

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	-
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e6316psc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog

Warning: DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

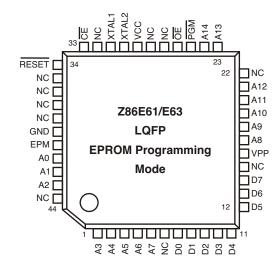
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

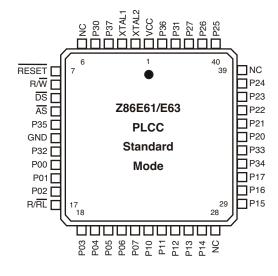
ISO 9001:2000 FS 507510 Zilog products are designed and manufactured under an ISO registered 9001:2000 Quality Management System. For more details, please visit www.zilog.com/quality.

Z86E61/E63 CMOS Z8 16K/32K EPROM Microcontroller

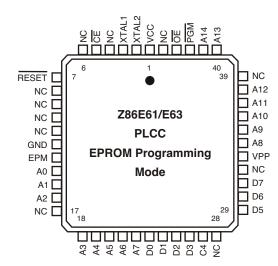
Figure 35. Port 3 Mode Register (F7H: Write Only) 44
Figure 36. Port 0 and 1 Mode Register (F8H: Write Only) 45
Figure 37. Interrupt Priority Register (F9H: Write Only)
Figure 38. Interrupt Request Register (FAH: Read/Write)
Figure 39. Interrupt Mask Register (FBH: Read/Write) 47
Figure 40. Flag Register (FCH: Read/Write) 47
Figure 41. Register Pointer Register (FDH: Read/Write) 48
Figure 42. Stack Pointer Register (FEH: Read/Write) 48
Figure 43. Stack Pointer Register (FFH: Read/Write)
Figure 44. Typical ICC vs. Frequency 49
Figure 45. Typical ICC1 vs. Frequency 50
Figure 46. Instruction Formats 53
Figure 47. Opcode Map 60
Figure 48. 40-Pin DIP Package Diagram 61
Figure 49. 44-Pin PLCC Package Diagram 61
Figure 50. 44-Pin LQFP Package Diagram


zilog

4

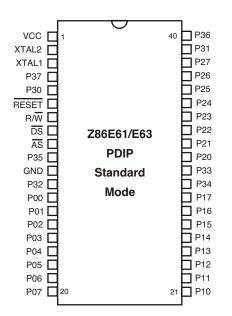

Pin Description - Standard Mode

XTAL2	Crystal Oscillator Clock	Output
XTAL1	Crystal Oscillator Clock	Input
RESET	Reset	Input
R/W	Read/Write	Output
DS	Data Strobe	Output
ĀS	Address Strobe	Output
P00-P07 Port 0	8 bit Genaral IO	Input/Output
P10-P17 Port 1	8 bit Genaral IO	Input/Output
P20-P27 Port 2	8 bit Genaral IO	Input/Output
P30-P33 Port 3	4 bit Input	Input
P34-P37 Port 3	4 bit Output	Output
R/RL	ROM/ROMless Ctrl	Input
GND	Ground	Input
VCC	Power Supply	Input


Pin Description - EPROM Programming Mode

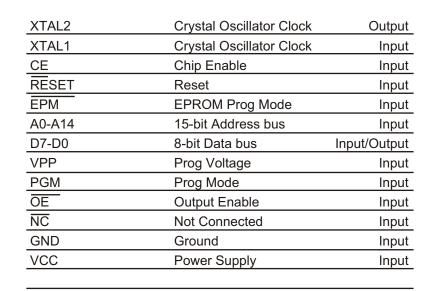
XTAL2	Crystal Oscillator Clock	Output
XTAL1	Crystal Oscillator Clock	Input
CE	Chip Enable	Input
RESET	Reset	Input
EPM	EPROM Prog Mode	Input
A0-A14	15-bit Address bus	Input
D7-D0	8-bit Data bus	Input/Output
VPP	Prog Voltage	Input
PGM	Prog Mode	Input
ŌĒ	Output Enable	Input
NC	Not Connected	Input
GND	Ground	Input
VCC	Power Supply	Input

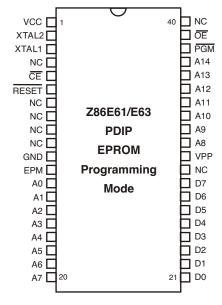
Pin Description - Standard Mode


XTAL2	Crystal Oscillator Clock	Output
XTAL1	Crystal Oscillator Clock	Input
RESET	Reset	Input
R/W	Read/Write	Output
DS	Data Strobe	Output
ĀS	Address Strobe	Output
P00-P07 Port 0	8 bit Genaral IO	Input/Output
P10-P17 Port 1	8 bit Genaral IO	Input/Output
P20-P27 Port 2	8 bit Genaral IO	Input/Output
P30-P33 Port 3	4 bit Input	Input
P34-P37 Port 3	4 bit Output	Output
R/RL	ROM/ROMIess Ctrl	Input
GND	Ground	Input
VCC	Power Supply	Input

Pin Description - EPROM Programming Mode

XTAL2	Crystal Oscillator Clock	Output
XTAL1	Crystal Oscillator Clock	Input
CE	Chip Enable	Input
RESET	Reset	Input
EPM	EPROM Prog Mode	Input
A0-A14	15-bit Address bus	Input
D7-D0	8-bit Data bus	Input/Output
VPP	Prog Voltage	Input
PGM	Prog Mode	Input
ŌĒ	Output Enable	Input
NC	Not Connected	Input
GND	Ground	Input
VCC	Power Supply	Input


zilog



Pin Description - Standard Mode

XTAL2	Crystal Oscillator Clock	Output
XTAL1	Crystal Oscillator Clock	Input
RESET	Reset	Input
R/W	Read/Write	Output
DS	Data Strobe	Output
ĀS	Address Strobe	Output
P00-P07 Port 0	8 bit Genaral IO	Input/Output
P10-P17 Port 1	8 bit Genaral IO	Input/Output
P20-P27 Port 2	8 bit Genaral IO	Input/Output
P30-P33 Port 3	4 bit Input	Input
P34-P37 Port 3	4 bit Output	Output
GND	Ground	Input
VCC	Power Supply	Input

zilog

Z86E61/E63 CMOS Z8 16K/32K EPROM Microcontroller

LOCATION		IDENTIFIERS
R255	Stack Pointer (Bits 7-0)	SPL
R254	Stack Pointer (Bits 15-8)	SPH
R253	Register Pointer	RP
R252	Program Control Flags	FLAGS
R251	Interrupt Mask Register	IMR
R250	Interrupt Request Register	IRQ
R249	Interrupt Priority Register	IPR
R248	Port 0-1 Mode	P01M
R247	Port 3 Mode	P3M
R246	Port 2 Mode	P2M
R245	T0 Prescaler	PRE0
R244	Timer/Counter0	Т0
R243	T1 Prescaler	PRE1
R242	Timer/Counter1	T1
R241	Timer Mode	TMR
R240	Serial I/O	SIO
R239		
	General Purpose Registers	
R4		-
R3	Port 3	P3
R2	Port 2	P2
R1	Port 1	P1
R0	Port 0	P0

Figure 13. Register File

(single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counter, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided-by-four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3 line P36 also serves as a timer output (TOUT) through which T0, T1, or the internal clock can be output. The counter/ timers are cascaded by connecting the TO output to the input of T1.

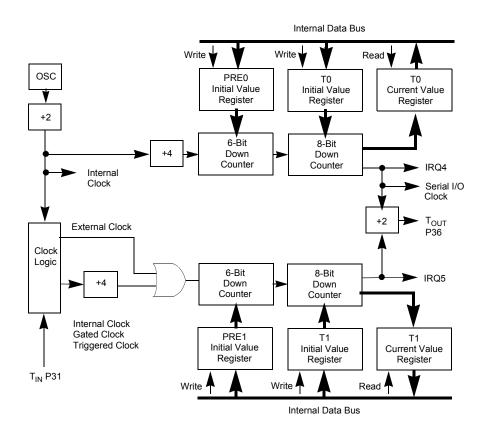


Figure 15. Counter/Timers Block Diagram

Interrupts

The Z86E61/E63 has six different interrupts from eight different sources. The interrupts are maskable and prioritized. The eight sources are divided as follows: four sources are claimed by Port 3 lines P33-P30, one in Serial Out, one in Serial In, and two in the counter/timers (Figure 16). The Interrupt Mask Register globally

User Modes 4 and 5: EPROM and RAM Protect

To extend program security, EPROM and RAM protect cycles are provided for the Z86E61/E63. Execution of the EPROM protect cycle prohibits proper execution of the EPROM Read, EPROM Verify, and EPROM programming cycles. Execution of the RAM protect cycle disables accesses to the upper 128 bytes of register memory (excluding mode and configuration registers), but first the user's program must set bit 6 of the IMR (R251). Timing is shown in Figure 20 and Figure 21.

User Modes. Table 6 shows the programming voltage of each mode of the Z86E61/E63.

User/Test Mode		[Device I	Pins				Dort 1
Device Pin No.	P33	P32	P30	P31	P20			- Port 1 CNFG
User Modes	V _{PP}	EPM	CE	OE	PGM	ADDR	V _{CC}	Data
EPROM Read	VIH	V _H c	V_{IL}^{d}	V _{IL}	V _{IH}	Addr	5.0V	Out
Program	V _{PP} ^b	Х	VIL	V _{IH} e	V _{IL}	Addr	6.0V	In
Program Verify	V _{PP} ^b	Х	VIL	V _{IL}	V _{IH}	Addr	6.0V	Out
EPROM Protect	V _{PP} ^b	V _H	V _H	V _{IH}	V _{IL}	XX ^f	6.0V	XX
RAM Protect	V _{PP}	Х	V _H	V _{IH}	V _{IL}	XX ^f	6.0V	XX

Table 22. OTP Programming^a

a. I_{PP} during programming = 40 mA maximum. I_{CC} during programming, verify, or read = 40 mA maximum.

b. V_{PP} = 12.0 ± 0.5 V.

c. $V_{H} = 12.0 \pm 0.5 V$

d. $V_{\rm H} = 12.0$

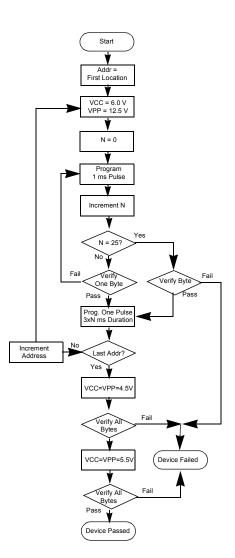
e. $V_{\rm IH} = 5 V$.

f. XX = Irrelevant.

Z86E63 Signal Description for EPROM Program/Read

The following signals are required to correctly program or read the Z86E63 device.

ADDR


The address must remain stable throughout the program read cycle.

DATA

The I/O data bus must be stable during programming (\overline{OE} High, \overline{PGM} Low, VPP High). During read the data bus outputs data.

Z86E61/E63 CMOS Z8 16K/32K EPROM Microcontroller

ABSOLUTE MAXIMUM RATINGS

Table 24. Absolute Maximum Ratings

Symbol	Description	Min	Max	Units
V _{CC}	Supply Voltage ^a	-0.3	+ 7.0	V
T _{STG}	Storage Temp	-65	+150	°C

Table 24. Absolute Maximum	Ratings	(Continued)
----------------------------	---------	-------------

Symbol	Description	Min	Max	Units
T _A	Operating Ambient Temperature		Note ^b	°C

a. Voltages on all pins with respect to GND.

b. See See "ORDERING INFORMATION" on page 62.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 23).

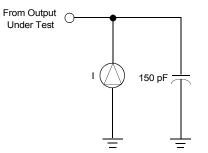


Figure 23. Test Load Diagram

DC CHARACTERISTICS

Table 25. DC Characteristics

	Parameter	$T_A = 0 \ ^{\circ}C \ to +70 \ ^{\circ}C$		Typical				
Sym		Min	Мах	@ 25 °C	Units	Conditions		
	Max Input Voltage		7		V	I _{IN} 250 μA		
	Max Input Voltage		13		V	P33-P30 Only		
V _{CH}	Clock Input High Voltage	3.8	V _{CC} + 0.3		V	Driven by External Clock Generator		
V _{CL}	Clock Input Low Voltage	-0.3	0.8		V	Driven by External Clock Generator		
V _{IH}	Input High Voltage	2.0	V _{CC} + 0.3		V			
V _{IL}	Input Low Voltage	-0.3	0.8		V			
V _{OH}	Output High Voltage	2.4			V	I _{OH} = -2.0 mA		
V _{OL}	Output Low Voltage		0.4		V	I _{OL} = +2.0 mA		
V_{RH}	Reset Input High Voltage	3.8	V _{CC} + 0.3		V			
V _{RI}	Reset Input Low Voltage	-0.3	0.8		V			
IIL	Input Leakage	-10	10		μA	0 V V _{IN} + 5.25 V		
I _{OL}	Output Leakage	-10	10		μA	0 V V _{IN} + 5.25 V		
I _{IR}	Reset Input Current		-50		μA	V _{CC} = + 5.25 V, V _{RL} = 0 V		
I _{CC}	Supply Current		50	25	mA	@ 16 MHz		
			60	35	mA	@ 20 MHz		
I _{CC1}	Standby Current		15	5	mA	HALT Mode V_{IN} = 0 V, V_{CC} @ 16 MHz		
			20	10	mA	HALT Mode V_{IN} = 0 V, V_{CC} @ 20 MHz		
I_{CC2}^{a}	Standby Current		20	5	μA	STOP Mode V_{IN} = 0 V, V_{CC} @ 16 MHz		
			20	5	μA	STOP Mode V _{IN} = 0 V, V _{CC} @ 20 MHz		

 a. ICC2 requires loading TMR (F1Hh) with any value prior to STOP execution. Use this sequence: LD TMR,#00 NOP

STOP

Figure 26. Input Handshake Timing

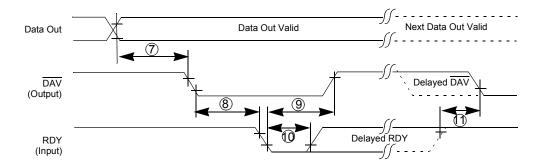


Figure 27. Output Handshake Timing

			$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$				
			16 MHz		20 MHz		_ Data
No	Symbol	Parameter	Min	Max	Min	Max	Direction
1	TsDI(DAV)	Data In Setup Time	0		0		IN
2	ThDI(DAV)	Data In Hold Time	145		145		IN
3	TwDAV	Data Available Width	110		110		IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay		115		115	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay		115		115	IN
6	TdRDY0(DAV)	RDY Rise to DAV Fall Delay	0		0		IN
7	TdD0(DAV)	Data Out to DAV Fall Delay		ТрС		ТрС	OUT

Table 29. Handshake Timing

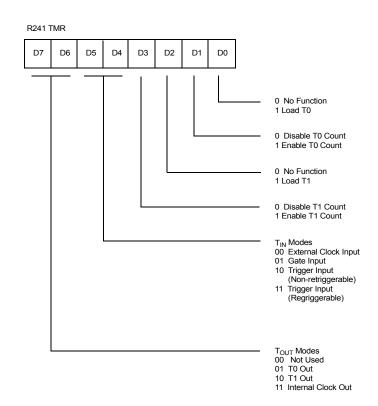


Figure 29. Timer Mode Register (F1_H: Read/Write)

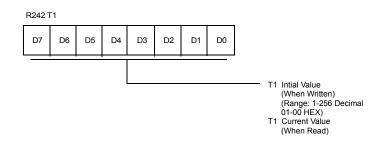


Figure 30. Counter/Timer 1 Register (F2_H: Read/Write)

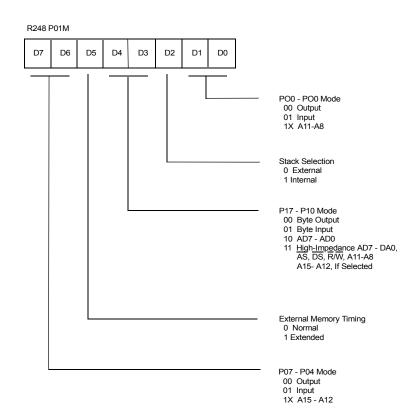


Figure 36. Port 0 and 1 Mode Register (F8_H: Write Only)

DC CHARACTERISTICS

Supply Current

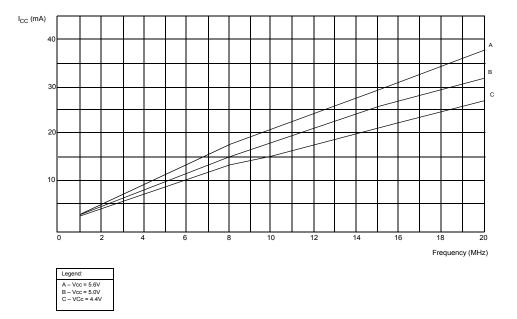
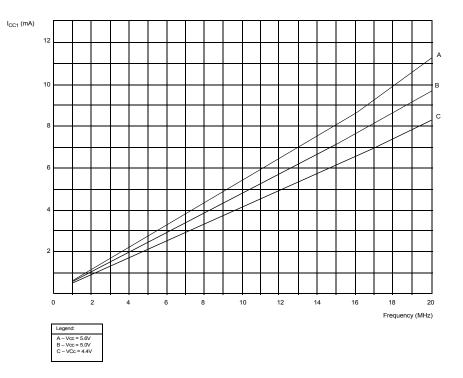
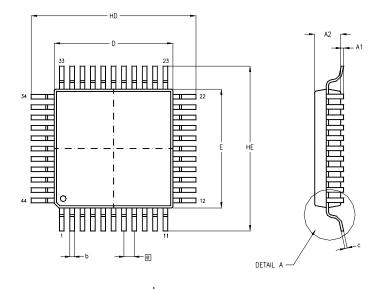


Figure 44. Typical I_{CC} vs. Frequency

Standby Current




Figure 45. Typical I_{CC1} vs. Frequency

Instructionreactionand OperationdstDEC dstR	Opcode c Byte (Hex) 00 01	C	Z *	S	V	D	н
DEC dst R		-	*				
	01			*	*	-	-
dst←dst -1 IR							
DECW dst RR	80	-	*	*	*	-	-
dst←dst-1 IR	81						
DI	8F	-	-	-	-	-	-
IMR(7)←0							
DJNZr, dst RA	rA	-	-	-	-	-	-
r←r -1	r = 0-F						
if r≠0							
PC←PC + dst							
Range: +127,							
-128							
El	9F	-	-	-	-	-	-
IMR(7)←1							
HALT	7F	-	-	-	-	-	-
INC dst r	rE	-	*	*	*	-	-
dst←dst + 1	r = 0 - F						
R	20						
IR	21						
INCW dst RR	A0	-	*	*	*	-	-
dst←dst + 1 IR	A1						
IRET	BF	*	*	*	*	*	*
FLAGS←@SP;							
SP←SP + 1							
PC←@SP;							
SP←SP + 2;							
IMR(7)←1							
JP cc, dst DA	cD	-	-	-	-	-	-

Table 32. Instruction Summary (Continued)

SYMBOL	MILLIN	METER	INCH		
STMDOL	MIN	MAX	MIN	MAX	
A1	0.05	0.25	.002	.010	
A2	2.00	2.25	.078	.089	
b	0.25	0.45	.010	.018	
с	0.13	0.20	.005	.008	
HD	13.70	14.15	.539	.557	
D	9.90	10.10	.390	.398	
HE	13.70	14.15	.539	.557	
E 9.90		10.10	.390	.398	
е	0.80 BSC		.0315 BSC		
L	0.60	1.20	.024	.047	

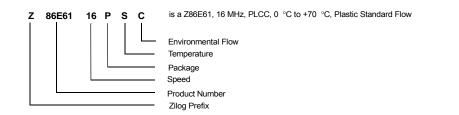
NOTES: 1. CONTROLLING DIMENSIONS : MILLIMETER 2. LEAD COPLANARITY : MAX <u>.10</u> .004"

DETAIL A

Figure 50. 44-Pin LQFP Package Diagram

ORDERING INFORMATION

Z86E61						
16 Mł	Ηz	20 MHz				
40-Pin DIP	44-Pin PLCC	40-Pin DIP	44-Pin PLCC			
Z86E6116PSC	Z86E6116VSC	Z86E6120PSC	Z86E6120VSC			
Z86E63						
16 Mł	Ηz	20 MI	Ηz			
40-Pin DIP	44-Pin PLCC	40-Pin DIP	44-Pin PLCC			
Z86E6316PSC	Z86E6316VSC	Z86E6320PSC	Z86E6320VSC			


For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

CODES

- Preferred Package
 P = Plastic DIP
 - V = Plastic Chip Carrier
- Temperature S = 0°C to +70°C
- Speeds
 12 = 16 MHz
 16 = 20 MHz
- Environmental C = Plastic Standard

Example:

