
Digi - 101-1051 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Obsolete

Module/Board Type MPU Core

Core Processor Rabbit 3000

Co-Processor -

Speed 44.2MHz

Flash Size 512KB (Internal), 32MB (External)

RAM Size 1MB

Connector Type 2 IDC Headers 2x17, 1 IDC Header 2x5. 1 xD-Picture Card

Size / Dimension 1.85" x 2.73" (47mm x 69mm)

Operating Temperature 0°C ~ 70°C

Purchase URL https://www.e-xfl.com/product-detail/digi-international/101-1051

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/101-1051-4510356
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

Rabbit Semiconductor Inc.
www.rabbit.com

RabbitCore RCM3365/RCM3375 User’s Manual

Part Number 019-0150 • 080528–G • Printed in U.S.A.
©2005–2008 Digi International Inc. • All rights reserved.

Digi International reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit, RabbitCore, and Dynamic C are registered trademarks of Digi International Inc.

Rabbit 3000 is a trademark of Digi International Inc.
xD-Picture Card is a trademark of Fuji Photo Film Co., Olympus Corporation, and Toshiba Corporation.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International.

The latest revision of this manual is available on the Rabbit Web site, www.rabbit.com,
for free, unregistered download.
RabbitCore RCM3365/RCM3375

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/

4.3 Serial Programming Cable ... 36
4.3.1 Changing Between Program Mode and Run Mode.. 36
4.3.2 Standalone Operation of the RCM3365/RCM3375 ... 37

4.4 Memory .. 38
4.4.1 SRAM... 38
4.4.2 Flash EPROM... 38
4.4.3 NAND Flash... 38

4.5 Other Hardware .. 40
4.5.1 Clock Doubler .. 40
4.5.2 Spectrum Spreader.. 40

Chapter 5. Software Reference 41
5.1 More About Dynamic C... 41

5.1.1 Developing Programs Remotely with Dynamic C ... 43
5.2 Dynamic C Functions.. 44

5.2.1 Digital I/O... 44
5.2.2 SRAM Use.. 44
5.2.3 Serial Communication Drivers ... 45
5.2.4 TCP/IP Drivers ... 45
5.2.5 NAND Flash Drivers.. 45
5.2.6 Prototyping Board Functions.. 46

5.2.6.1 Board Initialization .. 46
5.2.6.2 Digital I/O.. 47
5.2.6.3 Switches, LEDs, and Relay ... 48
5.2.6.4 Serial Communication ... 49
5.2.6.5 RabbitNet Port ... 50

5.3 Upgrading Dynamic C ... 52
5.3.1 Extras.. 52

Chapter 6. Using the TCP/IP Features 53
6.1 TCP/IP Connections ... 53
6.2 TCP/IP Primer on IP Addresses ... 55

6.2.1 IP Addresses Explained.. 57
6.2.2 How IP Addresses are Used ... 58
6.2.3 Dynamically Assigned Internet Addresses... 59

6.3 Placing Your Device on the Network .. 60
6.4 Running TCP/IP Sample Programs.. 61

6.4.1 How to Set IP Addresses in the Sample Programs... 62
6.4.2 How to Set Up your Computer for Direct Connect .. 63

6.5 Run the PINGME.C Sample Program.. 64
6.6 Running Additional Sample Programs With Direct Connect .. 64

6.6.1 RabbitWeb Sample Programs... 65
6.7 Where Do I Go From Here? ... 65

Appendix A. RCM3365/RCM3375 Specifications 67
A.1 Electrical and Mechanical Characteristics .. 68

A.1.1 Headers .. 72
A.2 Bus Loading .. 73
A.3 Rabbit 3000 DC Characteristics .. 76
A.4 I/O Buffer Sourcing and Sinking Limit... 77
A.5 Jumper Configurations .. 78
A.6 Conformal Coating .. 80

Appendix B. Prototyping Board 81
B.1 Introduction ... 82

B.1.1 Prototyping Board Features ... 83
B.2 Mechanical Dimensions and Layout ... 85
RabbitCore RCM3365/RCM3375

1.1 RCM3365 and RCM3375 Features
• Small size: 1.85" x 2.73" x 0.86"

(47 mm x 69 mm x 22 mm)

• Microprocessor: Rabbit 3000 running at 44.2 MHz

• 52 parallel 5 V tolerant I/O lines: 44 configurable for I/O, 4 fixed inputs, 4 fixed outputs

• Three additional digital inputs, two additional digital outputs

• External reset

• Alternate I/O bus can be configured for 8 data lines and 6 address lines (shared with
parallel I/O lines), plus I/O read/write

• Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers

• 512K flash memory, 512K program execution SRAM, 512K data SRAM

• Fixed and hot-swappable mass-storage flash-memory options, which may be used with
the standardized directory structure supported by the Dynamic C FAT File System
module.

• Real-time clock

• Watchdog supervisor

• Provision for customer-supplied backup battery via connections on header J4

• 10-bit free-running PWM counter and four pulse-width registers

• Two-channel Input Capture (shared with parallel I/O ports) can be used to time input
signals from various port pins

• Two-channel Quadrature Decoder accepts inputs from external incremental encoder
modules

• Five or six 3.3 V CMOS-compatible serial ports with a maximum asynchronous baud
rate of 5.525 Mbps. Three ports are configurable as a clocked serial port (SPI), and two
ports are configurable as SDLC/HDLC serial ports (shared with parallel I/O ports).

• Supports 1.15 Mbps IrDA transceiver

• Supports Dynamic C RabbitSys, which supports Ethernet access for remote application
updates, and remote monitoring and control of a RabbitSys-enabled RCM3365

The RCM3900/RCM3910 and RCM3365/RCM3375 RabbitCore modules are similar to
the RCM3305/RCM3315 and RCM3309/RCM3319, but they use fixed NAND or remov-
able media for their mass-storage memories instead of the fixed serial flash options of the
RCM3305/RCM3315 and the RCM3309/RCM3319.
2 RabbitCore RCM3365/RCM3375

18 RabbitCore RCM3365/RCM3375

3.2 Sample Programs
Of the many sample programs included with Dynamic C, several are specific to the
RCM3365 and the RCM3375. Sample programs illustrating the general operation of the
RCM3365/RCM3375, serial communication, and the NAND flash are provided in the
SAMPLES\RCM3360 folder. Each sample program has comments that describe the purpose
and function of the program. Follow the instructions at the beginning of the sample pro-
gram. Note that the RCM3365/RCM3375 must be installed on the Prototyping Board
when using the sample programs described in this chapter.

• CONTROLLED.c—Demonstrates use of the digital inputs by having you turn the LEDs
on the Prototyping Board on or off from the STDIO window on your PC.

Once you compile and run CONTROLLED.C, the following display will appear in the
Dynamic C STDIO window.

Press “2” or “3” or “4”or “5”on your keyboard to select LED DS3 or DS4 or DS5 or
DS6 on the Prototyping Board. Then follow the prompt in the Dynamic C STDIO win-
dow to turn the LED on or off.

• FLASHLED.c—Demonstrates assembly-language program by flashing the USR LED
on the RCM3365/RCM3375 and LEDs DS3, DS4, DS5, and DS6 on the Prototyping
Board.

• SWRELAY.c—Demonstrates the relay-switching function call using the relay installed
on the Prototyping Board through screw-terminal header J17.

• TOGGLESWITCH.c—Uses costatements to detect switches S2 and S3 using debounc-
ing. The corresponding LEDs (DS3 and DS4) will turn on or off.

Once you have loaded and executed these four programs and have an understanding of
how Dynamic C and the RCM3365/RCM3375 modules interact, you can move on and try
the other sample programs, or begin building your own.
20 RabbitCore RCM3365/RCM3375

3.2.1 Use of NAND Flash
The following sample programs can be found in the SAMPLES\RCM3360\NANDFlash folder.
As you run most of these sample programs, you will be prompted in the Dynamic C STDIO win-
dow to select either the soldered-in NAND flash (RCM3365 model only) or the socketed
xD-Picture Card (0 = soldered, 1 = socketed).

• NFLASH_DUMP.c—This program is a utility for dumping the nonerased contents of a
NAND flash chip to the Dynamic C STDIO window, and the contents may be redi-
rected to a serial port.

When the sample program starts running, it attempts to communicate with the user-
selected NAND flash chip. If this communication is successful and the main page size
is acceptable, the nonerased page contents (non 0xFF) from the NAND flash page are
dumped to the Dynamic C STDIO win.for inspection.

Note that an error message might appear when the first 32 pages (0x20 pages) are
“dumped.” You may ignore the error message.

• NFLASH_INSPECT.c—This program is a utility for inspecting the contents of a
NAND flash chip. When the sample program starts running, it attempts to communi-
cate with the NAND flash chip selected by the user. Once a NAND flash chip is found,
the user can execute various commands to print out the contents of a specified page,
clear (set to zero) all the bytes in a specified page, erase (set to FF), or write to specified
pages.

CAUTION: When you run this sample program, enabling the #define NFLASH_
CANERASEBADBLOCKS macro makes it possible to write to bad blocks. The first two
blocks on the xD-Picture Card are marked bad to protect the configuration data needed
to use the card in a digital camera or a PC. You will only be able to use the xD-Picture
Card in Rabbit-based systems if either of the first two blocks is written to.

• NFLASH_LOG.c—This program runs a simple Web server and stores a log of hits in
the NAND flash. As long as the xD-Picture Card is plugged in to its connector J6, this
sample program will log hits to the xD-Picture Card. Remove the xD-Picture Card if
you wish to log hits on the soldered-in NAND flash (RCM3365 model only).

This log can be viewed and cleared from a browser by connecting the RJ-45 jack on the
RCM3365 to your PC as described in Section 6.1. The sidebar on the next page
explains how to set up your PC or notebook to view this log.
User’s Manual 21

Figure 10 shows how to insert or remove the xD-Picture Card. While you remove or insert
the xD-Picture Card, take care to avoid touching the electrical contacts on the bottom of the
card to prevent electrostatic discharge damage to the card and to keep any moisture or
other contaminants off the contacts. Do not remove or insert the xD-Picture Card while it is
being accessed.

Figure 10. Insertion/Removal of xD-Picture Card

It is possible to hot-swap xD-Picture Cards without removing power from the RCM3365/
RCM3375 module. The file system must be closed before the cards can be hot-swapped.
The chip selects associated with the NAND flash and the xD-Picture Card must be set to
their inactive state, and read/write operations addressed to the NAND flash area cannot be
allowed to occur. These operations can be initiated in software by sensing an external
switch actuated by the user, and the xD-Picture Card can then be removed and replaced
with a different one. Once the application program detects a new card, the file system can
be opened. These steps allow the xD-Picture Card to be installed or removed without
affecting either the program, which continues to run on the RCM3365/RCM3375 module,
or the data stored on the xD-Picture Card.

The FAT_HOT_SWAP_336x0.C sample program in the SAMPLES\FileSystem\
folder illustrates this hot-swapping procedure.

Rabbit recommends that you use header J6 only for the xD-Picture Card since other
devices are not supported. Be careful to remove and insert the xD-Picture Card as shown,
and be careful not to insert any foreign objects, which may short out the contacts and lead
to the destruction of your xD-Picture Card.

Sample programs in the SAMPLES\RCM3360\NANDFlash folder illustrate the use of
the NAND flash. These sample programs are described in Section 3.2.1, “Use of NAND
Flash.” Pay careful attention to the sample programs to see how to close files and secure
any data on the xD-Picture Card before you remove it.

�!&
�$%

�$+

�$(
�$*

�
)$

�
!
)

4#$

*#

 (*
 ()

�#
�#)
�#%
�&+
�&(

�#$

4&

�
#&

�
##

0#

�#'
 #

+

�*

#'

 ##

 #%

#,

&'

&)

&*

�	
�

 $%

((
�
(,

(&

('

(#

���

*&

�$#

�%$

�%)

�)) %*

$)
�
&'
�
&#

 $+

�
&%

&(

 &#

 #*

#&

#$

,

4$

�(
 &
 $

�+.#
�,

�
*)

)

�
&

�%

4# %

�*'

�*% �(' �*+

�+) �((

�
%'

�&,

0�
,

�%,

#'
)

4%

+(

�)%

#)

4+

�	
�

4) �#* �&&

0�
+

0�
(

0�
*

0�
)

0�
%

&&

0+

�)

(,

�#

)&

�
*#

 *+

(+

0&

�$'

�*&

.&

-&

�
,+

�+(
 #'%

�
!
$

��
��

��
��

	

�
�
��
!
#

 +#

�
�
�
�
�

�
&$

4#+

�)

�&
User’s Manual 39

for additional information if you are using a Dynamic C release prior to v. 9.60 under Win-
dows Vista. Programs can be downloaded at baud rates of up to 460,800 bps after the pro-
gram compiles.

Dynamic C has a number of standard features.

• Full-feature source and/or assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:
Exceptionally fast support for floating-point arithmetic and transcendental functions.

RS-232 and RS-485 serial communication.

Analog and digital I/O drivers.

I2C, SPI, GPS, file system.

LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking

• Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.
42 RabbitCore RCM3365/RCM3375

5.2 Dynamic C Functions
5.2.1 Digital I/O

The RCM3365/RCM3375 was designed to interface with other systems, and so there are
no drivers written specifically for the I/O. The general Dynamic C read and write func-
tions allow you to customize the parallel I/O to meet your specific needs. For example, use

WrPortI(PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use

WrPortI(PEDDR, &PEDDRShadow, 0xFF);

to set all the Port E bits as outputs.

When using the external I/O bus on the Rabbit 3000 chip, add the line

#define PORTA_AUX_IO // required to enable external I/O bus

to the beginning of any programs using the external I/O bus.

The sample programs in the Dynamic C SAMPLES/RCM3360 folder provide further
examples.

5.2.2 SRAM Use

The RCM3365/RCM3375 have a battery-backed data SRAM and a program-execution
SRAM. Dynamic C provides the protected keyword to identify variables that are to be
placed into the battery-backed SRAM. The compiler generates code that maintains two
copies of each protected variable in the battery-backed SRAM. The compiler also generates
a flag to indicate which copy of the protected variable is valid at the current time. This flag
is also stored in the battery-backed SRAM. When a protected variable is updated, the
“inactive” copy is modified, and is made “active” only when the update is 100% complete.
This assures the integrity of the data in case a reset or a power failure occurs during the
update process. At power-on the application program uses the active copy of the variable
pointed to by its associated flag.

The sample code below shows how a protected variable is defined and how its value can
be restored.

protected nf_device nandFlash;

int main() {
 ...

 _sysIsSoftReset(); // restore any protected variables

The bbram keyword may also be used instead if there is a need to store a variable in bat-
tery-backed SRAM without affecting the performance of the application program. Data
integrity is not assured when a reset or power failure occurs during the update process.

Additional information on bbram and protected variables is available in the Dynamic C
User’s Manual.
44 RabbitCore RCM3365/RCM3375

5.2.6 Prototyping Board Functions

The functions described in this section are for use with the Prototyping Board features.
The source code is in the Dynamic C SAMPLES\RCM3300\RCM33xx.LIB library if you
need to modify it for your own board design.

The RCM33xx.LIB library is supported by the RN_CFG_RCM33.LIB—library, which is
used to configure the RCM3365/RCM3375 for use with RabbitNet peripheral boards on
the Prototyping Board.

Other generic functions applicable to all devices based on Rabbit microprocessors are
described in the Dynamic C Function Reference Manual.

5.2.6.1 Board Initialization

Call this function at the beginning of your program. This function initializes Parallel Ports A through G
for use with the Prototyping Board.

Summary of Initialization

1. I/O port pins are configured for Prototyping Board operation.

2. Unused configurable I/O are set as tied inputs or outputs.

3. External I/O are disabled.

4. The LCD/keypad module is disabled.

5. RS-485 is not enabled.

6. RS-232 is not enabled.

7. LEDs are off.

8. Ethernet select is disabled.

9. Mass-storage flash select is disabled.

10. Motor control is disabled.

11. The RabbitNet SPI interface is disabled.

12. The relay is set to normally closed positions.

RETURN VALUE
None.

void brdInit (void);
46 RabbitCore RCM3365/RCM3375

5.2.6.3 Switches, LEDs, and Relay

Reads the state of a switch input.

PARAMETERS
swin is the switch input to read:

2—S2
3—S3

RETURN VALUE
State of the switch input:

1 = open
0 = closed

SEE ALSO
brdInit

Controls LEDs on the Prototyping Board and on the RCM3365/RCM3375.

PARAMETERS
led is the LED to control:

0 = red User LED on RCM3365/RCM3375
3 = DS3 on Prototyping Board
4 = DS4 on Prototyping Board
5 = DS5 on Prototyping Board
6 = DS6 on Prototyping Board

value is the value used to control the LED:

0 = off
1 = on

RETURN VALUE
None.

SEE ALSO
brdInit

int switchIn(int swin);

void ledOut(int led, int value);
48 RabbitCore RCM3365/RCM3375

Deactivates the RCM3365/RCM3375 RabbitNet port as a clocked serial port. This call is also used by
rn_init().

PARAMETERS
portnum = 0

RETURN VALUE
None

This is a macro that enables or asserts the RCM3365/RCM3375 RabbitNet port chip select prior to data
transfer.

PARAMETERS
portnum = 0

RETURN VALUE
None

This is a macro that disables or deasserts the RCM3365/RCM3375 RabbitNet port chip select to invali-
date data transfer.

PARAMETERS
portnum = 0

RETURN VALUE
None.

void rn_sp_close(int port);

void rn_sp_enable(int portnum);

void rn_sp_disable(int portnum);
User’s Manual 51

6. USING THE TCP/IP FEATURES

6.1 TCP/IP Connections
Programming and development can be done with the RCM3365/RCM3375 modules with-
out connecting the Ethernet port to a network. However, if you will be running the sample
programs that use the Ethernet capability or will be doing Ethernet-enabled development,
you should connect the RCM3365/RCM3375 module’s Ethernet port at this time.

Before proceeding you will need to have the following items.

• If you don’t have Ethernet access, you will need at least a 10Base-T Ethernet card
(available from your favorite computer supplier) installed in a PC.

• Two RJ-45 straight-through Ethernet cables and a hub, or an RJ-45 crossover Ethernet
cable.

A straight-through and a crossover Ethernet cable are included in the RCM3365/RCM3375
Development Kit. Figure 11 shows how to identify the two cables based on the wires in the
transparent RJ-45 connectors.

Figure 11. How to Identify Straight-Through and Crossover Ethernet Cables

Ethernet cables and a 10Base-T Ethernet hub are available from Rabbit in a TCP/IP tool
kit. More information is available at www.rabbit.com.

	��������
	�
��

������"��
,"����"
	�
��

!���
�
�
��
�=��
����
�����
��

��EE�����
�
�
��
�=��
����
�����
��
User’s Manual 53

http://www.rabbit.com/

Now you should be able to make your connections.

1. Connect the AC adapter and the serial programming cable as shown in Chapter 2, “Get-
ting Started.”

2. Ethernet Connections

There are four options for connecting the RCM3365/RCM3375 module to a network
for development and runtime purposes. The first two options permit total freedom of
action in selecting network addresses and use of the “network,” as no action can inter-
fere with other users. We recommend one of these options for initial development.

• No LAN — The simplest alternative for desktop development. Connect the
RCM3365/RCM3375 module’s Ethernet port directly to the PC’s network interface
card using an RJ-45 crossover cable. A crossover cable is a special cable that flips
some connections between the two connectors and permits direct connection of two cli-
ent systems. A standard RJ-45 network cable will not work for this purpose.

• Micro-LAN — Another simple alternative for desktop development. Use a small Eth-
ernet 10Base-T hub and connect both the PC’s network interface card and the
RCM3365/RCM3375 module’s Ethernet port to it using standard network cables.

The following options require more care in address selection and testing actions, as
conflicts with other users, servers and systems can occur:

• LAN — Connect the RCM3365/RCM3375 module’s Ethernet port to an existing
LAN, preferably one to which the development PC is already connected. You will need
to obtain IP addressing information from your network administrator.

• WAN — The RCM3365/RCM3375 is capable of direct connection to the Internet and
other Wide Area Networks, but exceptional care should be used with IP address
settings and all network-related programming and development. We recommend that
development and debugging be done on a local network before connecting a Rabbit-
Core system to the Internet.

TIP: Checking and debugging the initial setup on a micro-LAN is recommended before
connecting the system to a LAN or WAN.

The PC running Dynamic C does not need to be the PC with the Ethernet card.

3. Apply Power

Plug in the AC adapter. The RCM3365/RCM3375 module and Prototyping Board are
now ready to be used.
54 RabbitCore RCM3365/RCM3375

6.4 Running TCP/IP Sample Programs
We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require you to connect your PC and the
RCM3365/RCM3375 board together on the same network. This network can be a local pri-
vate network (preferred for initial experimentation and debugging), or a connection via the
Internet.

The sample programs described in this chapter may also be run with a RabbitSys-enabled
RCM3365 operating in the RabbitSys mode. There is no change to the instructions when
you use the serial programming cable. When you use an Ethernet cable, you may use CAT
5/6 straight-through Ethernet cables to connect the RCM3365 and your PC to a DHCP net-
work. It is not necessary to use a crossover cable for a direct connection. Use the TCP/IP
parameters such as the IP address that you identified with the rdiscover utility; if you are
using an Ethernet crossover cable to connect the RCM3365 directly to your PC, use the
TCP/IP parameters that you set up according to the instructions in Appendix E.

User’s PC

Ethernet
crossover
cable

Direct Connection
(network of 2 computers)

Hub

Ethernet
cables

To additional
network
elements

Direct Connection Using a Hub

RCM3365/RCM3375
System RCM3365/RCM3375

System
User’s Manual 61

A.3 Rabbit 3000 DC Characteristics

Stresses beyond those listed in Table A-5 may cause permanent damage. The ratings are
stress ratings only, and functional operation of the Rabbit 3000 chip at these or any other
conditions beyond those indicated in this section is not implied. Exposure to the absolute
maximum rating conditions for extended periods may affect the reliability of the Rabbit
3000 chip.

Table A-6 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-
mended operating temperature range from TA = –55°C to +85°C, VDD = 3.0 V to 3.6 V.

Table A-5. Rabbit 3000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating

TA Operating Temperature -55° to +85°C

TS Storage Temperature -65° to +150°C

Maximum Input Voltage:
• Oscillator Buffer Input
• 5-V-tolerant I/O

VDD + 0.5 V
5.5 V

VDD Maximum Operating Voltage 3.6 V

Table A-6. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units

VDD Supply Voltage 3.0 3.3 3.6 V

VIH High-Level Input Voltage 2.0 V

VIL Low-Level Input Voltage 0.8 V

VOH High-Level Output Voltage
IOH = 6.8 mA,
VDD = VDD (min)

0.7 x
VDD

V

VOL Low-Level Output Voltage
IOL = 6.8 mA,
VDD = VDD (min) 0.4 V

IIH
High-Level Input Current
(absolute worst case, all buffers)

VIN = VDD,
VDD = VDD (max) 10 µA

IIL
Low-Level Input Current
(absolute worst case, all buffers)

VIN = VSS,
VDD = VDD (max) -10 µA

IOZ

High-Impedance State
Output Current
(absolute worst case, all buffers)

VIN = VDD or VSS,
VDD = VDD (max), no pull-up -10 10 µA
76 RabbitCore RCM3365/RCM3375

B.4.3 CMOS Digital Outputs

If the stepper-motor option is not used, eight CMOS-level digital outputs are available at
J10, and can each handle up to 25 mA.

B.4.4 Sinking Digital Outputs

Four sinking digital outputs shared with LEDs DS3–DS6 are available at J12, and can each
handle up to 500 mA. Figure B-6 shows a wiring diagram for a typical sinking output.

Figure B-6. Prototyping Board Sinking Digital Outputs

B.4.5 Relay Outputs

Figure B-7 shows the contact connections for the relay on the Prototyping Board. A diode
across the coil provides a return path for inductive spikes, and snubbers across the relay
contacts protect the relay contacts from inductive spikes.

Figure B-7. Prototyping Board Relay Output Contact Connections

The relay is driven by pin PA4 of the RCM3365/RCM3375 module via U8, and is con-
trolled by PE7 and PG5 as shown in the sample applications.

1��

$$'��

#���

��������"
:6"	�����
�!��	�4 ��1"

(

*

,

#

#'

 �/#

	�#

	 #

)

$

&

 �/&

	�&

	 &

�2�1

)(�� #''��5

)(�� #''��5

-.*

& $

<

) % +

)(�� #''��5

)(�� #''��5
User’s Manual 91

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad
module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm)
longer than the thickness of the panel.

Figure C-9. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-
plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or
two turns to each screw in sequence until all are tightened manually as far as they can
be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

��D��)��7��

��!���.������

4# 4&
 #

 & $

)
4$

�
#(

0#

-#

�#

�#

�& �$ �)

�
,

�
#'

�
##

-& -$ -)

�
#&

�% �+

-% -+

�
#$

�(

�
#)

�*
�
#%

�
#*

-(-* %

�
#+

 +0$
4)

�	#
0&

*

(

��#

�����
110 RabbitCore RCM3365/RCM3375

Configures the physical layout of the keypad with the default ASCII return key codes.

Keypad physical mapping 1 x 7

where
'D' represents Down Scroll
'U' represents Up Scroll
'R' represents Right Scroll
'L' represents Left Scroll
'–' represents Page Down
'+' represents Page Up
'E' represents the ENTER key

Example: Do the followingfor the above physical vs. ASCII return key codes.

keyConfig (3,'R',0, 0, 0, 0, 0);
keyConfig (6,'E',0, 0, 0, 0, 0);
keyConfig (2,'D',0, 0, 0, 0, 0);
keyConfig (4,'-',0, 0, 0, 0, 0);
keyConfig (1,'U',0, 0, 0, 0, 0);
keyConfig (5,'+',0, 0, 0, 0, 0);
keyConfig (0,'L',0, 0, 0, 0, 0);

Characters are returned upon keypress with no repeat.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keyProcess

Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit
position.

PARAMETER
*pcKeys is a pointer to the address of the value read.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keypadDef, keyProcess

void keypadDef();

0 4 1 5 2 6 3

['L'] ['U'] ['D'] ['R']

['–'] ['+'] ['E']

void keyScan(char *pcKeys);
132 RabbitCore RCM3365/RCM3375

F.3 Function Calls
The function calls described in this section are used with all RabbitNet peripheral cards,
and are available in the RNET.LIB library in the Dynamic C RABBITNET folder.

Resets, initializes, or disables a specified RabbitNet port on the master single-board computer. During
initialization, the network is enumerated and relevant tables are filled in. If the port is already initialized,
calling this function forces a re-enumeration of all devices on that port.

Call this function first before using other RabbitNet functions.

PARAMETERS
portflag is a bit that represents a RabbitNet port on the master single-board computer (from 0 to the
maximum number of ports). A set bit requires a service. If portflag = 0x03, both RabbitNet ports 0
and 1 will need to be serviced.

servicetype enables or disables each RabbitNet port as set by the port flags.

0 = disable port
1 = enable port

RETURN VALUE
0

Returns an address index to device information from a given physical node address. This function will
check device information to determine that the peripheral card is connected to a master.

PARAMETER
pna is the physical node address, indicated as a byte.

7,6—2-bit binary representation of the port number on the master
5,4,3—Level 1 router downstream port
2,1,0—Level 2 router downstream port

RETURN VALUE
Pointer to device information. -1 indicates that the peripheral card either cannot be identified or is not
connected to the master.

SEE ALSO
rn_find

int rn_init(char portflag, char servicetype);

int rn_device(char pna);
146 RabbitCore RCM3365/RCM3375

