

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	30MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	29
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc822m101jhi33e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Marking

The HVQFN33 packages typically have the following top-side marking:

82xJ

xx xx

yywwxR

The TSSOP20 packages typically have the following top-side marking:

LPC82x

Mx01J

XXXXXXXX

zzywwxR

In the last line, field 'y' or 'yy' states the year the device was manufactured. Field 'ww' states the week the device was manufactured during that year. Field 'R' states the chip revision.

• The WKT can be used for waking up the part from any reduced power mode, including Deep power-down mode, or for general-purpose timing.

8.20 Analog comparator (ACMP)

The analog comparator with selectable hysteresis can compare voltage levels on external pins and internal voltages.

After power-up and after switching the input channels of the comparator, the output of the voltage ladder must be allowed to settle to its stable value before it can be used as a comparator reference input. Settling times are given in Table 24.

The analog comparator output is a movable function and is assigned to a pin through the switch matrix. The comparator inputs and the voltage reference are enabled through the switch matrix.

8.20.1 Features

- Selectable 0 mV, 10 mV (\pm 5 mV), and 20 mV (\pm 10 mV), 40 mV (\pm 20 mV) input hysteresis.
- Two selectable external voltages (V_{DD} or VDDCMP on pin PIO0_6); fully configurable on either positive or negative input channel.
- Internal voltage reference from band gap selectable on either positive or negative input channel.
- 32-stage voltage ladder with the internal reference voltage selectable on either the positive or the negative input channel.

LPC82x

8.23.3 Code security (Code Read Protection - CRP)

CRP provides different levels of security in the system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be restricted. Programming a specific pattern into a dedicated flash location invokes CRP. IAP commands are not affected by the CRP.

In addition, ISP entry via the ISP entry pin can be disabled without enabling CRP. For details, see the *LPC82x user manual*.

There are three levels of Code Read Protection:

- CRP1 disables access to the chip via the SWD and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors cannot be erased.
- 2. CRP2 disables access to the chip via the SWD and only allows full flash erase and update using a reduced set of the ISP commands.
- 3. Running an application with level CRP3 selected, fully disables any access to the chip via the SWD pins and the ISP. This mode effectively disables ISP override using the ISP entry pin as well. If necessary, the application must provide a flash update mechanism using IAP calls or using a call to the reinvoke ISP command to enable flash update via the USART.

CAUTION

If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device.

In addition to the three CRP levels, sampling of the ISP entry pin for valid user code can be disabled. For details, see the *LPC82x user manual*.

8.23.4 APB interface

The APB peripherals are located on one APB bus.

8.23.5 AHBLite

The AHBLite connects the CPU bus of the ARM Cortex-M0+ to the flash memory, the main static RAM, the CRC, the DMA, the ROM, and the APB peripherals.

PC

8.24 Emulation and debugging

DRAS . Debug functions are integrated into the ARM Cortex-M0+. Serial wire debug functions are supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0+ is configured to support up to four breakpoints and two watch points.

The Micro Trace Buffer is implemented on the LPC82x.

The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the LPC82x is in reset. The JTAG boundary scan pins are selected by hardware when the part is in boundary scan mode on pins PIO0_0 to PIO0_3 (see Table 3).

To perform boundary scan testing, follow these steps:

- 1. Erase any user code residing in flash.
- 2. Power up the part with the RESET pin pulled HIGH externally.
- 3. Wait for at least 250 µs.
- 4. Pull the RESET pin LOW externally.
- 5. Perform boundary scan operations.
- 6. Once the boundary scan operations are completed, assert the TRST pin to enable the SWD debug mode, and release the RESET pin (pull HIGH).

Remark: The JTAG interface cannot be used for debug purposes.

Limiting values 9.

Limiting values Table 5.

NXP Se	emiconductors			DRAN		PC82x
			32-bit A	ARM Cor	tex-M0+ mic	crocontroller
9. Lir	miting values				ORANT.	RACTORAC
Table 5. In accorda	Limiting values ance with the Absolute Maximum Ra	ting System (IEC 60134).[1]				DRAKT
Symbol	Parameter	Conditions		Min	Max	Unit
V _{DD}	supply voltage (core and external rail)		[2]	-0.5	+4.6	V
V _{ref}	reference voltage	on pin VREFP		-0.5	V _{DD}	V
VI	input voltage	5 V tolerant I/O pins; $V_{DD} \ge$ 1.8 V	[3][4]	-0.5	+5.5	V
		on I2C open-drain pins PIO0_10, PIO0_11	[5]	-0.5	+5.5	V
		3 V tolerant I/O pin PIO0_6	[6]	-0.5	+3.6	V
V _{IA}	analog input voltage		[7][8] [9]	-0.5	+4.6	V
V _{i(xtal)}	crystal input voltage		[2]	-0.5	+2.5	V
I _{DD}	supply current	per supply pin		-	100	mA
I _{SS}	ground current	per ground pin		-	100	mA
I _{latch}	I/O latch-up current	–(0.5V _{DD}) < V _I < (1.5V _{DD}); T _j < 125 °C		-	100	mA
T _{stg}	storage temperature		[10]	-65	+150	°C
T _{j(max)}	maximum junction temperature			-	150	°C
P _{tot(pack)}	total power dissipation (per package)	based on package heat transfer, not device power consumption		-	1.5	W
V _{esd}	electrostatic discharge voltage	human body model; all pins	[11]	-	3500	V
		charged device model; HVQFN33 package		-	1200	V

[1] The following applies to the limiting values:

a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

[2] Maximum/minimum voltage above the maximum operating voltage (see Table 8) and below ground that can be applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.

[3] Applies to all 5 V tolerant I/O pins except true open-drain pins PIO0_10 and PIO0_11 and except the 3 V tolerant pin PIO0_6.

[4] Including the voltage on outputs in 3-state mode.

V_{DD} present or not present. Compliant with the I²C-bus standard. 5.5 V can be applied to this pin when V_{DD} is powered down. [5]

[6] V_{DD} present or not present.

- An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated [7] exposure to elevated voltages at 4.6 V must be less than 10⁶ s total over the lifetime of the device. Applying an elevated voltage to the ADC inputs for a long time affects the reliability of the device and reduces its lifetime.
- If the comparator is configured with the common mode input V_{IC} = V_{DD}, the other comparator input can be up to 0.2 V above or below [8] V_{DD} without affecting the hysteresis range of the comparator function.
- It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin. [9]

[10] Dependent on package type.

- [5] V_{DD} supply voltage must be present.
- [6] Tri-state outputs go into tri-state mode in Deep power-down mode.
- Allowed as long as the current limit does not exceed the maximum current allowed by the device. [7]
- Pull-up and pull-down currents are measured across the weak internal pull-up/pull-down resistors. See Figure 12. [8]
- [9] To V_{SS}.

LPC82

I P

clock frequencies

I P

LPC82x

I PC8

. DRA

aaa-014006 2.5 coremark score ((iterations/s)/MHz) 2 default 1.5 low-current 1 0.5 0 0 6 12 24 30 18 system clock frequency (MHz) Conditions: V_{DD} = 3.3 V; T_{amb} = 25 °C; active mode; all peripherals except one UART and the SCT disabled in the SYSAHBCLKCTRL register; BOD disabled; internal pull-up resistors enabled. Measured with Keil uVision 5.10. 1 MHz - 6 MHz: external clock; IRC, PLL disabled.12 MHz: IRC enabled; PLL disabled. 24 MHz: IRC enabled; PLL enabled.30 MHz: system oscillator enabled; PLL enabled.

Fig 23. CoreMark score

11.5 CoreMark data

DRAFT DR

PC

NXP Semicondu	ctors			LPC82x
				32-bit ARM Cortex-M0+ microcontroller
				RAN RAN PAN
Table 10. Power con	sumption for indiv	vidual analog an	d digital bloc	ks continued
Peripheral	Typical s	upply current in	μA	Notes
	Main cloo	ck frequency =		Pa.
	n/a	12 MHz	30 MHz	
ADC	-	57	141	Digital controller only. Analog portion of the ADC disabled in the PDRUNCFG register.
	-	1990	2070	Combined analog and digital logic. ADC enabled in the PDRUNCFG register.
DMA	-	324	793	
CRC	-	34	85	-

Table 10. Power consumption for individual analog and digital blocks ... continued

11.7 Electrical pin characteristics

DRAM, D

LPC82

12.3.1 I/O pins

Table 15. Dynamic characteristics: I/O pins^[1]

 $T_{amb} = -40 \text{ °C to } +105 \text{ °C}; 3.0 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}.$

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
t _r	rise time	pin configured as output	3.0	-	5.0	ns	PA,
t _f	fall time	pin configured as output	2.5	-	5.0	ns	0p

[1] Applies to standard port pins and RESET pin.

12.3.2 WKTCLKIN pin (wake-up clock input)

Table 16. Dynamic characteristics: WKTCLKIN pin

 $T_{amb} = -40$ °C to +105 °C; 1.8 V $\leq V_{DD} \leq 3.6$ V.

Symbol	Parameter	Conditions		Min	Max	Unit
f _{clk}	clock frequency	deep power-down mode and power-down mode	[1]	-	1	MHz
		deep-sleep, sleep, and active mode	[1]	-	10	MHz
t _{CHCX}	clock HIGH time	-		50	-	ns
t _{CLCX}	clock LOW time	-		50	-	ns

[1] Assuming a square-wave input clock.

12.3.3 SCTimer/PWM output timing

Table 17. SCTimer/PWM output dynamic characteristics

 $T_{amb} = -40 \,^{\circ}$ C to 105 $^{\circ}$ C; 2.4 V <= V_{DD} <= 3.6 V; C_L = 10 pF. Simulated skew (over process, voltage, and temperature) of any two SCT output signals routed to standard I/O pins; sampled at the 50 % level of the falling or rising edge; values guaranteed by design.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{sk(0)}	output skew time	-	-	-	4	ns

12.3.4 I²C-bus

Table 18. Dynamic characteristic: I²C-bus pins^[1]

 $T_{amb} = -40$ °C to +105 °C; values guaranteed by design.[2]

Symbol	Parameter		Conditions	Min	Max	Unit
f _{SCL}	SCL clock		Standard-mode	0	100	kHz
	frequency		Fast-mode	0	400	kHz
			Fast-mode Plus; on pins PIO0_10 and PIO0_11	0	1	MHz
t _f	fall time	[4][5][6][7]	of both SDA and SCL signals	-	300	ns
			Standard-mode			
			Fast-mode	$20 + 0.1 \times C_b$	300	ns
			Fast-mode Plus; on pins PIO0_10 and PIO0_11	-	120	ns

13. Characteristics of analog peripherals

13.1 BOD

				DRAN DRA		~~~~~
tors				0		
			32-bit AR	M Cortex-M	0+ micro	controlle
tics o	f analog per	ipherals			NAL DRA	CANTORNA CAN
ROD						OP4A
Fable 21 . T _{amb} = 25	BOD static chara ℃.	cteristics ^[1]				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{th}	threshold voltage	interrupt level 1				
		assertion	-	2.25	-	V
		de-assertion	-	2.40	-	V
		interrupt level 2				
		assertion	-	2.54	-	V
		de-assertion	-	2.68	-	V
		interrupt level 3				
		assertion	-	2.85	-	V
		de-assertion	-	2.95	-	V
		reset level 0				
		assertion	-	1.46	-	V
		de-assertion	-	1.61	-	V
		reset level 1				
		assertion	-	2.05	-	V
		de-assertion	-	2.20	-	V
		reset level 2				
		assertion	-	2.34	-	V
		de-assertion	-	2.49	-	V
		reset level 3				
		assertion	-	2.63	-	V
		de-assertion	_	2 78	_	V

[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see the LPC82x user manual. Interrupt level 0 is reserved.

13.3 Comparator and internal voltage reference

Table 23. Internal voltage reference static and dynamic characteristics

tors				AX	Do AX	ĻPC	:82x	AV.
Compa	rator and int	32 ornal voltago roforg	2-bit A	ARM Co	ortex-MO	+ microc	ontrolle	AND DR
Table 23. $T_{amb} = -40$	Internal voltage	e reference static and dyr / _{DD} = 3.3 V; hysteresis disa	namic bled ir	charact the con	eristics nparator (CTRL regis	ter.	DRAK,
Symbol	Parameter	Conditions		Min	Тур	Max	Unit	6
Vo	output voltage	T _{amb} = 25 °C to 105°C		860	-	940	mV	9.
		T _{amb} = 25 °C			904		mV	00
t _{s(pu)}	power-up settling time	to 99% of V _O		-	-	<tbd></tbd>	μS	

Table 24. Comparator characteristics

 $T_{amb} = -40$ °C to +105 °C unless noted otherwise; $V_{DD} = 1.8$ V to 3.6 V.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Static ch	aracteristics	-				I	
V _{ref(cmp)}	comparator reference voltage	pin PIO0_6/VDDCMP configured for function VDDCMP		1.5	-	3.6	V
I _{DD}	supply current	VP > VM; $T_{amb} = 25 \degree C$; $V_{DD} = 3.3 V$	[2]	-	90	-	μA
		VM > VP; $T_{amb} = 25 \degree C$; $V_{DD} = 3.3 V$	[2]	-	60	-	μA
V _{IC}	common-mode input voltage			0	-	V _{DD}	V
DVO	output voltage variation			0	-	V _{DD}	V
V _{offset}	offset voltage	$V_{IC} = 0.1 \text{ V}; V_{DD} = 2.4 \text{ V}; T_{amb} = 105 \text{ °C}$	[2]	-	+/- 4	-	mV
		V_{IC} = 1.5 V; V_{DD} = 2.4 V; T_{amb} = 105 °C	[2]	-	+/- 2	-	mV
		V_{IC} = 2.9 V; V_{DD} = 2.4 V; T_{amb} = 105 °C	[2]	-	+/- 4	-	mV
Dynamic	characteristics					U	
t _{startup}	start-up time	nominal process; V_{DD} = 3.3 V; T_{amb} = 25 °C		-	13	-	μS

Table 24.	Comparator	characteristics	continued
-----------	------------	-----------------	-----------

			<	0	Op	Op	Op	
NXP Se	miconductors			44	00	LPC	82x	
		32-bit ARM Cortex-M0+ microcontroller						
Table 24. T _{amb} =40	Comparator characteri ⊃ ℃ to +105 ℃ unless no	stics continued ted otherwise; V _{DD} = 1.8 V to 3.6 V.			0	EN DRAC	AT DRAN	
Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
t _{PD}	propagation delay	HIGH to LOW; V_{DD} = 3.0 V; T_{amb} = 105 °C					1A, D	
		V _{IC} = 0.1 V; 100 mV overdrive input	[1][2][4]	-	140	-	ns	
		V _{IC} = 0.1 V; rail-to-rail input	[1][2]	-	190	-	ns	
		V _{IC} = 1.5 V; 100 mV overdrive input	[1][2][4]	-	130	-	ns	
		V _{IC} = 1.5 V; rail-to-rail input	[1][2]	-	120	-	ns	
		V _{IC} = 2.9 V; 100 mV overdrive input	[1][2][4]	-	220	-	ns	
		V _{IC} = 2.9 V; rail-to-rail input	[1][2]	-	80	-	ns	
t _{PD}	propagation delay	LOW to HIGH; V_{DD} = 3.0 V; T_{amb} = 105 °C						
		V _{IC} = 0.1 V; 100 mV overdrive input	[1][2][4]	-	240	-	ns	
		V _{IC} = 0.1 V; rail-to-rail input	[1][2]	-	60	-	ns	
		V _{IC} = 1.5 V; 100 mV overdrive input	[1][2][4]	-	160	-	ns	
		V _{IC} = 1.5 V; rail-to-rail input	[1][2]	-	150	-	ns	
		V _{IC} = 2.9 V; 100 mV overdrive input	[1][2][4]	-	150	-	ns	
		V _{IC} = 2.9 V; rail-to-rail input	[1][2]	-	260	-	ns	
V _{hys}	hysteresis voltage	positive hysteresis; V_{DD} = 3.0 V; V_{IC} = 1.5 V; T_{amb} = 105 °C; settings:	[3]	-		-		
		5 mV			6		mV	
		10 mV		-	11	-	mV	
		20 mV		-	23	-	mV	
V _{hys}	hysteresis voltage	negative hysteresis; V_{DD} = 3.0 V; V _{IC} = 1.5 V; T _{amb} = 105 °C; settings:	[1][3]					
		5 mV		-	10	-	mV	
		10 mV		-	15	-	mV	
		20 mV		-	27	-	mV	
R _{lad}	ladder resistance	-		-	1	-	MΩ	

[1] C_L = 10 pF

[2] Characterized on typical samples, not tested in production.

Input hysteresis is relative to the reference input channel and is software programmable. [3]

100 mV overdrive corresponds to a square wave from 50 mV below the reference (V_{IC}) to 50 mV above the reference. [4]

Table 25. Comparator voltage ladder dynamic characteristics

 $T_{amb} = -40$ °C to +105 °C; $V_{DD} = 1.8$ V to 3.6 V.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{s(pu)}	power-up settling time	to 99% of voltage ladder output value	<u>[1]</u>	-	17	-	μS
t _{s(sw)}	switching settling time	to 99% of voltage ladder output value	<u>[1]</u>	-	18	-	μS

[1] Characterized on typical samples, not tested in production.

PC

- (2) Position the decoupling capacitors of 0.1 μ F and 0.01 μ F as close as possible to the V_{DD} pin. Add one set of decoupling capacitors to each V_{DD} pin.
- (3) Position the decoupling capacitors of 0.1 μ F as close as possible to the VREFN and V_{DD} pins. The 10 μ F bypass capacitor filters the power line. Tie VREFP to V_{DD} if the ADC is not used. Tie VREFN to V_{SS} if ADC is not used.
- (4) Uses the ARM 10-pin interface for SWD.
- (5) When measuring signals of low frequency, use a low-pass filter to remove noise and to improve ADC performance. Also see <u>Ref. 4</u>.

Fig 42. Power, clock, and debug connections

14.4 Termination of unused pins

<u>Table 29</u> shows how to terminate pins that are **not** used in the application. In many cases, unused pins may should be connected externally or configured correctly by software to minimize the overall power consumption of the part.

DRAFT DI 32-bit ARM Cortex-M0+ microcontroller

PC

14 DPA

ALL DRY

16. Soldering

Fig 45. Reflow soldering of the TSSOP20 package

LPC82x

LPC82x 32-bit ARM Cortex-M0+ microcontroller

DRAFT DI

LPC82x

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved.

17. Abbreviations

tors	LPC82x
	32-bit ARM Cortex-M0+ microcontroller
ons	
Table 31. Abl	previations
Acronym	Description
AHB	Advanced High-performance Bus
APB	Advanced Peripheral Bus
BOD	BrownOut Detection
GPIO	General-Purpose Input/Output
PLL	Phase-Locked Loop
RC	Resistor-Capacitor
SPI	Serial Peripheral Interface
SMBus	System Management Bus
TEM	Transverse ElectroMagnetic
UART	Universal Asynchronous Receiver/Transmitter

18. References

- [1] User manual UM10800.
- [2] Errata sheet ES_LPC82XM.
- [3] I2C-bus specification UM10204.
- [4] Technical note ADC design guidelines: http://www.nxp.com/documents/technical_note/TN00009.pdf