Digi - 101-1087 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - Microcontroller,</u> <u>Microprocessor, FPGA Modules</u>

Embedded - Microcontroller, Microprocessor, and FPGA Modules are fundamental components in modern electronic systems, offering a wide range of functionalities and capabilities. Microcontrollers are compact integrated circuits designed to execute specific control tasks within an embedded system. They typically include a processor, memory, and input/output peripherals on a single chip. Microprocessors, on the other hand, are more powerful processing units used in complex computing tasks, often requiring external memory and peripherals. FPGAs (Field Programmable Gate Arrays) are highly flexible devices that can be configured by the user to perform specific logic functions, making them invaluable in applications requiring customization and adaptability.

Applications of Embedded - Microcontroller,

Details

Product Status	Obsolete
Module/Board Type	MPU Core
Core Processor	Rabbit 3000
Co-Processor	-
Speed	44.2MHz
Flash Size	512KB (Internal), xD-Picture Card (External)
RAM Size	1MB
Connector Type	2 IDC Headers 2x17, 1 IDC Header 2x5. 1 xD-Picture Card
Size / Dimension	1.85" x 2.73" (47mm x 69mm)
Operating Temperature	0°C ~ 70°C
Purchase URL	https://www.e-xfl.com/product-detail/digi-international/101-1087

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Ethernet chip A different Ethernet controller chip is used on the RCM3900/ RCM3910. The Ethernet chip is able to detect automatically whether a crossover cable or a straight-through cable is being used in a particular setup, and will configure the signals on the Ethernet jack interface.
- **Dynamic C** As long as no low-level FAT file system calls or direct *xD-Picture Card* access calls to the **NFLASH.LIB** library were used in your application developed for the RCM3365/RCM3375, you may run that application on the RCM3900/RCM3910 after you recompile it using Dynamic C v. 9.60.

NOTE: The Dynamic C RabbitSys option for programming an RCM3365 over an Ethernet link is not supported for the RCM3900.

1.3 Advantages of the RCM3365 and RCM3375

- Fast time to market using a fully engineered, "ready-to-run/ready-to-program" micro-processor core.
- Competitive pricing when compared with the alternative of purchasing and assembling individual components.
- Easy C-language program development and debugging
- Program download utility (Rabbit Field Utility) and cloning board options for rapid production loading of programs.
- Generous memory size allows large programs with tens of thousands of lines of code, and substantial data storage.
- Integrated Ethernet port for network connectivity, with royalty-free TCP/IP software.
- Ideal for network-enabling security and access systems, home automation, HVAC systems, and industrial controls

1.4.2 Software

The RCM3365 and the RCM3375 are programmed using version 9.24 or later of Dynamic C. A compatible version is included on the Development Kit CD-ROM.

Rabbit is also offering RCM3365 RabbitCore modules preloaded with Dynamic C Rabbit-Sys firmware to allow these modules to run Dynamic C RabbitSys. Dynamic C RabbitSys requires Dynamic C version 9.30 or later, and allows the RCM3365 to be accessed via an Ethernet connection for remote application updates, and for remote monitoring and control. A RabbitSys Development Kit is available with all the hardware and software tools that are needed to develop a RabbitSys application.

Dynamic C v. 9.60 includes the popular μ C/OS-II real-time operating system, point-topoint protocol (PPP), FAT file system, RabbitWeb, and other select libraries that were previously sold as individual Dynamic C modules.

Rabbit also offers for purchase the Rabbit Embedded Security Pack featuring the Secure Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library. In addition to the Web-based technical support included at no extra charge, a one-year telephone-based technical support subscription is also available for purchase. Visit our Web site at www.rabbit.com for further information and complete documentation, or contact your Rabbit sales representative or authorized distributor.

NOTE: Version 2.10 or later of the Dynamic C FAT file system module is required to use the FAT file system with the RCM3365 and RCM3375 models.

1.4.3 Accessories

Rabbit has available a USB Removable Memory Card Reader and a Connector Adapter Board.

- USB Removable Memory Card Reader (Part No. 20-101-1104)—allows you to read data from the *xD-Picture Card* via your PC.
- Connector Adapter Board (Part No. 151-0114)—allows you to plug the RCM3365/ RCM3375 whose headers have a 2 mm pitch into header sockets with a 0.1" pitch.

Visit our Web site at www.rabbit.com or contact your Rabbit sales representative or authorized distributor for further information.

1.4.4 Online Documentation

The online documentation is installed along with Dynamic C, and an icon for the documentation menu is placed on the workstation's desktop. Double-click this icon to reach the menu. If the icon is missing, use your browser to find and load **default.htm** in the **docs** folder, found in the Dynamic C installation folder.

The latest versions of all documents are always available for free, unregistered download from our Web sites as well.

	Pin	Pin Name	Default Use	Alternate Use	Notes
	20	PG7	Input/Output	RXE	Seriel Dert F
	21	PG6	Input/Output	TXE	Senai Foit E
	22	PG5	Input/Output	RCLKE	Serial Clock E input
	23	PG4	Input/Output	TCLKE	Serial Clock E ouput
	24	/IOWR	Output		External write strobe
	25	/IORD	Output		External read strobe
Header J4	26–27	SMODE0, SMODE1	 (0,0)—start executing at address zero (0,1)—cold boot from slave port (1,0)—cold boot from clocked Serial Port A SMODE0 =1, SMODE1 = 1 Cold boot from asynchronous Serial Port A at 2400 bps (programming cable connected) 		Also connected to programming cable
	28	/RESET_IN	Input		
	29	VRAM	Output		See Notes below table
	30	VBAT_EXT	3 V battery Input		Minimum battery voltage 2.85 V
	31	+3.3 VIN	Power Input		3.15–3.45 V DC
	32	GND			
	33	n.c.			Reserved for future use
	34	GND			

Table 2. RCM3365/RCM3375 Pinout Configurations (continued)

Notes

- 1. When using pins 33–34 on header J3 to drive LEDs, these pins can handle a sinking current of up to 8 mA.
- 2. The VRAM voltage is temperature-dependent. If the VRAM voltage drops below about 1.2 V to 1.5 V, the contents of the battery-backed SRAM may be lost. If VRAM drops below 1.0 V, the 32 kHz oscillator could stop running. Pay careful attention to this voltage if you draw any current from this pin.
- 3. Do not overload the /IOWR line because the NAND flash memories have critical timing requirements. In some cases it may be necessary to buffer /IOWR on the motherboard.

4.4 Memory

4.4.1 SRAM

RCM3365/RCM3375 boards have 512K of program-execution fast SRAM at U11. The program-execution SRAM is not battery-backed. There are 512K of battery-backed data SRAM installed at U10.

4.4.2 Flash EPROM

RCM3365/RCM3375 boards also have 512K of flash EPROM at U9.

NOTE: Rabbit recommends that any customer applications should not be constrained by the sector size of the flash EPROM since it may be necessary to change the sector size in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead, use a portion of the "user block" area to store persistent data. The functions writeUser-Block and readUserBlock are provided for this. Refer to the *Rabbit 3000 Microprocessor Designer's Handbook* and the *Dynamic C Function Reference Manual* for additional information.

4.4.3 NAND Flash

The RCM3365 and the RCM3375 support a removable *xD-Picture Card*TM to store data and Web pages. The RCM3365 and the RCM3375 both can handle up to a 128MB removable *xD-Picture Card*, and the RCM3365 model also has a 32MB onboard NAND flash.^{*}

NOTE: Rabbit-based systems do not implement the *xD-Picture Card*TM specification for data storage, and are neither compatible nor compliant with *xD-Picture Card*TM card readers.

The NAND flash and *xD-Picture Card* are particularly suitable for mass-storage applications, but are generally unsuitable for direct program execution. The NAND flash differs from parallel NOR flash (the type of flash memory used to store program code on Rabbitbased boards and RabbitCore modules currently in production) in two respects. First, the NAND flash requires error-correcting code (ECC) for reliability. Although NAND flash manufacturers do guarantee that block 0 will be error-free, most manufacturers guarantee that a new NAND flash chip will be shipped with a relatively small percentage of errors, and will not develop more than some maximum number or percentage of errors over its rated lifetime of up to 100,000 writes. Second, the standard NAND flash addressing method multiplexes commands, data, and addresses on the same I/O pins, while requiring that certain control lines must be held stable for the duration of the NAND flash access. The software function calls provided by Rabbit for the NAND flash take care of the dataintegrity and reliability attributes.

^{*} RCM3365 modules sold before 2008 had 16MB fixed NAND flash memory.

Figure 10 shows how to insert or remove the *xD-Picture Card*. While you remove or insert the *xD-Picture Card*, take care to avoid touching the electrical contacts on the bottom of the card to prevent electrostatic discharge damage to the card and to keep any moisture or other contaminants off the contacts. Do *not* remove or insert the *xD-Picture Card* while it is being accessed.

Figure 10. Insertion/Removal of xD-Picture Card

It is possible to hot-swap *xD-Picture Cards* without removing power from the RCM3365/ RCM3375 module. The file system must be closed before the cards can be hot-swapped. The chip selects associated with the NAND flash and the *xD-Picture Card* must be set to their inactive state, and read/write operations addressed to the NAND flash area cannot be allowed to occur. These operations can be initiated in software by sensing an external switch actuated by the user, and the *xD-Picture Card* can then be removed and replaced with a different one. Once the application program detects a new card, the file system can be opened. These steps allow the *xD-Picture Card* to be installed or removed without affecting either the program, which continues to run on the RCM3365/RCM3375 module, or the data stored on the *xD-Picture Card*.

The **FAT_HOT_SWAP_336x0.C** sample program in the **SAMPLES\FileSystem** folder illustrates this hot-swapping procedure.

Rabbit recommends that you use header J6 only for the *xD-Picture Card* since other devices are not supported. Be careful to remove and insert the *xD-Picture Card* as shown, and be careful *not* to insert any foreign objects, which may short out the contacts and lead to the destruction of your *xD-Picture Card*.

Sample programs in the **SAMPLES\RCM3360\NANDFlash** folder illustrate the use of the NAND flash. These sample programs are described in Section 3.2.1, "Use of NAND Flash." Pay careful attention to the sample programs to see how to close files and secure any data on the *xD-Picture Card* before you remove it.

5.1.1 Developing Programs Remotely with Dynamic C

Dynamic C is an integrated development environment that allows you to edit, compile, and debug your programs. Dynamic C has the ability to allow programming over the Internet or local Ethernet. This is accomplished in one of three ways.

- RCM3365 RabbitCore modules that are preloaded with Dynamic C RabbitSys firmware can be used with Dynamic C RabbitSys to be accessed via an Ethernet connection for remote application updates, and for remote monitoring and control. Dynamic C RabbitSys requires Dynamic C version 9.30 or later, and allows the RCM3365. The *Dynamic C RabbitSys User's Manual* provides complete information on RabbitSys.
- 2. Via the Rabbit RabbitLink, which allows a Rabbit-based target to have programs downloaded to it and debugged with the same ease as exists when the target is connected directly to a PC.
- 3. Dynamic C provides sample programs to illustrate the use of a download manager, but these sample programs are not intended for use with the NAND flash on the RCM3365 and RCM3375 RabbitCore modules. The DLM_TCP.C and DLP_TCP.C sample programs found in the Dynamic C SAMPLES\DOWN_LOAD folder, are intended to be compiled to the program flash memory (which is a parallel flash memory). Custom applications based on these sample programs may use the NAND flash for data storage.

6. USING THE TCP/IP FEATURES

6.1 TCP/IP Connections

Programming and development can be done with the RCM3365/RCM3375 modules without connecting the Ethernet port to a network. However, if you will be running the sample programs that use the Ethernet capability or will be doing Ethernet-enabled development, you should connect the RCM3365/RCM3375 module's Ethernet port at this time.

Before proceeding you will need to have the following items.

- If you don't have Ethernet access, you will need at least a 10Base-T Ethernet card (available from your favorite computer supplier) installed in a PC.
- Two RJ-45 straight-through Ethernet cables and a hub, or an RJ-45 crossover Ethernet cable.

A straight-through and a crossover Ethernet cable are included in the RCM3365/RCM3375 Development Kit. Figure 11 shows how to identify the two cables based on the wires in the transparent RJ-45 connectors.

Figure 11. How to Identify Straight-Through and Crossover Ethernet Cables

Ethernet cables and a 10Base-T Ethernet hub are available from Rabbit in a TCP/IP tool kit. More information is available at www.rabbit.com.

APPENDIX B. PROTOTYPING BOARD

Appendix B describes the features and accessories of the Prototyping Board.

B.4.6.1 RS-232

RS-232 serial communication on the Prototyping Board is supported by an RS-232 transceiver installed at U9. This transceiver provides the voltage output, slew rate, and input voltage immunity required to meet the RS-232 serial communication protocol. Basically, the chip translates the Rabbit 3000's signals to RS-232 signal levels. Note that the polarity is reversed in an RS-232 circuit so that a +5 V output becomes approximately -10 V and 0 V is output as +10 V. The RS-232 transceiver also provides the proper line loading for reliable communication.

RS-232 can be used effectively at the RCM3365/RCM3375 module's maximum baud rate for distances of up to 15 m.

RS-232 flow control on an RS-232 port is initiated in software using the **serXflowcontrolOn** function call from **RS232.LIB**, where **x** is the serial port (E or F). The locations of the flow control lines are specified using a set of five macros.

SERX_RTS_PORT—Data register for the parallel port that the RTS line is on (e.g., PGDR).

SERX_RTS_SHADOW—Shadow register for the RTS line's parallel port (e.g., PGDRShadow).

SERX_RTS_BIT—The bit number for the RTS line.

SERX_CTS_PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).

SERX_CTS_BIT—The bit number for the CTS line.

Standard 3-wire RS-232 communication using Serial Ports E and F is illustrated in the following sample code.

```
#define EINBUFSIZE 15
                         // set size of circular buffers in bytes
#define EOUTBUFSIZE 15
#define FINBUFSIZE 15
#define FOUTBUFSIZE 15
#define MYBAUD 115200
                        // set baud rate
#endif
main(){
    serEopen( MYBAUD);
                        // open Serial Ports E and F
    serFopen( MYBAUD);
    serEwrFlush();
                         // flush their input and transmit buffers
    serErdFlush();
    serFwrFlush();
    serFrdFlush();
    serEclose( MYBAUD); // close Serial Ports C and D
    serFclose(_MYBAUD);
}
```

B.4.8 Other Prototyping Board Modules

An optional LCD/keypad module is available that can be mounted on the Prototyping Board. The signals on headers LCD1JB and LCD1JC will be available only if the LCD/ keypad module is installed. Refer to Appendix C, "LCD/Keypad Module," for complete information.

Rabbit's SF1000 series serial flash may be installed in the socket labeled J11. The J11 interface is enabled in software by setting PD2 = 0. Header JP3 must have pins 2–3 jumpered when using the J11 interface. Note that the RabbitNet port and the J11 interface cannot be used simultaneously.

B.4.9 Quadrature Decoder

Four quadrature decoder inputs are available on screw-terminal header J5. To use the PF0 input from the Rabbit microprocessor, which goes to the QD1B input, remember to reconfigure the jumper on header JP3 to jumper pins 1–2.

Additional information on the use of the quadrature Decoders on Parallel Port F is provided in the *Rabbit 3000 Microprocessor User's Manual*.

B.4.10 Stepper-Motor Control

The Prototyping Board can be used to demonstrate the use of the RCM3365/RCM3375 to control a stepper motor. Stepper motor control typically directs moves in two orthogonal directions, and so two sets of stepper-motor control circuits are provided for via screw-terminal headers J3 and J4.

In order to use the stepper-motor control, install two Texas Instruments L293DN chips at locations U2 and U3 (shown in Figure B-10). These chips are readily available from your favorite electronics parts source, and may be purchased through our Web store as part number 660-0205.

Figure B-10. Install Four-Channel Push-Pull Driver Chips

B.6 Use of Rabbit 3000 Parallel Ports

Table B-5 lists the Rabbit 3000 parallel ports and their use for the Prototyping Board.

Port	I/O	Use		Initial State
PA0-PA3	Data Bus	LCD/keypad module, motor	LCD/keypad module, motor driver, LEDs	
PA4	Data Bus	LCD/keypad module, motor driver, relay and relay LED		Active high
PA5-PA7	Data Bus	LCD/keypad module, mo	tor control	Active high
PB0	Input	CLKB, xD-Picture Card	Detect	High
PB1	Input	CLKA Programming Por	t	High (when not driven by CLKA)
PB2–PB5	Address Bus	LCD/keypad module		High
PB6–PB7	Address Bus	_		High
PC0	Output	TXD SPI, serial flash	Seriel Dent D	High (SPI disabled)
PC1	Input	RXD SPI, serial flash	- Serial Port D	High (SPI disabled)
PC2	Output	TXC RS-485		High (RS-485 disabled)
PC3	Input	RXC RS-485	- Serial Port C	High (RS-485 disabled)
PC4*	Output	ТХВ		High (disabled)
PC5*	Input	RXB	- Serial Port B	High (disabled)
PC6	Output	TXA Programming Port		High
PC7	Input	RXA Programming Port	RXA Programming Port	
PD0	Output	RCM3365/RCM3375 USR LED off (shared with NAND flash busy)		High
PD1	Output	Soldered-in NAND flash chip enable		High (disabled)
PD2	Output	SPI, serial flash		Low (SPI disabled)
PD3	Output	SPI, serial flash	SPI, serial flash	
PD4–PD6	Input	Serial flash		High (disabled)
PD7	Output	RS-485 Tx enable		Low (RS-485 Tx disabled)
PE0-PE1	Input	IN0–IN1		High
PE2	Output	Ethernet AEN, NAND flash function enable		High (disabled)
PE3	Output	Motor driver A clock pulse		Low (disabled)
PE4–PE5	Input	IN2–IN3, J8		High
PE6	Output	LCD/keypad module		High (disabled)

Table B-5. Prototyping Board Use of Rabbit 3000 Parallel Ports

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm) longer than the thickness of the panel.

Figure C-9. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel faceplate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or two turns to each screw in sequence until all are tightened manually as far as they can be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board

The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the Prototyping Board, and is connected via a ribbon cable as shown in Figure C-10.

Figure C-10. Connecting LCD/Keypad Module to Prototyping Board

Note the locations and connections relative to pin 1 on both the Prototyping Board and the LCD/keypad module.

Rabbit offers 2 ft. (60 cm) extension cables. Contact your authorized distributor or a Rabbit sales representative for more information.

void glPlotVPolygon(int n, int *pFirstCoord);

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked. Any portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the function will return without doing anything.

PARAMETERS

n is the number of vertices.

*pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,...

RETURN VALUE

None.

SEE ALSO

glPlotPolygon, glFillPolygon, glFillVPolygon

void glPlotPolygon(int n, int y1, int x2, int y2, ...);

Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the function will return without doing anything.

PARAMETERS

n is the number of vertices.

- **y1** is the *y* coordinate of the first vertex.
- **x1** is the *x* coordinate of the first vertex.
- **y2** is the *y* coordinate of the second vertex.
- **x2** is the *x* coordinate of the second vertex.
- ... are the coordinates of additional vertices.

RETURN VALUE

None.

SEE ALSO

glPlotVPolygon, glFillPolygon, glFillVPolygon

Prints a formatted string (much like **printf**) on the LCD screen. Only the character codes that exist in the font set are printed, all others are skipped. For example, "\b', '\t', "\n' and '\r' (ASCII backspace, tab, new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have any effect as control characters. Any portion of the bitmap character that is outside the LCD display area will be clipped.

PARAMETERS

x is the x coordinate (column) of the top left corner of the text.

y is the *y* coordinate (row) of the top left corner of the text.

***pInfo** is a font descriptor pointer.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE

glprintf(0,0, &fi12x16, "Test %d\n", count);

RETURN VALUE

None.

SEE ALSO

glXFontInit

void glBuffLock(void);

Increments LCD screen locking counter. Graphic calls are recorded in the LCD memory buffer and are not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock() and glBuffUnlock() can be nested up to a level of 255, but be sure to balance the calls. It is not a requirement to use these procedures, but a set of glBuffLock() and glBuffUnlock() bracketing a set of related graphic calls speeds up the rendering significantly.

RETURN VALUE

None.

SEE ALSO

glBuffUnlock, glSwap

void glBuffUnlock(void);

Decrements the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the counter goes to zero.

RETURN VALUE

None.

SEE ALSO

glBuffLock, glSwap

void glSwap(void);

Checks the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the counter is zero.

RETURN VALUE

None.

SEE ALSO

glBuffUnlock, glBuffLock, _glSwapData (located in the library specifically for the LCD that you are using)

void glSetBrushType(int type);

Sets the drawing method (or color) of pixels drawn by subsequent graphic calls.

PARAMETER

type value can be one of the following macros.

PIXBLACK draws black pixels (turns pixel on). **PIXWHITE** draws white pixels (turns pixel off). **PIXXOR** draws old pixel XOR'ed with the new pixel.

RETURN VALUE

None.

SEE ALSO

glGetBrushType

int glGetBrushType(void);

Gets the current method (or color) of pixels drawn by subsequent graphic calls.

RETURN VALUE

The current brush type.

SEE ALSO

glSetBrushType

void glPlotDot(int x, int y);

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the coordinates are outside the LCD display area, the dot will not be plotted.

PARAMETERS

x is the x coordinate of the dot.

y is the *y* coordinate of the dot.

RETURN VALUE

None.

SEE ALSO

glPlotline, glPlotPolygon, glPlotCircle

void glUp1(int left, int top, int cols, int rows);

Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color).

PARAMETERS

left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO

glVScroll, glDown1

Scrolls byte-aligned window down one pixel, top column is filled by current pixel type (color).

PARAMETERS

left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO

glVScroll, glUp1

3. Now select the **IP Address** tab, and check **Specify an IP Address**, or select TCP/IP and click on "Properties" to fill in the following fields:

IP Address : 10.10.6.101

Netmask : 255.255.255.0

Default gateway : 10.10.6.1

TIP: If you are using a PC that is normally on a network, you will have disconnected the PC from that network. Write down the existing settings before changing them to facilitate restoring them when you are finished with the sample programs and reconnect your PC to the network.

Internet Protocol (TCP/IP) Propertie	25	? ×
General		
You can get IP settings assigned autor this capability. Otherwise, you need to the appropriate IP settings.	natically if your network supports ask your network administrator fo	r
C Obtain an IP address automatical	ly .	
☐ Use the following IP address: —		
IP address:	10 . 10 . 6 . 101	
Subnet mask:	255 . 255 . 255 . 0	
Default gateway:	10 . 10 . 6 . 1	
C Obtain DNS server address autor	natically	
□	dresses:	
Preferred DNS server:		
Alternate DNS server:		
	Advanced.	
	OK Can	cel

4. Click **<OK>** or **<Close>** to exit the various dialog boxes.

jumper configurations Prototyping Board JP1 (stepper motor power supply)99 JP2 (stepper motor power supply)99 JP3 (quadrature decoder/ serial flash)99 JP4 (RCM3365/RCM3375 power supply)99 JP5 (RS-485 bias and termination resistors)95, 99 stepper motor power supply RCM3365/RCM3375 ..78, 79 JP2 (flash memory bank select)79 JP3 (data SRAM size) ...79 JP4 (Ethernet or I/O output on header J3)79 JP5 (Ethernet or I/O output on header J3)79 JP6 (Ethernet or I/O output on header J3)79 JP7 (Ethernet or I/O output on header J3)79 JP8 (Ethernet or I/O output on header J3)79 JP9 (chip select signals for NAND flash and xD-Picture Card)79 jumper locations78 R96 (xD-Picture Card detect)79

Κ

L

LCD/keypad module	
bezel-mount installation	109
dimensions	103
function calls	
dispInit	113
header pinout	107
I/O address assignments	107

keypad	
function calls	
keyConfig	130
keyGet	131
keyInit	130
kevpadDef	132
keyProcess	131
keyScan	132
keyUnget	132
keyonget	106
I CD display	100
function collo	
alDeals in the	111
	114
giBlankScreen	115
glBlock	115
glBuffLock	121
glBuffUnlock	121
glDispOnOff	114
glDown1	124
glFillCircle	118
glFillPolygon	117
glFillScreen	115
glFillVPolvgon	117
glFontCharAddr	119
glGetBrushType	122
glGetPfSten	120
glHScroll	125
allnit	114
gli oft1	172
glDlotCirolo	117
	117
	122
glPlotLine	123
glPlotPolygon	116
glPlotVPolygon	116
glPrintf	121
glPutChar	120
glPutFont	119
glRight1	123
glSetBrushType	122
glSetContrast	115
glSetPfStep	119
glSwap	122
glUp1	124
glVScroll	126
glXFontInit	118
olXPutRitman	126
glXI utDitiliap	120
TextCursor contine	12/
TextCoteVV	120
TextO010A I	120
	129
TextPutChar	129
TextWindowFrame	127

LEDs

function calls113
displedOut113
mounting instructions108
reconfigure keypad106
remote cable connection 111
removing and inserting keypad
label106
sample programs112
specifications104
versions103
voltage settings105
LED (Prototyping Board)
function calls
ledOut48
LEDs (RCM3365/RCM3375) 33
ACT
FM33
LINK
SPEED
USR

Μ

MAC addresses58
mounting instructions
LCD/keypad module 108

Ρ

peripheral cards
connection to master 143, 144
pinout
Ethernet port34
LCD/keypad module107
RCM3365/RCM3375
alternate configurations .30
RCM3365/RCM3375 headers
power supplies
+3.3 V
battery backup133
Program Mode
switching modes
programming cable
PROG connector
RCM3365/RCM3375 connec-
tions11
programming option
Ethernet crossover cable .137
troubleshooting141
programming port
1 0 01

Prototyping Board	82
adding components	89
dimensions	85
expansion area	83
features	82, 83
jumper configurations	99
jumper locations	
mounting RCM3365/	
RCM3375	10
power supply	87
prototyping area	89
specifications	86
use of parallel ports	100

R

Rabbit 3000
data and clock delays75
spectrum spreader time delays
Rabbit subsystems
RabbitNet
Ethernet cables to connect
peripheral cards 143, 144
function calls
rn_comm_status151
rn_device146
rn_echo147
rn_enable_wdt150
rn_find147
rn_hitwd150
rn_init146
rn_read148
rn_reset 149
rn_rst_status151
rn_sw_wdt149
rn_write148
general description143
peripheral cards144
A/D converter144
D/A converter144
digital I/O144
display/keypad interface
relay card144
physical implementation . 145
RabbitNet port95
RabbitNet port
function calls50
macros50
rn_sp_close51
rn_sp_disable51
rn_sp_enable51
rn_sp_info50

RabbitSys43
check whether RCM3365 has
RabbitSys firmware 17, 141
Dynamic C setup 16, 141
troubleshooting
RCM3309/RCM3319
comparison with RCM3305/
RCM33154
RCM3365/RCM3375
mounting on Prototyping
Board10
relay
function calls
relayOut 49
remote programming43
download manager43
RabbitLink43
RabbitSys 43
reset
use of reset pin135
RS-485 network
termination and bias resistors
Run Mode
switching modes

S

sample programs20
download manager
DLM_TCP.C 43
DLP_TCP.C
getting to know the
RCM3365/RCM3375
CONTROLLED.C 20
FLASHLED1.C20
SWRELAY.C
TOGGLESWITCH.C 20
hot-swapping xD-Picture Card
FAT_HOT_SWAP.c 23
FAT_HOT_SWAP_3365_
75.c
FAT_HOT_SWAP_
336x0.c
how to run TCP/IP sample
programs 61, 62
how to set IP address 62
how to use non-RCM3365/
RCM3375 RabbitNet
sample programs26
LCD/keypad module . 26, 112
KEYBASIC.C 106
KEYPADTOLED.C 112
LCDKEYFUN.C 112
reconfigure keypad 106
SWITCHTOLCD.C 112

NAND flash	
NFLASH_DUMP.c	21
NFLASH_ERASE.c	22
NFLASH_INSPECT.c	21
NFLASH_LOG.C	21
PONG.C15,	16
RabbitNet	26
real-time clock	
RTC_TEST.C	25
SETRTCKB.C	25
serial communication	
FLOWCONTROL.C	24
PARITY.C	24
SIMPLE3WIRE.C	24
SIMPLE485MASTER.C	25
SIMPLE485SLAVE.C	25
SIMPLE5WIRE.C	24
SWITCHCHAR.C	25
SETUPFORCROSSOVER.	С
	38
TCP/IP	
BROWSELED.C	64
DISPLAY_MAC.C	58
MBOXDEMO.C	64
PINGLED.C	65
PINGME.C	64
RabbitWeb	
BLINKLEDS.C	65
DOORMONITOR.C.	65
SPRINKLER.C	65
SMTP.C	65
user-programmable LED	22
FLASHLED.C	33
serial communication	34
runction calls	40
ser485KX	49
Ser4851X	49
Prototyping Board	02
RS-232	93 :
registers	05
sorial port configura	95
tions	02
DabbitNat port	92
serial ports	7J 31
Ethernet port	34
programming port	34
Prototyping Roard	00
i iototyping Doard	14