

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	LINbus, LPC, SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	496 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 6x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	24-SDIP (0.300", 7.62mm)
Supplier Device Package	24-SDIP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f203kp-g-sh-sne2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MB95200H/210H Series

Contents

Product Line-up	3
Packages and Corresponding Products	4
Differences Among Products And Notes	
On Product Selection	4
Pin Assignment	5
Pin Description (MB95200H Series 24 pins)	6
Pin Description (MB95200H Series 20 pins)	8
Pin Description (MB95210H Series)	10
I/O Circuit Type	11
Notes on Device Handling	13
Pin Connection	13
Block Diagram (MB95200H Series)	15
Block Diagram (MB95210H Series)	16
CPU Core	17
I/O Map (MB95200H Series)	18
I/O Map (MB95210H Series)	22
- · · · · · · · · · · · · · · · · · · ·	

Interrupt Source Table (MB95200H Series)	26 27
Electrical Characteristics	
Absolute Maximum Ratings	28
Recommended Operating Conditions	30
DC Characteristics	31
AC Characteristics	34
A/D Converter	49
Flash Memory Program/Erase Characteristics	53
Sample Electrical Characteristics	54
Mask Options	60
Ordering Information	60
Package Dimensions	61
Major Changes	65
Document History	65

7. Pin Description (MB95210H Series)

Pin no.	Pin name	I/O circuit type*	Function
1	V _{SS}	—	Power supply pin (GND)
2	V _{CC}	_	Power supply pin
3	С	—	Capacitor connection pin
4	RSTX/PF2	А	General-purpose I/O port This pin is also used as a reset pin. This pin is a dedicated reset pin in MB95F214H/F213H/F212H.
5	P04/INT04/AN04/HCLK1 /EC0	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the external clock input. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.
6	P05/AN05/TO00/HCLK2	E	General-purpose I/O port High-current port This pin is also used as the A/D converter analog input. This pin is also used as the 8/16-bit composite timer ch. 0 output. This pin is also used as the external clock input.
7	P06/INT06/TO01	G	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the 8/16-bit composite timer ch. 0 output.
8	P12/EC0/DBG	Н	General-purpose I/O port This pin is also used as the DBG input pin. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.

*: For the I/O circuit types, see "8.I/O Circuit Type".

8. I/O Circuit Type

Address	Register abbreviation	Register name	R/W	Initial value
004A _H	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000 _B
004B _H	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	00000000 _B
004C _H to 004F _H	—	(Disabled)	_	_
0050 _H	SCR	LIN-UART serial control register	R/W	00000000 _B
0051 _H	SMR	LIN-UART serial mode register	R/W	00000000 _B
0052 _H	SSR	LIN-UART serial status register	R/W	00001000 _B
0053 _H	RDR/TDR	LIN-UART receive/transmit data register	R/W	00000000 _B
0054 _H	ESCR	LIN-UART extended status control register	R/W	00000100 _B
0055 _H	ECCR	LIN-UART extended communication control register	R/W	000000XX _B
0056 _H to 006B _H	—	(Disabled)	_	_
006C _H	ADC1	8/10-bit A/D converter control register 1	R/W	00000000 _B
006D _H	ADC2	8/10-bit A/D converter control register 2	R/W	00000000 _B
006E _H	ADDH	8/10-bit A/D converter data register (Upper)	R/W	00000000 _B
006F _H	ADDL	8/10-bit A/D converter data register (Lower)	R/W	00000000 _B
0070 _H to 0071 _H	_	(Disabled)	_	_
0072 _H	FSR	Flash memory status register	R/W	000X0000 _B
0073 _H to 0075 _H	—	(Disabled)	_	_
0076 _H	WREN	Wild register address compare enable register	R/W	00000000 _B
0077 _H	WROR	Wild register data test setting register	R/W	00000000 _B
0078 _H	—	Mirror of register bank pointer (RP) and direct bank pointer (DP)		_
0079 _H	ILR0	Interrupt level setting register 0	R/W	11111111 _B
007A _H	ILR1	Interrupt level setting register 1	R/W	11111111 _B
007B _H	ILR2	Interrupt level setting register 2	R/W	11111111 _B
007C _H	ILR3	Interrupt level setting register 3	R/W	11111111 _B
007D _H	ILR4	Interrupt level setting register 4	R/W	11111111 _B
007E _H	ILR5	Interrupt level setting register 5	R/W	11111111 _B
007F _H		(Disabled)		_
0F80 _H	WRARH0	Wild register address setting register (Upper) ch. 0	R/W	00000000 _B (Continued)

Address	Register abbreviation	Register name	R/W	Initial value
004A _H	EIC20	External interrupt circuit control register ch. 4	R/W	00000000 _B
004B _H	EIC30	External interrupt circuit control register ch. 6	R/W	00000000 _B
004C _H to 004F _H	—	(Disabled)	—	—
0050 _H		(Disabled)	—	_
0051 _H		(Disabled)		
0052 _H		(Disabled)		_
0053 _H	_	(Disabled)	—	_
0054 _H		(Disabled)	—	—
0055 _H	—	(Disabled)	—	—
0056 _H to 006B _H	_	(Disabled)	—	_
006C _H	ADC1	8/10-bit A/D converter control register 1	R/W	00000000 _B
006D _H	ADC2	8/10-bit A/D converter control register 2	R/W	00000000 _B
006E _H	ADDH	8/10-bit A/D converter data register (Upper)	R/W	00000000 _B
006F _H	ADDL	8/10-bit A/D converter data register (Lower)	R/W	00000000 _B
0070 _H to 0071 _H	_	(Disabled)	—	_
0072 _H	FSR	Flash memory status register	R/W	000X0000 _B
0073 _H to 0075 _H	_	(Disabled)	—	_
0076 _H	WREN	Wild register address compare enable register	R/W	00000000 _B
0077 _H	WROR	Wild register data test setting register	R/W	00000000 _B
0078 _H	_	Mirror of register bank pointer (RP) and direct bank pointer (DP)	—	—
0079 _H	ILR0	Interrupt level setting register 0	R/W	11111111 _B
007A _H	ILR1	Interrupt level setting register 1	R/W	11111111 _B
007B _H	—	(Disabled)	—	—
007C _H	—	(Disabled)	—	—
007D _H	ILR4	Interrupt level setting register 4	R/W	11111111 _B
007E _H	ILR5	Interrupt level setting register 5	R/W	11111111 _B
007F _H	—	(Disabled)	—	_
0F80 _H	WRARH0	Wild register address setting register (Upper) ch. 0	R/W	00000000 _B
0F81 _H	WRARL0	Wild register address setting register (Lower) ch. 0	R/W	00000000 _B
0F82 _H	WRDR0	Wild register data setting register ch. 0	R/W	00000000 _B
				(Continued)

/	appreviation	-		
0F83 _H	WRARH1	Wild register address setting register (Upper) ch. 1	R/W	00000000 _B
0F84 _H	WRARL1	Wild register address setting register (Lower) ch. 1	R/W	00000000 _B
0F85 _H	WRDR1	Wild register data setting register ch. 1	R/W	00000000 _B
0F86 _H	WRARH2	Wild register address setting register (Upper) ch. 2	R/W	00000000 _B
0F87 _H	WRARL2	Wild register address setting register (Lower) ch. 2	R/W	00000000 _B
0F88 _H	WRDR2	Wild register data setting register ch. 2	R/W	00000000 _B
0F89 _H to 0F91 _H	_	(Disabled)	_	_
0F92 _H	T01CR0	8/16-bit composite timer 01 status control register 0 ch. 0	R/W	00000000 _B
0F93 _H	T00CR0	8/16-bit composite timer 00 status control register 0 ch. 0	R/W	00000000 _B
0F94 _H	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	00000000 _B
0F95 _H	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	00000000 _B
0F96 _H	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	00000000 _B
0F97 _H		(Disabled)		
0F98 _H	_	(Disabled)	—	_
0F99 _H	_	(Disabled)	—	_
0F9A _H	_	(Disabled)	—	_
0F9B _H	_	(Disabled)	—	_
0F9C _H to 0FBB _H	_	(Disabled)	_	_
0FBC _H	_	(Disabled)	—	_
0FBD _H		(Disabled)		
0FBE _H to 0FC2 _H		(Disabled)	_	_
0FC3 _H	AIDRL	A/D input disable register (Lower)	R/W	00000000 _B
0FC4 _H to 0FE3 _H	—	(Disabled)	_	_
0FE4 _H	CRTH	Main CR clock trimming register (Upper)	R/W	1XXXXXXAB
0FE5 _H	CRTL	Main CR clock trimming register (Lower)	R/W	000XXXXX _B
0FE6 _H to 0FE7 _H	_	(Disabled)	_	_
0FE8 _H	SYSC	System configuration register	R/W	11000011 _B

18. Electrical Characteristics

18.1 Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Bemerke		
raiailleter	Symbol	Min	Max	Unit	Remarks		
Power supply voltage*1	V _{CC}	V _{SS} -0.3	V _{SS} +6	V			
	V _{I1}	V _{SS} -0.3	V _{CC} +0.3	V	Other than PF2*2		
input voltage	V _{I2}	V _{SS} -0.3	10.5	V	PF2		
Output voltage*1	V _O	V _{SS} -0.3	V _{SS} +6	V	*2		
Maximum clamp current	I _{CLAMP}	-2	+2	mA	Applicable to pins listed in *3		
Total maximum clamp current	$\Sigma _{CLAMP} $	_	20	mA	Applicable to pins listed in *3		
"L" level maximum output	I _{OL1}		15	mA	Other than P05, P06, P62 and P63*4		
current	I _{OL2}		15		P05, P06, P62 and P63*4		
"I " lovel average current	I _{OLAV1}		4	m۸	Other than P05, P06, P62 and P63* ⁴ Average output current = operating current × operating ratio (1 pin)		
	I _{OLAV2}		12		P05, P06, P62 and P63 ^{*4} Average output current = operating current × operating ratio (1 pin)		
"L" level total maximum output current	ΣI_{OL}	—	100	mA			
"L" level total average output current	ΣI_{OLAV}	_	50	mA	Total average output current = operating current × operating ratio (Total number of pins)		
"H" level maximum output	I _{OH1}		-15	mA	Other than P05, P06, P62 and P63*4		
current	I _{OH2}		-15		P05, P06, P62 and P63*4		
"H" lovel average current	I _{OHAV1}		-4	m۸	Other than P05, P06, P62 and P63 ^{*4} Average output current = operating current × operating ratio (1 pin)		
Theveraverage current	I _{OHAV2}		-8		P05, P06, P62 and P63 ^{*4} Average output current = operating current × operating ratio (1 pin)		
"H" level total maximum output current	Σl _{OH}	—	-100	mA			
"H" level total average output current	ΣI_{OHAV}	_	-50	mA	Total average output current = operating current × operating ratio (Total number of pins)		
Power consumption	Pd		320	mW			
Operating temperature	T _A	-40	+85	°C			
Storage temperature	Tstg	-55	+150	°C			

- *1: The parameter is based on V_{SS} = 0.0 V.
- *2: V_I and V_O must not exceed V_{CC}+0.3 V. V_I must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V_I rating.
- *3: Applicable to the following pins: P00 to P07, P62 to P64, PG1, PG2, PF0, PF1 (P00 to P03, P07, P62 to P64, PG1, PG2, PF0 and PF1 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.)
 - Use under recommended operating conditions.
 - · Use with DC voltage (current).
 - The HV (High Voltage) signal is an input signal exceeding the V_{CC} voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
 - The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current of stationary current.
 - When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the V_{CC} pin, affecting other devices.
 - If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
 - If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
 - Do not leave the HV (High Voltage) input pin unconnected.
 - · Example of a recommended circuit:

*4: P62 and P63 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

WARNING: A semiconductor device may be damaged by applying stress (voltage, current, temperature, etc.) in excess of the absolute maximum rating. Therefore, ensure that not a single parameter exceeds its absolute maximum rating.

Paramatar	Symbol	Symbol Bin nome	Condition		Value	•	Unit	Bomarka
Farameter	Symbol	Fininame	Condition	Min	Тур	Max	Unit	Remarks
Input capacitance	C _{IN}	Other than V_{CC} and V_{SS}	f = 1 MHz	_	5	15	pF	
Power supply current* ⁴			V _{CC} = 5.5 V F _{CH} = 32 MHz	_	13	17	mA	Flash memory product (except writing and erasing)
	I _{CC}		F _{MP} = 16 MHz Main clock mode (divided by 2)		33.5	39.5	mA	Flash memory product (at writing and erasing)
				_	15	21	mA	At A/D conversion
	I _{CCS}	V _{CC} (External clock operation)	$V_{CC} = 5.5 V$ $F_{CH} = 32 MHz$ $F_{MP} = 16 MHz$ Main sleep mode (divided by 2)		5.5	9	mA	
	I _{CCL}		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subclock mode (divided by 2) $T_A = +25 \text{ °C}$		65	153	μA	
	I _{CCLS}		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subsleep mode (divided by 2) $T_A = +25 \text{ °C}$		10	84	μA	
	I _{CCT}		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ Watch mode Main stop mode $T_A = +25^{\circ}C$	_	5	30	μA	

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40°C to +85°C)

(Continued)

Parameter	Cumb al	Din nome	Condition		Value		Unit	Domoriko
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	I _{CCMCR}	V	$V_{CC} = 5.5 V$ $F_{CRH} = 10 MHz$ $F_{MP} = 10 MHz$ Main CR clock mode	Ι	8.6	Ι	mA	
	I _{CCSCR}	VCC	$V_{CC} = 5.5 V$ Sub-CR clock mode (divided by 2) $T_A = +25 \degree C$	_	110	410	μA	
	I _{CCTS}	V _{CC} (External clock	$V_{CC} = 5.5 V$ $F_{CH} = 32 MHz$ Timebase timer mode $T_A = +25 \text{ °C}$		1.1	3	mA	
Power supply current ^{*4}	I _{ССН}	operation)	$V_{CC} = 5.5 V$ Substop mode $T_A = +25 \text{ °C}$	_	3.5	22.5	μA	Main stop mode for single clock selection
	I _{LVD}		Current consumption for low-voltage detection circuit only	_	37	54	μA	
	I _{CRH}	V _{CC}	Current consumption for the internal main CR oscillator	_	0.5	0.6	mA	
	I _{CRL}		Current consumption for the internal sub-CR oscillator oscillating at 100 kHz	_	20	72	μA	

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

*1: The input level of P04 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.

*2: P62 and P63 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

*3: P00 to P03, P07, PG1 and PG2 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

*4: The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (I_{LVD}) to a specified value. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the low-voltage detection circuit, the current consumption of the low-voltage detection circuit, the current consumption of the CR oscillators (I_{CRH}, I_{CRL}) and a specified value. In on-chip debug mode, the CR oscillator (I_{CRH}) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

• See "18.4. AC Characteristics: 18.4.1.Clock Timing" for F_{CH} and F_{CL}.

• See "18.4. AC Characteristics: 18.4.2. Source Clock/Machine Clock" for F_{MP} and F_{MPL}.

*5 : PF2 act as high voltage supply for the flash memory during program and erase. It can tolerate high voltage input. For details, see section "18.6. Flash Memory Program/Erase Characteristics".

18.4.6 LIN-UART Timing (Available in MB95F204H/F203H/F202H/F204K/F203K/F202K only)

Sampling is executed at the rising edge of the sampling clock^{*1}, and serial clock delay is disabled^{*2}.(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0) $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

Paramotor	Symbol	Din nama	Condition	Va	Unit	
Falameter	Symbol	Fill liaille	Condition	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} * ³	_	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVI}	SCK, SOT	Internal clock	-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	t _{IVSHI}	SCK, SIN	$C_L = 80 \text{ pF}+1 \text{ TTL}$	t _{MCLK} * ³ +190	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	t _{SHIXI}	SCK, SIN		0	—	ns
Serial clock "L" pulse width	t _{SLSH}	SCK		3 t _{MCLK} * ³ –t _R	_	ns
Serial clock "H" pulse width	t _{SHSL}	SCK		t _{MCLK} * ³ +95	—	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVE}	SCK, SOT	External clock	—	2 t _{MCLK} * ³ +95	ns
Valid SIN \rightarrow SCK \uparrow	t _{IVSHE}	SCK, SIN	operation output pin:	190	_	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	t _{SHIXE}	SCK, SIN	$C_L = 80 \text{ pF}+1 \text{ TTL}$	t _{MCLK} * ³ +95	_	ns
SCK fall time	t _F	SCK			10	ns
SCK rise time	t _R	SCK		_	10	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

*3: See "18.4.2. Source Clock/Machine Clock" for t_{MCLK}.

Sampling is executed at the rising edge of the sampling $clock^{*1}$, and serial clock delay is $enabled^{*2}$.(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

Parameter	Symbol	Din nomo	Condition	Va	Unit	
Farameter	Symbol	Fininame	Condition	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} * ³	—	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVI}	SCK, SOT	Internal clock	-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	t _{IVSLI}	SCK, SIN	operation output pin:	t _{MCLK} * ³ +190	—	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	t _{SLIXI}	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ IIL}$	0	—	ns
$SOT \rightarrow SCK \downarrow delay time$	t _{SOVLI}	SCK, SOT			4 t _{MCLK} * ³	ns

 $(V_{CC} = 5.0 \text{ V}\pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

*3: See "18.4.2. Source Clock/Machine Clock" for t_{MCLK}.

18.5.2 Notes on Using the A/D Converter

External impedance of analog input and its sampling time

The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 µF to the analog input pin.

A/D conversion error

As $|V_{CC}-V_{SS}|$ decreases, the A/D conversion error increases proportionately.

- 18.5.3 Definitions of A/D Converter Terms
- Resolution

It indicates the level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

■ Linearity error (unit: LSB)

It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") of a device to the full-scale transition point ("11 1111 1111" $\leftarrow \rightarrow$ "11 1111 1110") of the same device.

- Differential linear error (unit: LSB) It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.
- Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

(Continued)

19. Sample Electrical Characteristics

Power supply current-temperature

(Continued)

20. Mask Options

No.	Part Number	MB95F204H MB95F203H MB95F202H MB95F214H MB95F213H MB95F212H	MB95F204K MB95F203K MB95F202K MB95F214K MB95F213K MB95F212K	
	Selection Method	Setting disabled	Setting disabled	
1	Low-voltage detection reset •With low-voltage detection reset •Without low-voltage detection reset	Without low-voltage detection reset	With low-voltage detection reset	
2	Reset •With dedicated reset input •Without dedicated reset input	With dedicated reset input	Without dedicated reset input	

21. Ordering Information

Part Number	Package
MB95F204HP-G-SH-SNE2 MB95F204KP-G-SH-SNE2 MB95F203HP-G-SH-SNE2 MB95F203KP-G-SH-SNE2 MB95F202HP-G-SH-SNE2 MB95F202KP-G-SH-SNE2	24-pin plastic SDIP (DIP-24P-M07)
MB95F204HPF-G-SNE2 MB95F204KPF-G-SNE2 MB95F203HPF-G-SNE2 MB95F203KPF-G-SNE2 MB95F202HPF-G-SNE2 MB95F202KPF-G-SNE2	20-pin plastic SOP (FPT-20P-M09)
MB95F214HPH-G-SNE2 MB95F214KPH-G-SNE2 MB95F213HPH-G-SNE2 MB95F213KPH-G-SNE2 MB95F212HPH-G-SNE2 MB95F212KPH-G-SNE2	8-pin plastic DIP (DIP-8P-M03)
MB95F214HPF-G-SNE2 MB95F214KPF-G-SNE2 MB95F213HPF-G-SNE2 MB95F213KPF-G-SNE2 MB95F212HPF-G-SNE2 MB95F212KPF-G-SNE2	8-pin plastic SOP (FPT-8P-M08)

23. Major Changes

Spansion Publication Number: DS07-12623-5E

Page	Section	Change results
30	Electrical Characteristics 1. Absolute Maximum Ratings	Changed the characteristics of Input voltage.
33		Corrected the maximum value of "H" level input voltage for PF2 pin. $V_{CC} + 0.3 \rightarrow 10.5$
	3. DC Characteristics	Corrected the maximum value of Open-drain output application voltage. 0.2Vcc \rightarrow Vss $+$ 5.5
36		Added the footnote *5.
39	4. AC Characteristics (1) Clock Timing	Added a figure of HCLK1/HCLK2.
42	(2) Source Clock/Machine Clock	Corrected the graph of Operating voltage - Operating frequency (with the on-chip debug function). (Corrected the pitch)
43	(3) External Reset	Added "and power on" to the remarks column.
58	6. Flash Memory Program/Erase Characteristics	Added the row of "Current drawn on PF2".
		Corrected the minimum value of Power supply voltage at erase/program. 4.5 \rightarrow 3.0

Note: Please see "Document History" about later revised information.

Document History

Document Title: MB95200H/210H Series F ² MC-8FX 8-bit Microcontroller Document Number: 002-07463							
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
**	-	AKIH	07/16/2010	Migrated to Cypress and assigned document number 002-07463. No change to document contents or format.			
*A	5177811	AKIH	03/18/2016	Updated to Cypress format.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hardby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system control and evice or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.