

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status Core Processor Core Size Speed Connectivity	Obsolete F ² MC-8FX 8-Bit 16MHz
Core Size Speed	8-Bit 16MHz
Speed	16MHz
·	
Connectivity	-
Peripherals	LVD, POR, PWM, WDT
Number of I/O	5
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	240 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 2x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f212kpf-g-sne2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Product Line-up

Part number Parameter	MB95 F204H	MB95 F203H	MB95 F202H	MB95 F204K	MB95 F203K	MB95 F202K	MB95 F214H	MB95 F213H	MB95 F212H	MB95 F214K	MB95 F213K	MB95 F212K	
Туре	Flash me	emory pro	duct										
Clock supervisor counter	It superv	vises the r	nain clocł	c oscillatio	on.								
ROM capacity	16 KB	8 KB	8 KB 4 KB 16 KB 8 KB 4 KB 16 KB 8 KB 4 KB 16 KB 8 KB										
RAM capacity	496 B	496 B 496 B 240 B 496 B 496 B 240 B 496 B 496 B 240 B 496 B									496 B	240 B	
Low-voltage detection reset		No Yes No Yes											
Reset input	Dedicate	ed		Software	e select		Dedicate	ed		Software	e select		
CPU functions	Instruction Instruction Data bit Minimum	umber of basic instructions: 136struction bit length: 8 bitsstruction length: 1 to 3 bytesata bit length: 1, 8, and 16 bitsinimum instruction execution time: 61.5 ns (with machine clock = 16.25 MHz)terrupt processing time: 0.6 μs (with machine clock = 16.25 MHz)											
General-purpose I/O		O ports (Max): 16 I/O ports (Max): 17 I/O ports (Max): 4 I/O ports (Max): 5 MOS: 15, N-ch: 1 CMOS: 15, N-ch: 2 CMOS: 3, N-ch: 1 CMOS: 3, N-ch: 2										!	
Timebase timer	Interrupt	nterrupt cycle : 0.256 ms - 8.3 s (when external clock = 4 MHz)											
Hardware/softwa re watchdog timer	Main oso	Reset generation cycle Main oscillation clock at 10 MHz : 105 ms (Min) The sub-CR clock can be used as the source clock of the hardware watchdog.											
Wild register	It can be	e used to i	eplace th	ree bytes	of data.								
LIN-UART	by a ded It has a f Clock-sy clock-as	ange of co licated rel full duplex nchronize ynchroniz function c	oad timer double b ed serial c ed serial	uffer. lata trans data trans	fer and sfer is ena	abled.	No LIN-I	JART					
8/10-bit A/D	6 ch.						2 ch.						
converter	8-bit or 1	10-bit reso	olution car	n be selec	ted.								
	2 ch.						1 ch.						
8/16-bit composite timer	lt has buil Count clo	The timer can be configured as an "8-bit timer x 2 channels" or a "16-bit timer x 1 channel". It has built-in timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave.											
	6 ch.						2 ch.						
External interrupt		nterrupt by edge detection (rising edge, falling edge, or both edges can be selected.) t can be used to wake up the device from standby modes.											
On-chip debug		erial contr rts serial v		synchron	ous mode	e)							

(Continued)

Part number Parameter												MB95 F212K
Watch prescaler	Eight diff	ferent time	e intervals	can be s	elected.							
Flash memory	It supports automatic programming, Embedded Algorithm, write/erase/erase-suspend/erase-resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Number of write/erase cycles: 100000 Data retention time: 20 years For write/erase, external Vpp(+10 V) input is required. Flash Security Feature for protecting the contents of the flash											
Standby mode	Sleep m	Sleep mode, stop mode, watch mode, timebase timer mode										
Package		SDIP-24 DIP-8 SOP-20 SOP-8										

2. Packages and Corresponding Products

Part number Package	MB95 F204H	MB95 F203H	MB95 F202H	MB95 F204K	MB95 F203K	MB95 F202K	MB95 F214H	MB95 F213H	MB95 F212H	MB95 F214K	MB95 F213K	MB95 F212K
24-pin plastic SDIP	0	0	0	0	0	0	Х	Х	Х	Х	Х	х
20-pin plastic SOP	0	0	0	0	0	0	Х	Х	Х	Х	Х	х
8-pin plastic DIP	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0
8-pin plastic SOP	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0

O: Available

X: Unavailable

3. Differences Among Products And Notes On Product Selection

Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/program. For details of current consumption, see "18.Electrical Characteristics".

Package

For details of information on each package, see "2.Packages and Corresponding Products" and "22.Package Dimensions".

Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not.

For details of the operating voltage, see "18. Electrical Characteristics".

On-chip debug function

The on-chip debug function requires that V_{CC} , V_{SS} and 1 serial-wire be connected to an evaluation tool. In addition, if the flash memory data has to be updated, the RSTX/PF2 pin must also be connected to the same evaluation tool.

6. Pin Description (MB95200H Series 20 pins)

Pin no.	Pin name	I/O circuit type*	Function
1	PF0/X0	В	General-purpose I/O port This pin is also used as the main clock input oscillation pin.
2	PF1/X1	В	General-purpose I/O port This pin is also used as the main clock input/output oscillation pin.
3	V _{SS}	—	Power supply pin (GND)
4	PG2/X1A	С	General-purpose I/O port This pin is also used as the subclock input/output oscillation pin.
5	PG1/X0A	С	General-purpose I/O port This pin is also used as the subclock input oscillation pin.
6	V _{CC}	—	Power supply pin
7	С	_	Capacitor connection pin
8	PF2/RSTX	A	General-purpose I/O port This pin is also used as a reset pin. This pin is a dedicated reset pin in MB95F204H/F203H/F202H.
9	P62/TO10	D	General-purpose I/O port High-current port This pin is also used as the 8/16-bit composite timer ch. 1 output.
10	P63/TO11	D	General-purpose I/O port High-current port This pin is also used as the 8/16-bit composite timer ch. 1 output.
11	P64/EC1	D	General-purpose I/O port This pin is also used as the 8/16-bit composite timer ch. 1 clock input.
12	P00/AN00	E	General-purpose I/O port This pin is also used as the A/D converter analog input.
13	P01/AN01	E	General-purpose I/O port This pin is also used as the A/D converter analog input.
14	P02/INT02/AN02/SCK	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the LIN-UART clock I/O.
15	P03/INT03/AN03/SOT	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the LIN-UART data output.
16	P04/INT04/AN04/SIN /HCLK1/EC0	F	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the LIN-UART data input. This pin is also used as the external clock input. This pin is also used as the external clock input.

7. Pin Description (MB95210H Series)

Pin no.	Pin name	I/O circuit type*	Function
1	V _{SS}	_	Power supply pin (GND)
2	V _{CC}		Power supply pin
3	С		Capacitor connection pin
4	RSTX/PF2	A	General-purpose I/O port This pin is also used as a reset pin. This pin is a dedicated reset pin in MB95F214H/F213H/F212H.
5	P04/INT04/AN04/HCLK1 /EC0	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the external clock input. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.
6	P05/AN05/TO00/HCLK2	E	General-purpose I/O port High-current port This pin is also used as the A/D converter analog input. This pin is also used as the 8/16-bit composite timer ch. 0 output. This pin is also used as the external clock input.
7	P06/INT06/TO01	G	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the 8/16-bit composite timer ch. 0 output.
8	P12/EC0/DBG	Н	General-purpose I/O port This pin is also used as the DBG input pin. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.

*: For the I/O circuit types, see "8.I/O Circuit Type".

8. I/O Circuit Type

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FE6 _H to 0FE7 _H	—	(Disabled)		—
0FE8 _H	SYSC	System configuration register	R/W	11000011 _B
0FE9 _H	CMCR	Clock monitoring control register	R/W	XX000000 _B
0FEA _H	CMDR	Clock monitoring data register	R/W	00000000 _B
0FEB _H	WDTH	Watchdog timer selection ID register (Upper)	R/W	XXXXXXXXB
0FEC _H	WDTL	Watchdog timer selection ID register (Lower)	R/W	XXXXXXXXB
0FED _H	_	(Disabled)	_	—
0FEE _H	ILSR	Input level select register	R/W	00000000 _B
0FEF _H to 0FFF _H	_	(Disabled)		_

R/W access symbols

- R/W : Readable / Writable
- R : Read only
- W : Write only

Initial value symbols

- 0 : The initial value of this bit is "0".
- 1 : The initial value of this bit is "1".
- X : The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.

18. Electrical Characteristics

18.1 Absolute Maximum Ratings

Paramotor	Symbol	Rat	ting	Unit	Bomarka
Parameter	Symbol	Min	Max		Remarks
Power supply voltage*1	V _{CC}	V _{SS} -0.3	V _{SS} +6	V	
Input voltage*1	V _{I1}	V _{SS} -0.3	V _{CC} +0.3	V	Other than PF2*2
input voltage	V _{I2}	V _{SS} -0.3	10.5	V	PF2
Output voltage*1	V _O	V _{SS} -0.3	V _{SS} +6	V	*2
Maximum clamp current	I _{CLAMP}	-2	+2	mA	Applicable to pins listed in *3
Total maximum clamp current	$\Sigma _{CLAMP} $	_	20	mA	Applicable to pins listed in *3
"L" level maximum output	I _{OL1}		15	mA	Other than P05, P06, P62 and P63* ⁴
current	I _{OL2}		15		P05, P06, P62 and P63 ^{*4}
"L" level average current	I _{OLAV1}		4	- mA	Other than P05, P06, P62 and P63 ^{*4} Average output current = operating current × operating ratio (1 pin)
L level average current	I _{OLAV2}		12		P05, P06, P62 and P63 ^{*4} Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	ΣI_{OL}	_	100	mA	
"L" level total average output current	ΣI_{OLAV}	_	50	mA	Total average output current = operating current × operating ratio (Total number of pins)
"H" level maximum output	I _{OH1}		-15		Other than P05, P06, P62 and P63* ⁴
current	I _{OH2}	_	-15	mA	P05, P06, P62 and P63* ⁴
"I" lovel everage everage	I _{OHAV1}		-4		Other than P05, P06, P62 and P63 ^{*4} Average output current = operating current × operating ratio (1 pin)
"H" level average current	I _{OHAV2}		-8	- mA	P05, P06, P62 and P63 ^{*4} Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣI_{OH}	—	-100	mA	
"H" level total average output current	ΣI_{OHAV}	_	-50	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	Pd		320	mW	
Operating temperature	T _A	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

 $(V_{ee} = 0.0 V)$

18.2 Recommended Operating Conditions

Parameter	Symbol	Va	lue	Unit	Remarks					
Parameter	Symbol	Min	Max	Onit						
		2.4* ^{1*2}	5.5* ¹		In normal operation	Other than on shin debug mode				
Power supply	V	2.3	5.5	v	Hold condition in stop mode	Other than on-chip debug mode				
voltage	V _{CC}	2.9	5.5		In normal operation	On-chip debug mode				
		2.3	5.5		Hold condition in stop mode					
Smoothing capacitor	C _S	0.022	1	μF	*3					
Operating	т	-40	+85	°C	Other than on-chip debug functi	on				
temperature T _A		+5	+35		On-chip debug function					

*1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.

*2: The value is 2.88 V when the low-voltage detection reset is used.

*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_S. For the connection to a smoothing capacitor C_S, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the electrical characteristics of the device are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact sales representatives beforehand.

18.3 DC Characteristics

		1		(\		.0 V±10%, V		0 V, T _A = -40°C to +85°C
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
				Min	Тур	Мах		
	V _{IHI}	P04	*1	0.7 V _{CC}	_	V _{CC} +0.3	v	When CMOS input level (hysteresis input) is selected
"H" level input voltage	V _{IHS}	P00 to P07, P12, P62 to P64, PF0 to PF1, PG1 to PG2	*1	0.8 V _{CC}	_	V _{CC} +0.3	v	Hysteresis input
	V _{IHM}	PF2	—	0.7 V _{CC}		10.5	V	Hysteresis input*5
	V _{IL}	P04	*1	V _{SS} -0.3	_	0.3 V _{CC}	v	When CMOS input level (hysteresis input) is selected
"L" level input voltage	V _{ILS}	P00 to P07, P12, P62 to P64, PF0 to PF1, PG1 to PG2	*1	V _{SS} -0.3	_	0.2 V _{CC}	v	Hysteresis input
	V _{ILM}	PF2	—	V _{SS} -0.3	—	0.3 V _{CC}	V	Hysteresis input
Open-drain output application voltage	V _D	PF2, P12	_	V _{SS} –0.3	_	V _{SS} +5.5	v	
"H" level output voltage	V _{OH1}	Output pins other than P05, P06, P62, P63, PF2 and P12 ^{*2}	I _{OH} = -4 mA	V _{CC} -0.5	_	_	v	
	V _{OH2}	P05, P06, P62, P63 ^{*2}	I _{OH} = -8 mA	V _{CC} -0.5	_	_	V	
"L" level output	V _{OL1}	Output pins other than P05, P06, P62 and P63 ^{*2}	I _{OL} = 4 mA	_	_	0.4	v	
voltage	V _{OL2}	P05, P06, P62, P63 ^{*2}	I _{OL} = 2 mA		_	0.4	V	
Input leak current (Hi-Z output leak current)	ILI	All input pins	0.0 V < V _I < V _{CC}	-5	_	+5	μA	When pull-up resistance is disabled
Pull-up resistance	R _{PULL}	P00 to P07, PG1, PG2 ^{*3}	V ₁ = 0 V	25	50	100	kΩ	When pull-up resistance is enabled

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Devemeter	Symbol	Din nome	Condition		Value)	Unit	Bomorko
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
Input capacitance	C _{IN}	Other than V_{CC} and V_{SS}	f = 1 MHz	_	5	15	pF	
			V _{CC} = 5.5 V F _{CH} = 32 MHz	_	13	17	mA	Flash memory product (except writing and erasing)
	I _{CC}		F _{MP} = 16 MHz Main clock mode (divided by 2)	_	33.5	39.5	mA	Flash memory product (at writing and erasing)
				_	15	21	mA	At A/D conversion
	I _{CCS}		$V_{CC} = 5.5 V$ $F_{CH} = 32 MHz$ $F_{MP} = 16 MHz$ Main sleep mode (divided by 2)	_	5.5	9	mA	
Power supply current* ⁴	I _{CCL}	V _{CC} (External clock operation)	$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subclock mode (divided by 2) $T_{A} = +25 \text{ °C}$	_	65	153	μA	
	I _{CCLS}		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subsleep mode (divided by 2) $T_{A} = +25 \text{ °C}$	_	10	84	μA	
	I _{сст}		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ Watch mode Main stop mode $T_A = +25^{\circ}C$	_	5	30	μA	

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40°C to +85°C)

(Continued)

					00		,	00 / A
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Farameter	Symbol	Fill lidille	Condition	Min	Тур	Max	Unit	Reliidiks
		X0	X1 open		—	5	ns	When the external clock is used
Input clock rise time	t _{CR} t _{CF}	X0, X1	*					
and fall time		HCLK1, HCLK2	_			5	ns	
CR oscillation start	t _{CRHWK}	—	_		—	80	μs	When the main CR clock is used
time	t _{CRLWK}	—			—	10	μs	When the sub-CR clock is used

 $(V_{CC} = 2.4 \text{ V to } 5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

* : The external clock signal is input to X0 and the inverted external clock signal to X1.

18.4.2 Source Clock/Machine Clock

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40°C to +85°C)

Parameter	Cumhal	Pin	Value			Unit	Demeria
Farameter	Symbol	name	Min	Тур	Max	Unit	Remarks
Source clock cycle time*1			61.5	_	2000	ns	When the main external clock is used Min: F_{CH} = 32.5 MHz, divided by 2 Max: F_{CH} = 1 MHz, divided by 2
	t _{SCLK}		100	_	1000	ns	When the main CR clock is used Min: F _{CRH} = 10 MHz Max: F _{CRH} = 1 MHz
			_	61	_	μs	When the sub-CR clock is used F_{CL} = 32.768 kHz, divided by 2
			_	20	_	μs	When the sub-oscillation clock is used F_{CRL} = 100 kHz, divided by 2
	E		0.5	—	16.25	MHz	When the main oscillation clock is used
Source clock	F _{SP}		1	_	10	MHz	When the main CR clock is used
frequency				16.384		kHz	When the sub-oscillation clock is used
	F _{SPL}		_	50	_	kHz	When the sub-CR clock is used F _{CRL} = 100 kHz, divided by 2
Machine clock cycle time* ² (minimum	t _{MCLK} -		61.5	_	32000	ns	When the main oscillation clock is used Min: F_{SP} = 16.25 MHz, no division Max: F_{SP} = 0.5 MHz, divided by 16
			100		16000	ns	When the main CR clock is used Min: F_{SP} = 10 MHz Max: F_{SP} = 1 MHz, divided by 16
instruction execution time)			61		976.5	μs	When the sub-oscillation clock is used Min: F _{SPL} = 16.384 kHz, no division Max: F _{SPL} = 16.384 kHz, divided by 16
			20	_	320	μs	When the sub-CR clock is used Min: F _{SPL} = 50 kHz, no division Max: F _{SPL} = 50 kHz, divided by 16
	E		0.031	—	16.25	MHz	When the main oscillation clock is used
Machine clock	F _{MP}		0.0625	—	10	MHz	When the main CR clock is used
frequency] —	1.024	—	16.384	kHz	When the sub-oscillation clock is used
	F _{MPL}		3.125		50	kHz	When the sub-CR clock is used F _{CRL} = 100 kHz

*1: This is the clock before it is divided according to the division ratio set by the machine clock division ratio selection bits (SYCC : DIV1 and DIV0). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio selection bits (SYCC : DIV1 and DIV0). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2

*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.

- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

18.4.4 Power-on Reset

						$(V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$
Parameter	Symbol	Condition	Va	lue	Unit	Remarks
Falalletei	Symbol	Condition	Min	Мах	Unit	
Power supply rising time	t _R	—	—	50	ms	
Power supply cutoff time	t _{OFF}	—	1	—	ms	Wait time until power-on

18.4.5 Peripheral Input Timing

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol	Pin name	Va	Unit	
r al ameter	Symbol	Fill hame	Min	Max	
Peripheral input "H" pulse width	t _{ILIH}	INT02 to INT07, EC0, EC1 ^{*2}	2 t _{MCLK} *1	_	ns
Peripheral input "L" pulse width	t _{IHIL}		2 t _{MCLK} *1		ns

*1: See "18.4.2. Source Clock/Machine Clock" for t_{MCLK}.

*2: INT02, INT03, INT05, INT07 and EC1 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

Sampling is executed at the falling edge of the sampling clock^{*1}, and serial clock delay is disabled^{*2}.(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0) $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	Unit	
Falameter	Symbol	Fill lidille	Condition	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} * ³	—	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVI}	SCK, SOT	Internal clock operation output pin:	-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	t _{IVSLI}	SCK, SIN	$C_L = 80 \text{ pF}+1 \text{ TTL}$	t _{MCLK} * ³ +190	—	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	t _{SLIXI}	SCK, SIN		0	—	ns
Serial clock "H" pulse width	t _{SHSL}	SCK		3 t _{MCLK} * ³ –t _R	—	ns
Serial clock "L" pulse width	t _{SLSH}	SCK		t _{MCLK} * ³ +95		ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVE}	SCK, SOT	External clock	—	2 t _{MCLK} * ³ +95	ns
Valid SIN \rightarrow SCK \downarrow	t _{IVSLE}	SCK, SIN	operation output pin:	190	—	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	t _{SLIXE}	SCK, SIN	C _L = 80 pF+1 TTL	t _{MCLK} * ³ +95	—	ns
SCK fall time	t _F	SCK		—	10	ns
SCK rise time	t _R	SCK			10	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

*3: See "18.4.2. Source Clock/Machine Clock" for t_{MCLK}.

Sampling is executed at the falling edge of the sampling $clock^{*1}$, and serial clock delay is enabled^{*2}. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Val	Unit		
Falameter	Symbol	Finnanie	Condition	Min	Max	Onit	
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} * ³	_	ns	
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVI}	SCK, SOT	Internal clock operation	-95	+95	ns	
Valid SIN $ ightarrow$ SCK \uparrow	$N \rightarrow SCK \uparrow t_{IVSHI}$		output pin:	t _{MCLK} * ³ +190	—	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	t _{SHIXI}	SCK, SIN	C _L = 80 pF+1 TTL	0	_	ns	
$SOT \to SCK \uparrow delay \ time$	t _{SOVHI}	SCK, SOT		—	4 t _{MCLK} * ³	ns	

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

*3: See "18.4.2.Source Clock/Machine Clock" for t_{MCLK}.

18.4.7 Low-voltage Detection

 $(V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Devementer	Symbol	Value			Unit	Bemerke
Parameter		Min	Тур	Max	Unit	Remarks
Release voltage	V _{DL+}	2.52	2.7	2.88	V	At power supply rise
Detection voltage	V _{DL}	2.42	2.6	2.78	V	At power supply fall
Hysteresis width	V _{HYS}	70	100	—	mV	
Power supply start voltage	V _{off}		_	2.3	V	
Power supply end voltage	V _{on}	4.9	_	—	V	
Power supply voltage change time (at power supply rise)	tr	1	_	_	μs	Slope of power supply that the reset release signal generates
		_	3000	_	μs	Slope of power supply that the reset release signal generates within the rating (V_{DL^+})
Power supply voltage change	t _f	300	_	_	μs	Slope of power supply that the reset detection signal generates
time (at power supply fall)		_	300	—	μs	Slope of power supply that the reset detection signal generates within the rating (V_{DL-})
Reset release delay time	t _{d1}	_	—	300	μs	
Reset detection delay time	t _{d2}	_	_	20	μs	

18.5.2 Notes on Using the A/D Converter

External impedance of analog input and its sampling time

The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 µF to the analog input pin.

A/D conversion error

As $|V_{CC}-V_{SS}|$ decreases, the A/D conversion error increases proportionately.

18.6 Flash Memory Program/Erase Characteristics

Parameter		Value		Unit	Remarks	
Farameter	Min	Тур	Max			
Chip erase time	—	1* ¹	15* ²	s	00 _H programming time prior to erasure is excluded.	
Byte programming time	-	32	3600	μs	System-level overhead is excluded.	
Erase/program voltage	9.5	10	10.5	V	The erase/program voltage must be applied to the PF2 pin in erase/program.	
Current drawn on PF2	_	_	5.0	mA	Current consumption of PF2 pin during flash memory program/erase	
Erase/program cycle	-	100000	-	cycle		
Power supply voltage at erase/program	3.0	_	5.5	V		
Flash memory data retention time	20* ³	—	_	year	Average T _A = +85°C	

*1: T_A = +25°C, V_{CC} = 5.0 V, 100000 cycles

*2: $T_A = +85^{\circ}C$, $V_{CC} = 4.5$ V, 100000 cycles

*3: This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test by using the Arrhenius equation with the average temperature being +85°C).

22. Package Dimensions

⁽Continued)