

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	6.2 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	1270
Number of Macrocells	980
Number of Gates	-
Number of I/O	271
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	324-LBGA
Supplier Device Package	324-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5m1270zf324c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Programming/Erasure Specifications

Table 3 3 lists the programming/erasure specifications for the MAX V device family.

Table 3 3. Programming/Erasure Specifications for MAX V Devices

Parameter	Block	Minimum	ı Typica	al Maxin	num Ur	nit
Erase and reprogram cycle	UFM		_	1000(1)	Cycles	
Liase and reprogram cycle	Configuration flash memory (CFN	M) —	_	100	Cycle	es

Note thable 3 3

DC Electrical Characteristics

Table 3 4 lists DC electrical characteristics for the MAX V device family.

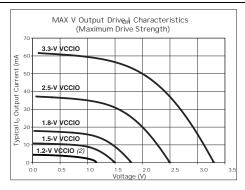
Table 3 4. DC Electrical Characteristics for MAX V D(Notes) (Part 1 of 2)

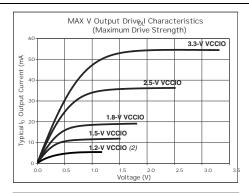
Symbol	Parameter	Conditions	Minin	num Typ	ical Max	kimum
I _I		nt _I ¥V _{CCIO} max to 0 V(2)	-10	_	10	μΑ
l _{oz}	Tri-stated I/O pin leakag	$V_{\rm O} = V_{\rm CCIO}$ max to 0 V(2)	-10	_	10	μА
		5M40Z, 5M80Z, 5M160Z, an 5M240Z (Commercial grade) (4) (5)		25	90	μА
		5M240Z (Commercial grade) (6)	_	27	96	μA
I _{CCSTANDBY}	V _{CCINT} supply current (standby) (3)	5M40Z, 5M80Z, 5M160Z, an 5M240Z (Industrial grade) (5), (7)	d —	25	139	μА
		5M240Z (Industrial grade(6)	_	27	152	μA
		5M570Z (Commercial grade) (4)	_	27	96	μA
		5M570Z (Industrial grade()7)	_	27	152	μA
		5M1270Z and 5M2210Z	_	2	_	mA
)/ (O)	Hysteresis for Schmitt	V _{CCIO} = 3.3 V	_	400	_	mV
V _{SCHMITT} (8)	trigger input(9)	V _{CCIO} = 2.5 V	_	190	_	mV
I _{CCPOWERUP}	V _{CCINT} supply current during power-up(10)	MAX V devices	_	_	40	mA
		V _{CCIO} = 3.3 V (11)	5	_	25	k:
	Value of I/O pin pull-up	V _{CCIO} = 2.5 V (11)	10	_	40	k:
R _{PULLUP}	resistor during user	V _{CCIO} = 1.8 V (11)	25	_	60	k:
	mode and ISP	V _{CCIO} = 1.5 V (11)	45	_	95	k:
		V _{CCIO} = 1.2 V (11)	80	_	130	k:

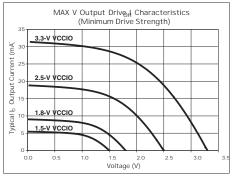
⁽¹⁾ This value applies to the commercial grade devices. For the industrial grade devices, the value is 100 cycles.

Table 3 4. DC Electrical Characteristics for MAX V D(eNotes 1) (Part 2 of 2)

Symbol	Parameter	Conditions	Minir	num Typ	ical Max	kimum	Unit
I _{PULLUP}	I/O pin pull-up resistor current when I/O is unprogrammed	_	_	_	300	μА	
Go	Input capacitance for user I/O pin	_	_	_	8	pF	-
C _{GCLK}	Input capacitance for dual-purpose GCLK/us I/O pin	er —	_	_	8	pF	


Notes table 3 4


- (1) Typical values are for \mp 25°C, \forall_{CINT} = 1.8 V and \forall_{CIO} = 1.2, 1.5, 1.8, 2.5, or 3.3 V.
- (2) This value is specified for normal device operation. The value may vary during power-up. This applies totally (3.3, 2.5, 1.8, 1.5, and 1.2 V).
- (3) V_i = ground, no load, and no toggling inputs.
- (4) Commercial temperature ranges from 0°C to 85°C with the maximum current at 85°C.
- (5) Not applicable to the T144 package of the 5M240Z device.
- (6) Only applicable to the T144 package of the 5M240Z device.
- (7) Industrial temperature ranges from -40°C to 100°C with the maximum current at 100°C.
- (8) This value applies to commercial and industrial range devices. For extended temperature range devices also mV for V_{CCIO}= 3.3 V and 120 mV for V_{CCIO}= 2.5 V.
- (9) TheTCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.
- (10) This is a peak current value with a maximum duration of time.
- (11) Pin pull-up resistance values will lower if an external source drives the pin higher iban V


Output Drive Characteristics

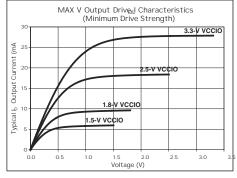

Figure 3 1 shows the typical drive strength characteristics of MAX V devices.

Figure 3 1. Output Drive Characteristics of MAX V (Naviee's)

Notes tbigure 3 1

- (1) The DC output current per pin is subject to the absolute maximum ratiobted -1 on page 3-1
- (2) 1.2-V \(\frac{1}{2} \) conly applicable to the maximum drive strength.

I/O Standard Specifications

Table 3 5 through Table 3 13 on page 3 Best the I/O standard specifications for the MAX V device family.

Table 3 5. 3.3-V LVTTL Specifications for MAX V Devices

Symbol	Parameter	Conditions	Minimur	n Maximu	m	Unit
V _{CCIO}	I/O supply voltage	_	3.0	3.6	V	
V _{IH}	High-level input voltage	_	1.7	4.0	V	
V _{IL}	Low-level input voltage	_	-0.5	0.8	V	
V _{OH}	High-level output voltage	IOH = -4 m/1A	2.4	_	V	
V _{OL}	Low-level output voltage	IOL = 4 r(1A)	_	0.45	V	

Note toable 3 5

⁽¹⁾ This specification is supported across all the programmable drive strength settings available for this I/O standarid, thus show MAX V Device Architecthumpter.

Table 3 6. 3.3-V LVCMOS Specifications for	MAX V	Devices
--	-------	---------

Symbol	Parameter	Conditions	Minimur	n Maximi	ım	Unit
V _{CCIO}	I/O supply voltage	_	3.0	3.6	V	
V _{IH}	High-level input voltage	_	1.7	4.0	V	
V _{IL}	Low-level input voltage	_	-0.5	0.8	V	
V _{OH}	High-level output voltage	$V_{CCIO} = 3.0,$ IOH = -0.1 mA(1)	V _{CCIO} - 0.2	V _{CCIO} - 0.2 —		
V _{OL}	Low-level output voltage	$V_{CCIO} = 3.0,$ $IOL = 0.1 \text{ mA}(1)$	_	0.2	V	

Note toable 3 6

Table 3 7. 2.5-V I/O Specifications for MAX V Devices

Symbol	Parameter	Conditions	Minimur	n Maxim	ım l
V _{CCIO}	I/O supply voltage	_	2.375	2.625	V
V _{IH}	High-level input voltage	_	1.7	4.0	V
V _{IL}	Low-level input voltage	_	-0.5	0.7	V
		IOH = -0.1 mA(1)	2.1	_	V
V_{OH}	High-level output voltage	IOH = -1 mA(1)	2.0	_	V
		IOH = -2 mA(1)	1.7	_	V
		IOL = 0.1 mA(1)	_	0.2	V
V _{OL}	Low-level output voltage	IOL = 1 mA(1)	_	0.4	V
		IOL = 2 mA(1)	_	0.7	V

Note to able 3 7

Table 3 8. 1.8-V I/O Specifications for MAX V Devices

Symbol	Parameter	Conditions	Minimun	n Maximu	ım	Unit
V _{CCIO}	I/O supply voltage	_	1.71	1.89	V	
V _{IH}	High-level input voltage	_	0.65 ₺८₺	2.25 (2)	V	
V _{IL}	Low-level input voltage	_	-0.3	0.35ക€⊮	V	
V _{OH}	High-level output voltage	IOH = -2 r(nA)	V _{CCIO} - 0.45	_	V	
V _{OL}	Low-level output voltage	IOL = 2 n(1A)	_	0.45	V	

Notes toable 3 8

- (1) This specification is supported across all the programmable drive strength settings available for this I/O standarid, thus show MAX V Device Architecthumpter.
- (2) This maximum Mreflects the JEDEC specification. The MAX V input buffer can tolerate xinvum of 4.0, as specified by the Arameter in Table 3–2 on page 3–2

⁽¹⁾ This specification is supported across all the programmable drive strength settings available for this I/O standariod, those show MAX V Device Architecthoarpeter.

⁽¹⁾ This specification is supported across all the programmable drive strength settings available for this I/O standarid, this show MAX V Device Architecthoapeter.

Table 3 9. 1.5-V I/O Specifications for MAX V Devices

Symbol	Parameter	Conditions	Minimun	n Maximu	ım	Unit
V _{CCIO}	I/O supply voltage	_	1.425	1.575	V	
V _{IH}	High-level input voltage	_	0.65 &c\⁄	V _{CCIO} + 0.3 (2)	V	
V _{IL}	Low-level input voltage	_	-0.3	0.35 ക∈%	V	
V _{OH}	High-level output voltage	IOH = -2 r(1A).	0.75 × √ _{CIO}	_	V	
V _{OL}	Low-level output voltage	IOL = 2 r(1A)	_	0.25 × ₹ _{CIO}	V	

Notes table 3 9

- (1) This specification is supported across all the programmable drive strength settings available for this I/O standarid, thus show MAX V Device Architecthumpter.
- (2) This maximum | reflects the JEDEC specification. The MAX V input buffer can tole rate xin from of 4.0, as specified by the Arameter in Table 3–2 on page 3–2

Table 3 10. 1.2-V I/O Specifications for MAX V Devices

Symbol	Parameter	Conditions	Minimun	n Maximu	ım	Unit
V _{CCIO}	I/O supply voltage	_	1.14	1.26	V	
V _{IH}	High-level input voltage	_	0.8 % %	V _{CCIO} + 0.3	V	
V _{IL}	Low-level input voltage	_	-0.3	0.25 & №	V	
V _{OH}	High-level output voltage	IOH = -2 r(1A).	0.75 × √ _{CIO}	_	V	
V _{OL}	Low-level output voltage	IOL = 2 r(1A)	_	0.25 × √ _{CIO}	V	

Note toable 3 10

Table 3 11. 3.3-V PCI Specifications for MAX V De(Motes1)

Symbol	Parameter	Conditions	Minim	um Typ	ical Max	imum	Unit
V _{CCIO}	I/O supply voltage	_	3.0	3.3	3.6	V	
V _{IH}	High-level input voltage	_	0.5 &c\6	_	V _{CCIO} + 0.5	V	
V _{IL}	Low-level input voltage	_	-0.5	_	0.3 ⊗c1⁄6	V	
V _{OH}	High-level output voltage	IOH = -500 μ/	A 0.8 ₀ %√	_	_	V	
V _{OL}	Low-level output voltage	IOL = 1.5 mA	_	_	0.2 ₈₀ V	V	

Note to able 3 11

Table 3 12. LVDS Specifications for MAX V De(Nices 1)

Symbol	Parameter	Conditions	Minim	um Typi	ical Max	imum	Unit
V _{CCIO}	I/O supply voltage	_	2.375	2.5	2.625	V	
V _{OD}	Differential output voltage swing	_	247	_	600	m	V
Vos	Output offset voltage	_	1.125	1.25	1.375	V	

Note toable 3 12

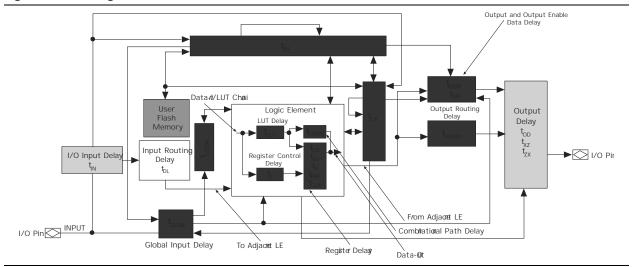
⁽¹⁾ This specification is supported across all the programmable drive strength settings available for this I/O standariod, those show MAX V Device Architecthoapeter.

^{(1) 3.3-}V PCI I/O standard is only supported in Bank 3 of the 5M1270Z and 5M2210Z devices.

⁽¹⁾ Supports emulated LVDS output using a three-resistor network (LVDS_E_3R).

Power Consumption

You can use the AlteraPowerPlay Early Power Estimator and PowerPlay Power Analyzer to estimate the device power.


For more information about these power analysis tools, referPtowtenPlay Early Power Estimator for Altera CPLDs Usera6ditheePowerPlay Power Analyshapter in volume 3 of th@uartus II Handbook.

Timing Model and Specifications

MAX V devices timing can be analyzed with the Altera Quaft tusoftware, a variety of industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 3 2

MAX V devices have predictable internal delays that allow you to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

Figure 3 2. Timing Model for MAX V Devices

You can derive the timing characteristics of any signal path from the timing model and parameters of a particular device. You can calculate external timing parameters, which represent pin-to-pin timing delays, as the sum of the internal parameters.

f For more information, refer AN629: Understanding Timing in Altera CPLDs

						Performance					
Resource Used	Design Size and Function		sources	Used	5M40Z/ 5 5M240	M80Z/ 5M DZ/ 5M570Z	160Z/ 5W1270)Z/ 5M2210)Z Unit		
		Mode	LEs	UFM Blocks	C4	C5, I5	C4	C5, I5			
	512 × 16	None	3	1	10.0	10.0	10.0	10.0	M	Hz	
	512 × 16	SPI(2)	37	1	9.7	9.7	8.0	8.0	MH	Ż	
UFM	512 × 8	Parallel (3)	73	1	(4)	(4)	(4)	(4)	MHz		
	512 × 16	₹C (3)	142	1	100(5)	100 (5)	100 (5)	100 (5)	kHz		

Table 3 17. Device Performance for MAX V Devices (Part 2 of 2)

Notes table 3 17

- (1) This design is a binary loadable up counter.
- (2) This design is configured for read-only operation in Extended mode. Read and write ability increases the numbereoutsoduEsellesed.
- (3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.
- (4) This design is asynchronous.
- (5) The *C megafunction is verified in hardware up to 100-kHz serial clock line rate.

Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis independent of device density. Table 3 18 through Table 3 25 on page 3 118 t the MAX V device internal timing microparameters for LEs, input/output elements (IOEs), UFM blocks, and MultiTrack interconnects.

f For more information about each internal timing microparameters symbol, refer to AN629: Understanding Timing in Altera CPLDs

Table 3 18. LE Internal Timing Microparameters for MAX V Devices (Part 1 of 2)

		51	M40Z/ 5 5M240	M80Z/ 5 Z/ 5M5		/	5M1270)Z/ 5M2	210Z		Ì
Symbol	Parameter	С	:4	C.	5, 15		C4		C5, I5	Unit	i
		Min	Max	Min	Max	Min	Ma	х М	in M	lax	i
t _{LUT}	LE combinational look-u table (LUT) delay	p _	1,215		2,247		742	_	914	ps	;
t _{COMB}	Combinational path dela	ay —	243	-	30	9 –	- 19	2 -	_ 2:	36	ps
t _{CLR}	LE register clear delay	401	_	54	5 –	- 30	9 –	- 38	1 -	-	ps
t _{PRE}	LE register preset delay	401	_	54	5 –	- 30	9 –	- 38	31 -	_	ps
t _{SU}	LE register setup time before clock	260	_	321		271		333	_	ps	
t _H	LE register hold time after clock	0	_	0	_	0	_	0	_	ps	
t _{CO}	LE register clock-to-output delay	_	380	_	494		305		376	ps	

Table 3 18. LE Internal Timing Microparameters for MAX V Devices (Part 2 of 2)

		51	M40Z/ 5 5M24C	M80Z/ !)Z/ 5M5		/	5M1270)Z/ 5M2	210Z		
Symbol	Parameter	С	:4	C!	5, 15		C4		C5, I5	Unit	
		Min	Max	Min	Max	Min	Ma	х М	in M	ах	
t _{CLKHL}	Minimum clock high or low time	253		339	_	216	_	266	_	ps	3
t _C	Register control delay	_	1,350	6 –	1,74	1 —	1,1	14 -	1,3	72	ps

Table 3 19. IOE Internal Timing Microparameters for MAX V Devices

		5N	140Z/ 5M 5M240Z/			51	M1270Z/	5M221	OZ	
Symbol	Parameter	C	4	C5,	, 15	С	4	C5	5, I5 L	Jnit
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{FASTIO}	Data output delay from adjacent LE to I/O block	_	170	_	428	_	207	_	254	ps
t _{IN}	I/O input pad and buffer delay	_	907	_	986	_	920	_	1,132	ps
t _{GLOB} (1)	I/O input pad and buffer delay used as global signal pin	_	2,261	_	3,322	_	1,974	_	2,430	ps
t _{IOE}	Internally generated output enable delay	_	530	_	1,410	_	374	_	460	ps
t_{DL}	Input routing delay	_	318		509	_	291		358	ps
t _{OD} (2)	Output delay buffer and pad delay	_	1,319	_	1,543	_	1,383	_	1,702	ps
t _{XZ} (3)	Output buffer disable delay	_	1,045	_	1,276	_	982	_	1,209	ps
t _{ZX} (4)	Output buffer enable delay	_	1,160	_	1,353	_	1,303	_	1,604	ps

Notes table 3 19

MiMice d0.86.6(t)9.7(del.0291 Tw m0 7)]TJ54 T4,82

 $- \mathsf{TwL} \ \ \mathsf{Tw(o)} - 5.8 (212 \ \mathsf{TDa} \ 5 \mathsf{M}) \\ 3.4 (240) \\ 20.5 (\mathsf{Z} \ 7) \\] \\ 2 \ \mathsf{T64}, \\ \mathsf{buffy} \ \mathsf{n8} \ 0 \ \mathsf{t} \ (\mathsf{D}) \\ 26.5 (\mathsf{m} \ \mathsf{Tt}) \\ 17.0 \ 0 \ 0 \ \mathsf{t33} \\] \\ \mathsf{Tr} \\ \mathsf{T$

⁽¹⁾ Delay numbers foetoediffer for each device density and speed grade. The delay numbers foetoe in Table 3–19 are based on a 5M240Z device target.

Table 3-18. LE Internal Timing Microparameters for MAX V Devices (Part 2 of 2)

		51	5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z 5M1270Z/ 5M2210Z						½/ 5M2210Z		
Symbol	Parameter	C	4	C5	, I5	C	4	C5	, I5	Unit	
		Min	Max	Min	Max	Min	Max	Min	Max		
t _{CLKHL}	Minimum clock high or low time	253	_	339	_	216	_	266	_	ps	
t _C	Register control delay	_	1,356	_	1,741	_	1,114		1,372	ps	

Table 3–19. IOE Internal Timing Microparameters for MAX V Devices

		5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z				5M1270Z/ 5M2210Z				
Symbol	Parameter	C4		C5, I5		C4		C5, I5		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{FASTIO}	Data output delay from adjacent LE to I/O block	_	170		428	_	207	_	254	ps
t _{IN}	I/O input pad and buffer delay	_	907	_	986	_	920	_	1,132	ps
t _{GLOB} (1)	I/O input pad and buffer delay used as global signal pin	_	2,261	_	3,322	_	1,974	_	2,430	ps
t _{IOE}	Internally generated output enable delay	_	530	_	1,410	_	374	_	460	ps
t _{DL}	Input routing delay	_	318	_	509	_	291	_	358	ps
t _{oD} (2)	Output delay buffer and pad delay	_	1,319	_	1,543	_	1,383	_	1,702	ps
t _{XZ} (3)	Output buffer disable delay	_	1,045	_	1,276	_	982	_	1,209	ps
t _{ZX} (4)	Output buffer enable delay	_	1,160	_	1,353	_	1,303	_	1,604	ps

Notes to Table 3–19:

- (1) Delay numbers for t_{GLOB} differ for each device density and speed grade. The delay numbers for t_{GLOB}, shown in Table 3–19, are based on a 5M240Z device target.
- (2) For more information about delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–34 on page 3–24 and Table 3–35 on page 3–25.
- (3) For more information about $t_{\chi Z}$ delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–22 on page 3–15 and Table 3–23 on page 3–15.
- (4) For more information about t_{ZX} delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–20 on page 3–14 and Table 3–21 on page 3–14.