer 1 is made through P31 (T_{IN}) and P36 (T_{OUT}). Handshake lines for Port 0, Port 1, and Port 2 are also available on Port 3 (Table 9).

Note: When enabling/ or disabling analog mode, the following is recommended:


- 1. Allow two NOP delays before reading this comparator output.
- 2. Disable global interrupts, switch to analog mode, clear interrupts, and then re-enable interrupts.
- 3. IRQ register bits 3 to 0 must be cleared after enabling analog mode.

Note: P33–P30 differs from the Z86C30/C31/C40 in that there is no clamping diode to V_{CC} due to the EPROM high-voltage circuits. Exceeding the V_{IH} maximum specification during standard operating mode may cause the device to enter EPROM mode.

Register File. The register file consists of three I/O port registers, 236/125 general-purpose registers, 15 control and status registers, and three system configuration registers in the expanded register group. The instructions can access registers directly or indirectly through an 8-bit address field. This allows a short 4-bit register address using the Register Pointer (Figure 24). In the 4-bit mode, the register file is divided into 16 working register groups, each

occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Note: Register Bank E0–EF can only be accessed through working register and indirect addressing modes. (This bank is available in Z86E30/E40 only.)

Default setting after RESET = 00000000

Figure 24. Register Pointer Register

Expanded Register File (ERF). The register file has been expanded to allow for additional system control registers, mapping of additional peripheral devices and input/output ports into the register address area. The Z8 register address space R0 through R15 is implemented as 16 groups of 16 registers per group (Figure 26). These register groups are known as the Expanded Register File (ERF).

The low nibble (D3–D0) of the Register Pointer (RP) select the active ERF group, and the high nibble (D7–D4) of register RP select the working register group. Three system configuration registers reside in the Expanded Register File at bank FH: PCON, SMR, and WDTMR. The rest of the Expanded Register is not physically implemented and is reserved for future expansion.

FUNCTIONAL DESCRIPTION (Continued)

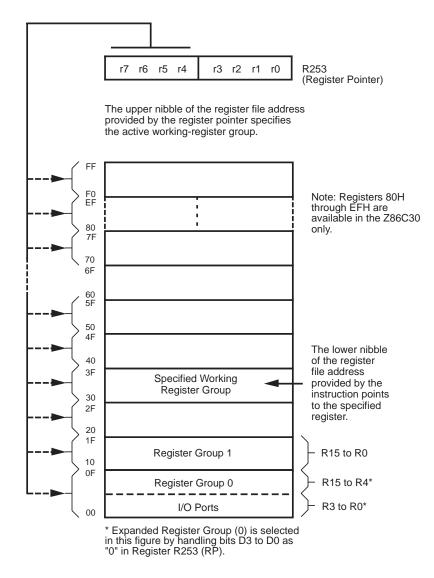


Figure 25. Register Pointer

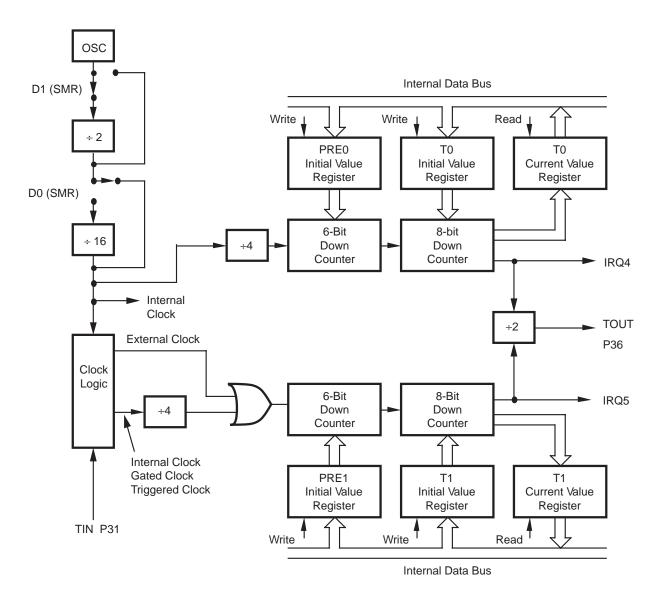
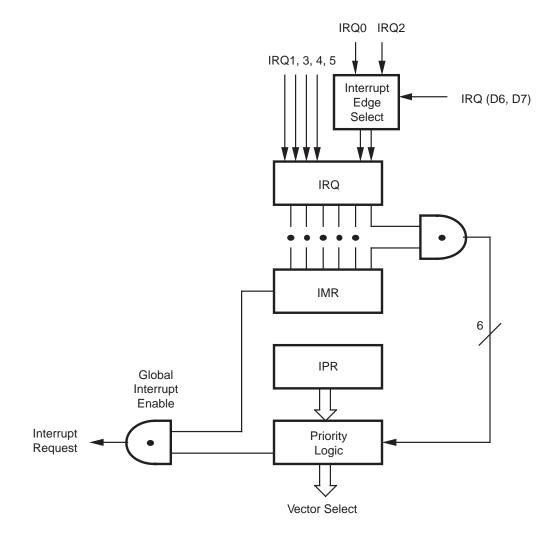



Figure 27. Counter/Timer Block Diagram

Interrupts. The MCU has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 28). The six sources are divided as follows: four sources are claimed by Port 3 lines P33–P30) and two

in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 10).

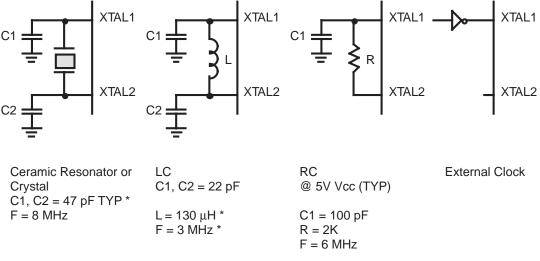
Table 10.	Interrupt Types,	Sources,	and Vectors
-----------	------------------	----------	-------------

Name	Source	Vector Location	Comments
IRQ0	DAV0, IRQ0	0, 1	External (P32), Rising/Falling Edge Triggered
IRQ1	IRQ1	2, 3	External (P33), Falling Edge Triggered
IRQ2	DAV2, IRQ2, T _{IN}	4, 5	External (P31), Rising/Falling Edge Triggered
IRQ3	IRQ3	6, 7	External (P30), Falling Edge Triggered
IRQ4	Т0	8, 9	Internal
IRQ5	TI	10, 11	Internal

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register (IPR). An interrupt machine cycle is activated when an interrupt request is granted. Thus, disabling all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.


Programming bits for the Interrupt Edge Select are located in bits D7 and D6 of the IRQ Register (R250). The configuration is shown in Table 11. Table 11. IRQ Register Configuration

D7			
Di	D6	P31	P32
0	0	F	F
0	1	F	R
1	0	R	F
1	1	R/F	R/F

R = Rising Edge

Clock. The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 10 KHz to 16 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the vendor's recommended capacitor values from each pin directly to device pin Ground. The RC oscillator option can be selected in the programming mode. The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL1 to Ground (Figure 29).

* Typical value including pin parasitics

Figure 29. Oscillator Configuration

Comparator Output Port 3 (D0). Bit 0 controls the comparator output in Port 3. A "1" in this location brings the comparator outputs to P34 and P37, and a "0" releases the Port to its standard I/O configuration. The default value is 0.

Port 1 Open-Drain (D1). Port 1 can be configured as an open-drain by resetting this bit (D1=0) or configured as push-pull active by setting this bit (D1=1). The default value is 1.

Port 0 Open-Drain (D2). Port 0 can be configured as an open-drain by resetting this bit (D2=0) or configured as push-pull active by setting this bit (D2=1). The default value is 1.

Low EMI Port 0 (D3). Port 0 can be configured as a Low EMI Port by resetting this bit (D3=0) or configured as a Standard Port by setting this bit (D3=1). The default value is 1.

Low EMI Port 1 (D4). Port 1 can be configured as a Low EMI Port by resetting this bit (D4=0) or configured as a Standard Port by setting this bit (D4=1). The default value is 1. **Note:** The emulator does not support Port 1 low EMI mode and must be set D4 = 1.

Low EMI Port 2 (D5). Port 2 can be configured as a Low EMI Port by resetting this bit (D5=0) or configured as a Standard Port by setting this bit (D5=1). The default value is 1.

Low EMI Port 3 (D6). Port 3 can be configured as a Low EMI Port by resetting this bit (D6=0) or configured as a Standard Port by setting this bit (D6=1). The default value is 1.

Low EMI OSC (D7). This bit of the PCON Register controls the low EMI noise oscillator. A "1" in this location configures the oscillator with standard drive. While a "0" configures the oscillator with low noise drive, however, it does not affect the relationship of SCLK and XTAL. The low EMI mode will reduce the drive of the oscillator (OSC). The default value is 1. **Note:** 4 MHz is the maximum external clock frequency when running in the low EMI oscillator mode.

Stop-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of Stop-Mode Recovery (Figure 31). All bits are Write Only except bit 7 which is a Read Only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a power-on cycle. Bit 6 controls whether a low or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4 of the SMR register specify the Stop-Mode Recovery Source. The SMR is located in Bank F of the Expanded Register Group at address 0BH.

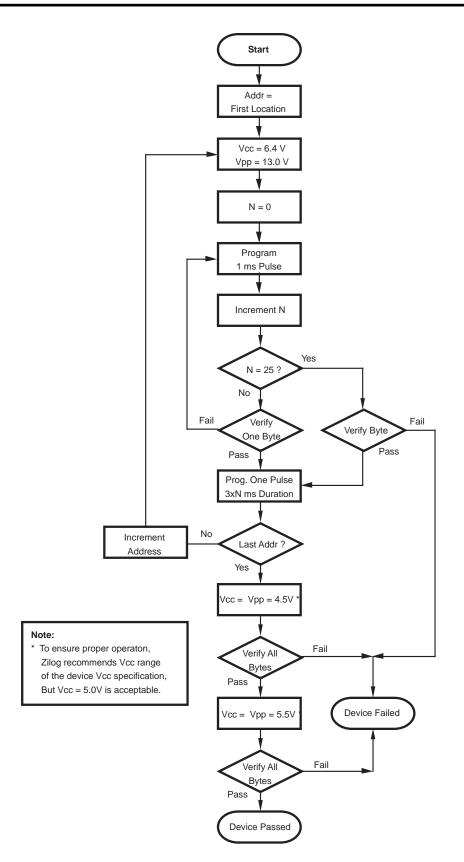
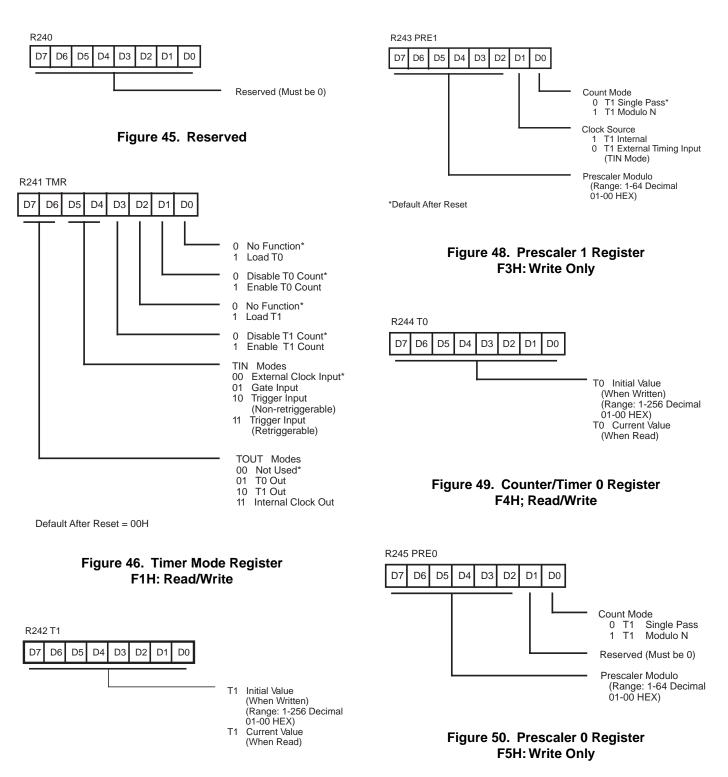
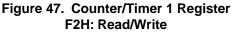




Figure 40. Z86E40 Programming Algorithm

Z8 CONTROL REGISTER DIAGRAMS

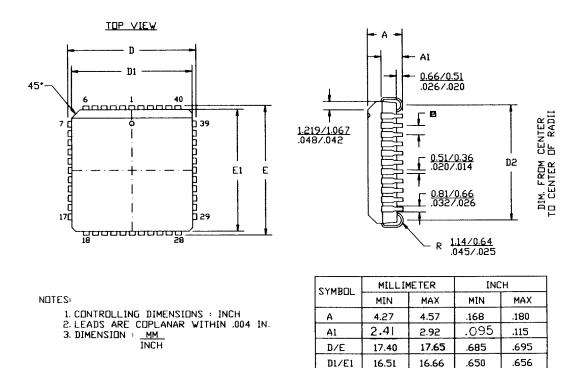
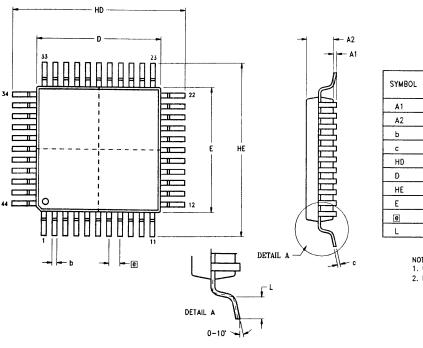


Figure 62. 44-Pin PLCC Package Diagram

D2


e

15.24

1.27 TYP

16.00

.600

SYMBOL	MILLIMETER		INCH	
	MIN	МАХ	MIN	MAX
A1	0.05	0.25	.002	.010
A2	2.00	2.25	.078	.089
b	0.25	0.45	.010	.018
с	0.13	0.20	.005	.008
HD	13.70	14.15	.539	.557
D	9.90	10.10	.390	.398
HE	13.70	14.15	.539	.557
E	9.90	10.10	.390	.398
θ	0.80 TYP		.0315	5 TYP
L	0.60	1.20	.024	.047

.630

.050 TYP

Figure 63. 44-Pin LQFP Package Diagram

NOTES: 1. CONTROLLING DIMENSIONS : MILLIMETER 2. LEAD COPLANARITY : MAX .10 .004"

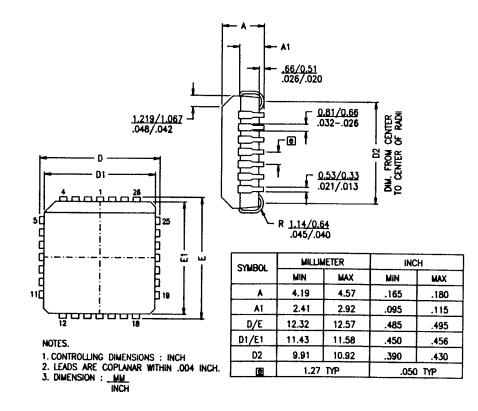


Figure 66. 28-Pin PLCC Package Diagram

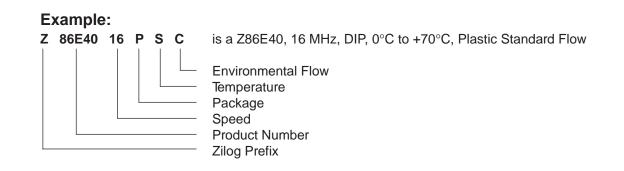
ORDERING INFORMATION

Z86E40 (16 MHz)

40-Pin DIP	44-Pin PLCC	44-Pin LQFP
Z86E4016PSC	Z86E4016VSC	Z86E4016FSC
Z86E4016PEC	Z86E4016VEC	Z86E4016FEC

Z86E30 (16 MHz)

28-Pin DIP	28-Pin SOIC	28-Pin PLCC
Z86E3016PSC	Z86E3016SSC	Z86E3016VSC
Z96E3016PEC	Z86E3016SEC	Z86E3016VEC


Z86E31 (16 MHz)

28-Pin DIP	28-Pin SOIC	28-Pin PLCC
Z86E3116PSC	Z86E3116SSC	Z86E3116VSC
Z86E3116PEC	Z86E3116SEC	Z86E3116VEC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package	Temperature	
P = Plastic DIP	S = 0 °C to +70 °C E = -40 °C to +105 °C	
V = Plastic Leaded Chip Carrier		
F = Plastic Quad Flat Pack	Speed	
	16 = 16 MHz	
S = SOIC (Small Outline Integrated Circuit)	Environmental	
	C= Plastic Standard	

E = Hermetic Standard

Zilog

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at <u>http://www.zilog.com/kb</u>.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.