

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	6.2 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	1270
Number of Macrocells	980
Number of Gates	-
Number of I/O	114
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5m1270zt144c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

Table 3–2 lists recommended operating conditions for the MAX V device family.

Table 3–2. Recommended Operating Conditions for MAX V Devices

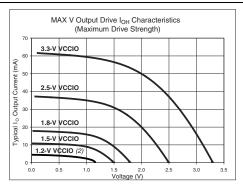
Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCINT} (1)	1.8-V supply voltage for internal logic and in-system programming (ISP)	MAX V devices	1.71	1.89	V
	Supply voltage for I/O buffers, 3.3-V operation	_	3.00	3.60	V
V _{CCIO} (1)	Supply voltage for I/O buffers, 2.5-V operation	_	2.375	2.625	V
	Supply voltage for I/O buffers, 1.8-V operation	_	1.71	1.89	V
	Supply voltage for I/O buffers, 1.5-V operation	_	1.425	1.575	V
	Supply voltage for I/O buffers, 1.2-V operation	_	1.14	1.26	V
V _I	Input voltage	(2), (3), (4)	-0.5	4.0	V
V ₀	Output voltage	_	0	V _{CCIO}	V
		Commercial range	0	85	°C
T_J	Operating junction temperature	Industrial range	-40	100	°C
		Extended range (5)	-40	125	°C

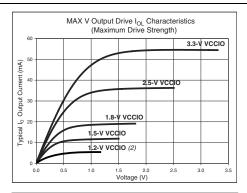
Notes to Table 3-2:

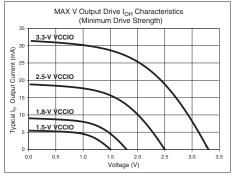
- (1) MAX V device ISP and/or user flash memory (UFM) programming using JTAG or logic array is not guaranteed outside the recommended operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, Altera recommends that you read back the UFM contents and verify it against the intended write data).
- (2) The minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) During transitions, the inputs may overshoot to the voltages shown below based on the input duty cycle. The DC case is equivalent to 100% duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX V Devices in Multi-Voltage Systems chapter.
 V_{IN} Max. Duty Cycle
 - 4.0 V 100% (DC)
 - 4.1 V 90%
 - 4.2 V 50%
 - 4.3 V 30%
 - 4.4 V 17%
 - 4.5 V 10%
- (4) All pins, including the clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (5) For the extended temperature range of 100 to 125°C, MAX V UFM programming (erase/write) is only supported using the JTAG interface. UFM programming using the logic array interface is not guaranteed in this range.

Table 3-4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 2 of 2)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _{PULLUP}	I/O pin pull-up resistor current when I/O is unprogrammed	_	_	_	300	μА
C _{IO}	Input capacitance for user I/O pin	_	_	_	8	pF
C _{GCLK}	Input capacitance for dual-purpose GCLK/user I/O pin	_	_	_	8	pF


Notes to Table 3-4:


- (1) Typical values are for $T_A = 25$ °C, $V_{CCINT} = 1.8$ V and $V_{CCIO} = 1.2$, 1.5, 1.8, 2.5, or 3.3 V.
- (2) This value is specified for normal device operation. The value may vary during power-up. This applies to all V_{CCIO} settings (3.3, 2.5, 1.8, 1.5, and 1.2 V).
- (3) V_1 = ground, no load, and no toggling inputs.
- (4) Commercial temperature ranges from 0°C to 85°C with the maximum current at 85°C.
- (5) Not applicable to the T144 package of the 5M240Z device.
- (6) Only applicable to the T144 package of the 5M240Z device.
- (7) Industrial temperature ranges from -40°C to 100°C with the maximum current at 100°C.
- (8) This value applies to commercial and industrial range devices. For extended temperature range devices, the V_{SCHMITT} typical value is 300 mV for V_{CCIO} = 3.3 V and 120 mV for V_{CCIO} = 2.5 V.
- (9) The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.
- (10) This is a peak current value with a maximum duration of t_{CONFIG} time.
- (11) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}.


Output Drive Characteristics

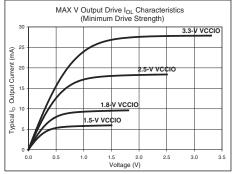

Figure 3–1 shows the typical drive strength characteristics of MAX V devices.

Figure 3–1. Output Drive Characteristics of MAX V Devices (Note 1)

Notes to Figure 3-1:

- (1) The DC output current per pin is subject to the absolute maximum rating of Table 3-1 on page 3-1.
- (2) $1.2-V V_{CCIO}$ is only applicable to the maximum drive strength.

I/O Standard Specifications

Table 3–5 through Table 3–13 on page 3–8 list the I/O standard specifications for the MAX V device family.

Table 3-5. 3.3-V LVTTL Specifications for MAX V Devices

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	_	3.0	3.6	V
V _{IH}	High-level input voltage	_	1.7	4.0	V
V _{IL}	Low-level input voltage	_	-0.5	0.8	V
V _{OH}	High-level output voltage	IOH = -4 mA (1)	2.4	_	V
V _{OL}	Low-level output voltage	IOL = 4 mA (1)	_	0.45	V

Note to Table 3-5:

(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter.

Table 3-9. 1.5-V I/O Specifications for MAX V Devices

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	_	1.425	1.575	V
V _{IH}	High-level input voltage	_	0.65 × V _{CCIO}	V _{CCIO} + 0.3 (2)	V
V _{IL}	Low-level input voltage	_	-0.3	0.35 × V _{CCIO}	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	0.75 × V _{CCIO}	_	V
V _{OL}	Low-level output voltage	IOL = 2 mA (1)		0.25 × V _{CCIO}	V

Notes to Table 3-9:

- (1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter.
- (2) This maximum V_{IH} reflects the JEDEC specification. The MAX V input buffer can tolerate a V_{IH} maximum of 4.0, as specified by the V_I parameter in Table 3–2 on page 3–2.

Table 3-10. 1.2-V I/O Specifications for MAX V Devices

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	_	1.14	1.26	V
V _{IH}	High-level input voltage	_	0.8 × V _{CCIO}	V _{CCIO} + 0.3	V
V _{IL}	Low-level input voltage	_	-0.3	0.25 × V _{CCIO}	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	0.75 × V _{CCIO}	_	V
V _{OL}	Low-level output voltage	IOL = 2 mA (1)	_	0.25 × V _{CCIO}	V

Note to Table 3-10:

Table 3-11. 3.3-V PCI Specifications for MAX V Devices (Note 1)

Symbol	Parameter	Conditions Minimum		Typical	Maximum	Unit
V _{CCIO}	I/O supply voltage	_	3.0	3.3	3.6	V
V _{IH}	High-level input voltage	_	$0.5 \times V_{CCIO}$	_	V _{CCIO} + 0.5	V
V _{IL}	Low-level input voltage	_	-0.5	_	0.3 × V _{CCIO}	V
V _{OH}	High-level output voltage	IOH = -500 μA	0.9 × V _{CCIO}	_	_	V
V _{OL}	Low-level output voltage	IOL = 1.5 mA	_	_	0.1 × V _{CCIO}	V

Note to Table 3-11:

(1) 3.3-V PCI I/O standard is only supported in Bank 3 of the 5M1270Z and 5M2210Z devices.

Table 3-12. LVDS Specifications for MAX V Devices (Note 1)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	I/O supply voltage	_	2.375	2.5	2.625	V
V _{OD}	Differential output voltage swing	_	247	_	600	mV
V _{os}	Output offset voltage	_	1.125	1.25	1.375	V

Note to Table 3-12:

(1) Supports emulated LVDS output using a three-resistor network (LVDS_E_3R).

⁽¹⁾ This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter.

Table 3–13. RSDS Specifications for MAX V Devices (Note 1)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	I/O supply voltage	_	2.375	2.5	2.625	V
V _{OD}	Differential output voltage swing	_	247	_	600	mV
V _{os}	Output offset voltage	_	1.125	1.25	1.375	V

Note to Table 3-13:

(1) Supports emulated RSDS output using a three-resistor network (RSDS $_E_3R$).

Bus Hold Specifications

Table 3–14 lists the bus hold specifications for the MAX V device family.

Table 3-14. Bus Hold Specifications for MAX V Devices

		V _{ccio} Level										
Parameter	Conditions	1.2 V		1.5 V		1.8 V		2.5 V		3.3 V		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Low sustaining current	V _{IN} > V _{IL} (maximum)	10	_	20	_	30	_	50	_	70	_	μА
High sustaining current	V _{IN} < V _{IH} (minimum)	-10	_	-20	_	-30	_	-50	_	-70	_	μА
Low overdrive current	0 V < V _{IN} < V _{CCIO}	_	130	_	160	_	200	_	300	_	500	μА
High overdrive current	0 V < V _{IN} < V _{CCIO}	_	-130	_	-160	_	-200	_	-300	_	-500	μΑ

Power-Up Timing

Table 3–15 lists the power-up timing characteristics for the MAX V device family.

Table 3-15. Power-Up Timing for MAX V Devices

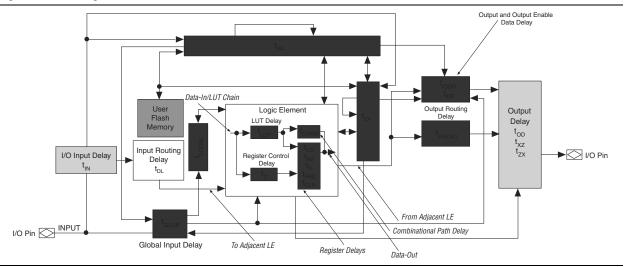
Symbol	Parameter	Device	Temperature Range	Min	Тур	Max	Unit
		5M40Z	Commercial and industrial	_	_	200	μs
		3101402	Extended	_	_	300	μs
		5M80Z	Commercial and industrial	_	_	200	μs
		3101002	Extended	_	_	300	μs
		5M160Z	Commercial and industrial	_	_	200	μs
			Extended	_	_	300	μs
The amount of time fr		5M240Z <i>(2)</i>	Commercial and industrial	_	_	200	μs
	The amount of time from	31V12402 (2)	Extended	_	_	300	μs
t	when minimum V _{CCINT} is	5M240Z <i>(3)</i>	Commercial and industrial	_	_	300	μs
t _{CONFIG}	reached until the device	31V12402 (3)	Extended	_	_	400	μs
	enters user mode (1)	5M570Z	Commercial and industrial	_	_	300	μs
		31013702	Extended	_	_	400	μs
		5M1270Z <i>(4)</i>	Commercial and industrial	_	_	300	μs
		JW12702 (4)	Extended	_	_	400	μs
		5M1270Z <i>(5)</i>	Commercial and industrial	_	_	450	μs
		JIVITZTUZ (3)	Extended	_	_	500	μs
		5M2210Z	Commercial and industrial	_		450	μs
		JIVIZZ IUZ	Extended	_	_	500	μs

Notes to Table 3-15:

- (1) For more information about power-on reset (POR) trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX V Devices chapter.
- (2) Not applicable to the T144 package of the 5M240Z device.
- (3) Only applicable to the T144 package of the 5M240Z device.
- (4) Not applicable to the F324 package of the 5M1270Z device.
- (5) Only applicable to the F324 package of the 5M1270Z device.

Power Consumption

You can use the Altera® PowerPlay Early Power Estimator and PowerPlay Power Analyzer to estimate the device power.


For more information about these power analysis tools, refer to the *PowerPlay Early Power Estimator for Altera CPLDs User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Timing Model and Specifications

MAX V devices timing can be analyzed with the Altera Quartus® II software, a variety of industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 3–2.

MAX V devices have predictable internal delays that allow you to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

Figure 3-2. Timing Model for MAX V Devices

You can derive the timing characteristics of any signal path from the timing model and parameters of a particular device. You can calculate external timing parameters, which represent pin-to-pin timing delays, as the sum of the internal parameters.

For more information, refer to AN629: Understanding Timing in Altera CPLDs.

Table 3-18. LE Internal Timing Microparameters for MAX V Devices (Part 2 of 2)

Symbol			51	//40Z/ 5M8 5M240Z/		DZ/				
	Parameter	C4		C5, I5		C4		C5, I5		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	1
t _{CLKHL}	Minimum clock high or low time	253	_	339	_	216	_	266	_	ps
t _C	Register control delay	_	1,356	_	1,741	_	1,114		1,372	ps

Table 3–19. IOE Internal Timing Microparameters for MAX V Devices

		51	M40Z/ 5M8 5M240Z/	OZ/ 5M16 5M57OZ	OZ/	5M1270Z/ 5M2210Z				
Symbol	Parameter	C4		C5, I5		C4		C5, I5		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{FASTIO}	Data output delay from adjacent LE to I/O block	_	170		428	_	207	_	254	ps
t _{IN}	I/O input pad and buffer delay	_	907	_	986	_	920	_	1,132	ps
t _{GLOB} (1)	I/O input pad and buffer delay used as global signal pin	_	2,261	_	3,322	_	1,974	_	2,430	ps
t _{IOE}	Internally generated output enable delay	_	530	_	1,410	_	374	_	460	ps
t _{DL}	Input routing delay	_	318	_	509	_	291	_	358	ps
t _{oD} (2)	Output delay buffer and pad delay	_	1,319	_	1,543	_	1,383	_	1,702	ps
t _{XZ} (3)	Output buffer disable delay	_	1,045	_	1,276	_	982	_	1,209	ps
t _{ZX} (4)	Output buffer enable delay	_	1,160	_	1,353	_	1,303	_	1,604	ps

Notes to Table 3–19:

- (1) Delay numbers for t_{GLOB} differ for each device density and speed grade. The delay numbers for t_{GLOB}, shown in Table 3–19, are based on a 5M240Z device target.
- (2) For more information about delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–34 on page 3–24 and Table 3–35 on page 3–25.
- (3) For more information about $t_{\chi Z}$ delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–22 on page 3–15 and Table 3–23 on page 3–15.
- (4) For more information about t_{ZX} delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–20 on page 3–14 and Table 3–21 on page 3–14.

Table 3–22. $t_{\chi\chi}$ IOE Microparameter Adders for Fast Slew Rate for MAX V Devices

		51	//40Z/ 5M8 5M240Z/	OZ/ 5M160 5M570Z	DZ/					
Standar	'd	C	C4		C5, I5		C4		, I5	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
3.3-V LVTTL	16 mA	_	0	_	0	_	0	_	0	ps
3.3-V LVIIL	8 mA	_	-69		-69	_	-74	_	-91	ps
3.3-V LVCMOS	8 mA	_	0	_	0	_	0	_	0	ps
3.3-V LVGIVIOS	4 mA	_	-69		-69	_	-74	_	-91	ps
2.5-V LVTTL /	14 mA	_	-7		-10	_	-46	_	-56	ps
LVCMOS	7 mA	_	-66	_	-69	_	-82	_	-101	ps
1.8-V LVTTL /	6 mA	_	45		37	_	-7	_	-8	ps
LVCMOS	3 mA	_	34		25	_	119	_	147	ps
1.5-V LVCMOS	4 mA	_	166	_	155	_	339	_	418	ps
1.5-V LVGIVIOS	2 mA	_	190	_	179	_	464	_	571	ps
1.2-V LVCMOS	3 mA	_	300	_	283	_	817	_	1,006	ps
3.3-V PCI	20 mA	_	-69	_	-69	_	80	_	99	ps
LVDS	_	_	-7	_	-10	_	-46	_	-56	ps
RSDS	_	_	- 7	_	-10	_	-46	_	-56	ps

Table 3–23. $t_{\chi\chi}$ IOE Microparameter Adders for Slow Slew Rate for MAX V Devices

		51	//40Z/ 5M8 5M240Z/	0Z/ 5M160 5M570Z	DZ/						
Standa	rd	C4		C5, I5		C4		C5, I5		Unit	
		Min	Max	Min	Max	Min	Max	Min	Max		
3.3-V LVTTL	16 mA	_	171	_	174	_	73		-132	ps	
3.3-V LVIIL	8 mA	_	112		116	_	758	_	553	ps	
3.3-V LVCMOS	8 mA	_	171	_	174	_	73	_	-132	ps	
3.3-V LVCIVIUS	4 mA	_	112	_	116	_	758	_	553	ps	
2.5-V LVTTL /	14 mA	_	213	_	213	_	32	_	-173	ps	
LVCMOS	7 mA	_	166		166	_	714	_	509	ps	
1.8-V LVTTL /	6 mA	_	441	_	438	_	96	_	-109	ps	
LVCMOS	3 mA	_	496	_	494	_	963	_	758	ps	
1.5-V LVCMOS	4 mA	_	765	_	755	_	238	_	33	ps	
1.5-V LVUIVIUS	2 mA	_	903	_	897	_	1,319	_	1,114	ps	
1.2-V LVCMOS	3 mA	_	1,159		1,130		400		195	ps	
3.3-V PCI	20 mA	_	112	_	116	_	303	_	373	ps	

The default slew rate setting for MAX V devices in the Quartus II design software is "fast".

Table 3-24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 1 of 2)

		51	M40Z/ 5M8 5M240Z/	OZ/ 5M16 5M57OZ	OZ/	5M1270Z/ 5M2210Z				
Symbol	Parameter	C	4	C5	, I5	C	4	C5	, I5	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{ACLK}	Address register clock period	100	_	100	_	100	_	100	_	ns
t _{ASU}	Address register shift signal setup to address register clock	20	_	20	_	20	_	20	_	ns
t _{AH}	Address register shift signal hold to address register clock	20	_	20	_	20	_	20	_	ns
t _{ADS}	Address register data in setup to address register clock	20	_	20	_	20	_	20	_	ns
t _{ADH}	Address register data in hold from address register clock	20	_	20	_	20	_	20	_	ns
t _{DCLK}	Data register clock period	100	_	100	_	100	_	100	_	ns
t _{DSS}	Data register shift signal setup to data register clock	60	_	60	_	60	_	60	_	ns
t _{DSH}	Data register shift signal hold from data register clock	20	_	20	_	20	_	20	_	ns
t _{DDS}	Data register data in setup to data register clock	20	_	20	_	20	_	20	_	ns
t _{DDH}	Data register data in hold from data register clock	20	_	20	_	20	_	20	_	ns
t _{DP}	Program signal to data clock hold time	0	_	0	_	0	_	0	_	ns
t _{PB}	Maximum delay between program rising edge to UFM busy signal rising edge	_	960	_	960	_	960	_	960	ns
t _{BP}	Minimum delay allowed from UFM busy signal going low to program signal going low	20	_	20	_	20	_	20	_	ns
t _{PPMX}	Maximum length of busy pulse during a program	_	100	_	100	_	100	_	100	μs

Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 2 of 2)

		51		80Z/ 5M160 / 5M570Z	DZ/	5M1270Z/ 5M2210Z				
Symbol	Parameter	C	4	C5	, I5	C	4	C5	, 15	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{AE}	Minimum erase signal to address clock hold time	0	_	0	_	0	_	0	_	ns
t _{EB}	Maximum delay between the erase rising edge to the UFM busy signal rising edge	_	960	_	960	_	960	_	960	ns
t _{BE}	Minimum delay allowed from the UFM busy signal going low to erase signal going low	20	_	20	_	20	_	20	_	ns
t _{EPMX}	Maximum length of busy pulse during an erase	_	500	_	500	_	500	_	500	ms
t _{DCO}	Delay from data register clock to data register output	_	5	_	5	_	5	_	5	ns
t _{OE}	Delay from OSC_ENA signal reaching UFM to rising clock of OSC leaving the UFM	180	_	180	_	180	_	180	_	ns
t _{RA}	Maximum read access time	_	65	_	65	_	65	_	65	ns
t _{oscs}	Maximum delay between the OSC_ENA rising edge to the erase/program signal rising edge	250	_	250	_	250	_	250	_	ns
t _{oscн}	Minimum delay allowed from the erase/program signal going low to OSC_ENA signal going low	250	_	250	_	250	_	250	_	ns

Figure 3–3 through Figure 3–5 show the read, program, and erase waveforms for UFM block timing parameters listed in Table 3–24.

Figure 3-3. UFM Read Waveform

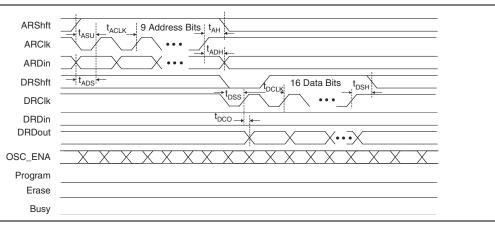


Figure 3-4. UFM Program Waveform

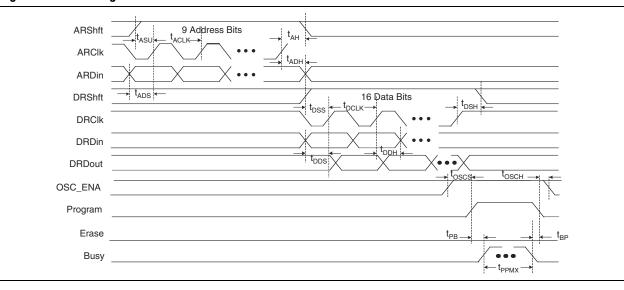


Table 3–26 lists the external I/O timing parameters for the 5M40Z, 5M80Z, 5M160Z, and 5M240Z devices.

Table 3–26. Global Clock External I/O Timing Parameters for the 5M40Z, 5M80Z, 5M160Z, and 5M240Z Devices (Note 1), (2)

Cumbal	Parameter	Condition	C	4	C5	, I5	Unit
Symbol	Parameter	Condition	Min	Max	Min	Max	UIIIL
t _{PD1}	Worst case pin-to-pin delay through one LUT	10 pF	_	7.9	_	14.0	ns
t _{PD2}	Best case pin-to-pin delay through one LUT	10 pF	_	5.8	_	8.5	ns
t _{SU}	Global clock setup time	_	2.4	_	4.6	_	ns
t _H	Global clock hold time	_	0	_	0	_	ns
t _{CO}	Global clock to output delay	10 pF	2.0	6.6	2.0	8.6	ns
t _{CH}	Global clock high time	_	253	_	339	_	ps
t _{CL}	Global clock low time	_	253	_	339	_	ps
t _{CNT}	Minimum global clock period for 16-bit counter	_	5.4	_	8.4	_	ns
f _{CNT}	Maximum global clock frequency for 16-bit counter	_	_	184.1		118.3	MHz

Notes to Table 3-26:

- (1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.
- (2) Not applicable to the T144 package of the 5M240Z device.

Table 3–27 lists the external I/O timing parameters for the T144 package of the 5M240Z device.

Table 3–27. Global Clock External I/O Timing Parameters for the 5M240Z Device (Note 1), (2)

Combal	Baramatar	Oandition.	C	4	C5	, I5	II-nit
Symbol	Parameter	Condition	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through one LUT	10 pF	_	9.5	_	17.7	ns
t _{PD2}	Best case pin-to-pin delay through one LUT	10 pF	_	5.7	_	8.5	ns
t _{SU}	Global clock setup time	_	2.2	_	4.4	_	ns
t _H	Global clock hold time	_	0	_	0	_	ns
t _{co}	Global clock to output delay	10 pF	2.0	6.7	2.0	8.7	ns
t _{CH}	Global clock high time	_	253	_	339	_	ps
t _{CL}	Global clock low time	_	253	_	339	_	ps
t _{CNT}	Minimum global clock period for 16-bit counter	_	5.4	_	8.4	_	ns
f _{CNT}	Maximum global clock frequency for 16-bit counter	_	_	184.1	_	118.3	MHz

Notes to Table 3-27:

- (1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.
- (2) Only applicable to the T144 package of the 5M240Z device.

Table 3–28 lists the external I/O timing parameters for the 5M570Z device.

Table 3-28. Global Clock External I/O Timing Parameters for the 5M570Z Device (Note 1)

Cumbal	Parameter	Condition	C	4	C5	, I5	Unit
Symbol	rarameter	Condition	Min	Max	Min	Max	UIIIL
t _{PD1}	Worst case pin-to-pin delay through one LUT	10 pF	_	9.5	_	17.7	ns
t _{PD2}	Best case pin-to-pin delay through one LUT	10 pF	_	5.7	_	8.5	ns
t _{SU}	Global clock setup time	_	2.2	_	4.4	_	ns
t _H	Global clock hold time	_	0	_	0	_	ns
t _{CO}	Global clock to output delay	10 pF	2.0	6.7	2.0	8.7	ns
t _{CH}	Global clock high time	_	253	_	339	_	ps
t _{CL}	Global clock low time	_	253	_	339	_	ps
t _{CNT}	Minimum global clock period for 16-bit counter	_	5.4	_	8.4	_	ns
f _{CNT}	Maximum global clock frequency for 16-bit counter	_	_	184.1		118.3	MHz

Note to Table 3-28:

Table 3–29 lists the external I/O timing parameters for the 5M1270Z device.

Table 3–29. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2)

Cumbal	Bouwardon	Oanditian	C	4	C5	, I5	Unit
Symbol	Parameter	Condition	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through one LUT	10 pF	_	8.1	_	10.0	ns
t _{PD2}	Best case pin-to-pin delay through one LUT	10 pF	_	4.8	_	5.9	ns
t _{SU}	Global clock setup time	_	1.5	_	1.9	_	ns
t _H	Global clock hold time	_	0	_	0	_	ns
t _{co}	Global clock to output delay	10 pF	2.0	5.9	2.0	7.3	ns
t _{CH}	Global clock high time	_	216	_	266	_	ps
t _{CL}	Global clock low time	_	216	_	266	_	ps
t _{CNT}	Minimum global clock period for 16-bit counter	_	4.0	_	5.0	_	ns
f _{CNT}	Maximum global clock frequency for 16-bit counter	_		247.5		201.1	MHz

Notes to Table 3-29:

⁽¹⁾ The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

⁽¹⁾ The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

⁽²⁾ Not applicable to the F324 package of the 5M1270Z device.

External Timing I/O Delay Adders

The I/O delay timing parameters for the I/O standard input and output adders and the input delays are specified by speed grade, independent of device density.

Table 3–32 through Table 3–36 on page 3–25 list the adder delays associated with I/O pins for all packages. If you select an I/O standard other than 3.3-V LVTTL, add the input delay adder to the external t_{SU} timing parameters listed in Table 3–26 on page 3–20 through Table 3–31. If you select an I/O standard other than 3.3-V LVTTL with 16 mA drive strength and fast slew rate, add the output delay adder to the external t_{CO} and t_{PD} listed in Table 3–26 on page 3–20 through Table 3–31.

Table 3–32. External Timing Input Delay Adders for MAX V Devices

		51	M40Z/ 5M8 5M240Z/	•	DZ/					
I/0 St	tandard	C4		C5, I5		C4		C5, I5		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
3.3-V LVTTL	Without Schmitt Trigger	_	0	_	0	_	0	_	0	ps
3.3-V LVIIL	With Schmitt Trigger	_	387	_	442	_	480	_	591	ps
2.2.VIVCMOC	Without Schmitt Trigger	_	0	_	0	_	0	_	0	ps
	With Schmitt Trigger	_	387	_	442	_	480	_	591	ps
2.5-V LVTTL /	Without Schmitt Trigger	_	42	_	42	_	246	_	303	ps
LVCMOS	With Schmitt Trigger	_	429	_	483	_	787	_	968	ps
1.8-V LVTTL / LVCMOS	Without Schmitt Trigger	_	378	_	368	_	695	_	855	ps
1.5-V LVCMOS	Without Schmitt Trigger	_	681	_	658	_	1,334	_	1,642	ps
1.2-V LVCMOS	Without Schmitt Trigger	_	1,055	_	1,010	_	2,324	_	2,860	ps
3.3-V PCI	Without Schmitt Trigger	_	0	_	0	_	0	_	0	ps

Table 3–33. External Timing Input Delay t_{GLOB} Adders for GCLK Pins for MAX V Devices (Part 1 of 2)

	5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z									
I/O Standard		C4		C5, I5		C4		C5, I5		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
3.3-V LVTTL	Without Schmitt Trigger	_	0	_	0	_	0	_	0	ps
3.5-V LVIIL	With Schmitt Trigger	_	387	_	442	_	400	_	493	ps

Maximum Input and Output Clock Rates

Table 3–37 and Table 3–38 list the maximum input and output clock rates for standard I/O pins in MAX V devices.

Table 3-37. Maximum Input Clock Rate for I/Os for MAX V Devices

	I/O Standard	5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z/5M1270Z/ 5M2210Z	Unit
		C4, C5, I5	
3.3-V LVTTL	Without Schmitt Trigger	304	MHz
3.3-V LVIIL	With Schmitt Trigger	304	MHz
3.3-V LVCMOS	Without Schmitt Trigger	304	MHz
3.3-V LVGIVIUS	With Schmitt Trigger	304	MHz
2.5-V LVTTL	Without Schmitt Trigger	304	MHz
2.5-V LVIIL	With Schmitt Trigger	304	MHz
2.5-V LVCMOS	Without Schmitt Trigger	304	MHz
2.5-V LVGIVIOS	With Schmitt Trigger	304	MHz
1.8-V LVTTL	Without Schmitt Trigger	200	MHz
1.8-V LVCMOS	Without Schmitt Trigger	200	MHz
1.5-V LVCMOS	Without Schmitt Trigger	150	MHz
1.2-V LVCMOS	Without Schmitt Trigger	120	MHz
3.3-V PCI	Without Schmitt Trigger	304	MHz

Table 3–38. Maximum Output Clock Rate for I/Os for MAX V Devices

I/O Standard	5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z/5M1270Z/ 5M2210Z	Unit
	C4, C5, I5	
3.3-V LVTTL	304	MHz
3.3-V LVCMOS	304	MHz
2.5-V LVTTL	304	MHz
2.5-V LVCMOS	304	MHz
1.8-V LVTTL	200	MHz
1.8-V LVCMOS	200	MHz
1.5-V LVCMOS	150	MHz
1.2-V LVCMOS	120	MHz
3.3-V PCI	304	MHz
LVDS	304	MHz
RSDS	200	MHz

LVDS and RSDS Output Timing Specifications

Table 3–39 lists the emulated LVDS output timing specifications for MAX V devices.

Table 3–39. Emulated LVDS Output Timing Specifications for MAX V Devices

Parameter	Mode	5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z/5M1270Z/ 5M2210Z		Unit
raiailietei	Mode	C4, (
		Min	Max	
	×10	_	304	Mbps
	×9	_	304	Mbps
	×8	_	304	Mbps
	×7	_	304	Mbps
Data rata (1) (2)	×6	_	304	Mbps
Data rate (1), (2)	×5	_	304	Mbps
	×4	_	304	Mbps
	×3	_	304	Mbps
	×2	_	304	Mbps
	×1	_	304	Mbps
t _{DUTY}	_	45	55	%
Total jitter <i>(3)</i>	_	_	0.2	UI
t _{RISE}	_	_	450	ps
t _{FALL}	_	-	450	ps

Notes to Table 3-39:

⁽¹⁾ The performance of the LVDS_E_3R transmitter system is limited by the lower of the two—the maximum data rate supported by LVDS_E_3R I/O buffer or 2x (F_{MAX} of the ALTLVDS_TX instance). The actual performance of your LVDS_E_3R transmitter system must be attained through the Quartus II timing analysis of the complete design.

⁽²⁾ For the input clock pin to achieve 304 Mbps, use I/O standard with V_{CCIO} of 2.5 V and above.

⁽³⁾ This specification is based on external clean clock source.

Table 3–40 lists the emulated RSDS output timing specifications for MAX V devices.

Table 3-40. Emulated RSDS Output Timing Specifications for MAX V Devices

Parameter	Mode	5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z/5M1270Z/ 5M2210Z		Unit
raiailletei	Wouc	C4, C5	, 15	
		Min	Max	
	×10	_	200	Mbps
	×9	_	200	Mbps
	×8	_	200	Mbps
	×7	_	200	Mbps
Data vata (1)	×6	_	200	Mbps
Data rate (1)	×5	_	200	Mbps
	×4	_	200	Mbps
	×3	_	200	Mbps
	×2	_	200	Mbps
	×1	_	200	Mbps
t _{DUTY}	_	45	55	%
Total jitter <i>(2)</i>	_	_	0.2	UI
t _{RISE}	_	_	450	ps
t _{FALL}	_	_	450	ps

Notes to Table 3-40:

⁽¹⁾ For the input clock pin to achieve 200 Mbps, use I/O standard with V_{CCIO} of 1.8 V and above.

 $[\]begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$

JTAG Timing Specifications

Figure 3–6 shows the timing waveform for the JTAG signals for the MAX V device family.

Figure 3–6. JTAG Timing Waveform for MAX V Devices

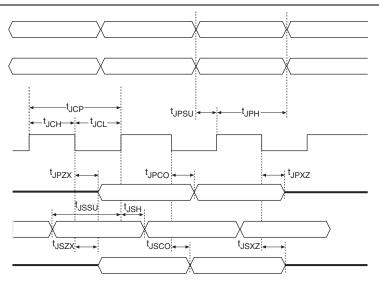


Table 3–41 lists the JTAG timing parameters and values for the MAX V device family.

Table 3-41. JTAG Timing Parameters for MAX V Devices (Part 1 of 2)

Symbol	Parameter	Min	Max	Unit
	TCK clock period for $V_{CCIO1} = 3.3 \text{ V}$	55.5	_	ns
+ (1)	TCK clock period for $V_{CCIO1} = 2.5 \text{ V}$	62.5	_	ns
t _{JCP} (1)	TCK clock period for $V_{\text{CCIO1}} = 1.8 \text{ V}$	100	_	ns
	TCK clock period for $V_{CCIO1} = 1.5 \text{ V}$	143	_	ns
t _{JCH}	TCK clock high time	20	_	ns
t _{JCL}	TCK clock low time	20	_	ns
t _{JPSU}	JTAG port setup time (2)	8	_	ns
t _{JPH}	JTAG port hold time	10	_	ns
t _{JPCO}	JTAG port clock to output (2)		15	ns
t _{JPZX}	JTAG port high impedance to valid output (2)		15	ns
t _{JPXZ}	JTAG port valid output to high impedance (2)	_	15	ns
t _{JSSU}	Capture register setup time	8	_	ns
t _{JSH}	Capture register hold time	10	_	ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns

Table 3-41. JTAG Timing Parameters for MAX V Devices (Part 2 of 2)

Symbol	Parameter	Min	Max	Unit
t_{JSXZ}	Update register valid output to high impedance	_	25	ns

Notes to Table 3-41:

- (1) Minimum clock period specified for 10 pF load on the TDO pin. Larger loads on TDO degrades the maximum TCK frequency.
- (2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS operation, the t_{JPSU} minimum is 6 ns and t_{JPCO}, t_{JPZX}, and t_{JPXZ} are maximum values at 35 ns.

Document Revision History

Table 3–42 lists the revision history for this chapter.

Table 3-42. Document Revision History

Date	Version	Changes
May 2011	1.2	Updated Table 3–2, Table 3–15, Table 3–16, and Table 3–33.
January 2011	1.1	Updated Table 3–37, Table 3–38, Table 3–39, and Table 3–40.
December 2010	1.0	Initial release.