Intel - 5M160ZM100C5N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	160
Number of Macrocells	128
Number of Gates	-
Number of I/O	79
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-MBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5m160zm100c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

Table 3-2 lists recommended operating conditions for the MAX V device family.

Table 3–2.	Recommended	Operating	Conditions	for MAX	V Devices
------------	-------------	-----------	------------	---------	-----------

Symbol	Parameter	Conditions	Minimun	n Maximu	m Unit
V _{CCINT} (1)	1.8-V supply voltage for internal logic and in-system programming (ISP)	MAX V devices	1.71	1.89	V
	Supply voltage for I/O buffers, 3.3-V operation	_	3.00	3.60	V
V _{ccio} (1)	Supply voltage for I/O buffers, 2.5-V operation	—	2.375	2.625	V
	Supply voltage for I/O buffers, 1.8-V operation	_	1.71	1.89	V
	Supply voltage for I/O buffers, 1.5-V operation	_	1.425	1.575	V
	Supply voltage for I/O buffers, 1.2-V operation	_	1.14	1.26	V
VI	Input voltage	(2), (3), (4)	-0.5	4.0	V
V ₀	Output voltage	—	0	V _{CCIO}	V
		Commercial range	0	85	°C
TJ	Operating junction temperature	Industrial range	-40	100	°C
		Extended range (5)	-40	125	°C

Notes to Table 3-2:

(1) MAX V device ISP and/or user flash memory (UFM) programming using JTAG or logic array is not guaranteed outside the recommended operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, Altera recommends that you read back the UFM contents and verify it against the intended write data).

(2) The minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

(3) During transitions, the inputs may overshoot to the voltages shown below based on the input duty cycle. The DC case is equivalent to 100% duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX V Devices in Multi-Voltage Systems chapter.

<u>V_{IN}</u> 4.0 V Max. Duty Cycle

100% (DC)

4.1 V 90%

4.2 V 50%

4.3 V 30%

4.4 V 17%

4.5 V 10%

(4) All pins, including the clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.

(5) For the extended temperature range of 100 to 125°C, MAX V UFM programming (erase/write) is only supported using the JTAG interface. UFM programming using the logic array interface is not guaranteed in this range.

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	—	3.0	3.6	V
V _{IH}	High-level input voltage	—	1.7	4.0	V
V _{IL}	Low-level input voltage	—	-0.5	0.8	V
V _{OH}	High-level output voltage	V _{CCIO} = 3.0, IOH = -0.1 mA <i>(1)</i>	V _{CCI0} – 0.2	_	V
V _{OL}	Low-level output voltage	V _{CCIO} = 3.0, IOL = 0.1 mA <i>(1)</i>		0.2	V

Table 3–6. 3.3-V LVCMOS Specifications for MAX V Devices

Note to Table 3-6:

(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter.

Table 3–7. 2.5-V I/O Specifications for MAX V Devices

Symbol	Parameter	Conditions	Minimum	Maximum	Uni
V _{CCIO}	I/O supply voltage	—	2.375	2.625	V
V _{IH}	High-level input voltage	—	1.7	4.0	V
V _{IL}	Low-level input voltage	—	-0.5	0.7	V
		IOH = -0.1 mA (1)	2.1		V
V _{OH}	High-level output voltage	IOH = –1 mA <i>(1)</i>	2.0	—	V
		IOH = –2 mA <i>(1)</i>	1.7	—	V
		IOL = 0.1 mA (1)	—	0.2	V
V _{OL}	Low-level output voltage	IOL = 1 mA <i>(1)</i>	—	0.4	V
		IOL = 2 mA (1)	—	0.7	V

Note to Table 3-7:

(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter.

Symbol	Parameter	Conditions	Minimum	Maximum	Un
V _{CCIO}	I/O supply voltage	—	1.71	1.89	V
V _{IH}	High-level input voltage	—	$0.65 \times V_{CCIO}$	2.25 <i>(2)</i>	V
V _{IL}	Low-level input voltage	—	-0.3	$0.35 \times V_{CCIO}$	V
V _{OH}	High-level output voltage	IOH = –2 mA <i>(1)</i>	$V_{CCIO} - 0.45$	—	V
V _{OL}	Low-level output voltage	IOL = 2 mA <i>(1)</i>	—	0.45	V

Table 3-8. 1.8-V I/O Specifications for MAX V Devices

Notes to Table 3-8:

(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter.

(2) This maximum V_{IH} reflects the JEDEC specification. The MAX V input buffer can tolerate a V_{IH} maximum of 4.0, as specified by the V_I parameter in Table 3–2 on page 3–2.

Preliminary and Final Timing

This section describes the performance, internal, external, and UFM timing specifications. All specifications are representative of the worst-case supply voltage and junction temperature conditions.

Timing models can have either preliminary or final status. The Quartus II software issues an informational message during the design compilation if the timing models are preliminary. Table 3–16 lists the status of the MAX V device timing models.

Preliminary status means the timing model is subject to change. Initially, timing numbers are created using simulation results, process data, and other known parameters. These tests are used to make the preliminary numbers as close to the actual timing parameters as possible.

Final timing numbers are based on actual device operation and testing. These numbers reflect the actual performance of the device under the worst-case voltage and junction temperature conditions.

Device	Final
5M40Z	V
5M80Z	V
5M160Z	V
5M240Z	V
5M570Z	V
5M1270Z	V
5M2210Z	V

Table 3–16. Timing Model Status for MAX V Devices

Performance

Table 3–17 lists the MAX V device performance for some common designs. All performance values were obtained with the Quartus II software compilation of megafunctions.

Table 3–17. Device Performance for MAX V Devices (Part 1 of 2)

					Performance				
Resource Used	Design Size and Function	Resources Used			5M40Z/ 5M 5M240Z	80Z/ 5M160 Z/ 5M570Z	^{Z/} 5M1270Z/ 5M2210Z		Unit
		Mode	LEs	UFM Blocks	C4	C5, I5	C4	C5, I5	
	16-bit counter (1)	—	16	0	184.1	118.3	247.5	201.1	MHz
	64-bit counter (1)	_	64	0	83.2	80.5	154.8	125.8	MHz
	16-to-1 multiplexer	_	11	0	17.4	20.4	8.0	9.3	ns
LE	32-to-1 multiplexer		24	0	12.5	25.3	9.0	11.4	ns
-	16-bit XORfunction	_	5	0	9.0	16.1	6.6	8.2	ns
	16-bit decoder with single address line	_	5	0	9.2	16.1	6.6	8.2	ns

					Performance					
Resource Used	Design Size and Function	Re	sources	Used	5M40Z/ 5M 5M2402	180Z/ 5M1602 Z/ 5M570Z	^{Z/} 5M1270Z/ 5M2210Z		Unit	
		Mode	LEs	UFM Blocks	C4	C5, I5	C4	C5, I5		
	512 × 16	None	3	1	10.0	10.0	10.0	10.0	MHz	
	512 × 16	SPI <i>(2)</i>	37	1	9.7	9.7	8.0	8.0	MHz	
UFM	512 × 8	Parallel <i>(3)</i>	73	1	(4)	(4)	(4)	(4)	MHz	
	512 × 16	I ² C (3)	142	1	100 (5)	100 (5)	100 <i>(5)</i>	100 (5)	kHz	

Table 3–17. Device Performance for MAX V Devices (Part 2 of 2)

Notes to Table 3-17:

1

(1) This design is a binary loadable up counter.

(2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of logic elements (LEs) used.

(3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.

(4) This design is asynchronous.

(5) The I²C megafunction is verified in hardware up to 100-kHz serial clock line rate.

Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis independent of device density. Table 3–18 through Table 3–25 on page 3–19 list the MAX V device internal timing microparameters for LEs, input/output elements (IOEs), UFM blocks, and MultiTrack interconnects.

For more information about each internal timing microparameters symbol, refer to AN629: Understanding Timing in Altera CPLDs

		5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z				5M1270Z/ 5M2210Z					
Symbol	Parameter	(C4	C	5, I5	(C4	С	5, I5	Unit	
		Min	Max	Min	Max	Min	Max	Min	Max		
t _{LUT}	LE combinational look-up table (LUT) delay	_	1,215	_	2,247	_	742	_	914	ps	
t _{COMB}	Combinational path delay	_	243		309		192	_	236	ps	
t _{CLR}	LE register clear delay	401	_	545	—	309	_	381	—	ps	
t _{PRE}	LE register preset delay	401	_	545	—	309	_	381	—	ps	
t _{SU}	LE register setup time before clock	260	—	321	—	271	—	333	_	ps	
t _H	LE register hold time after clock	0	—	0	—	0	—	0	—	ps	
t _{CO}	LE register clock-to-output delay	—	380	—	494	—	305	—	376	ps0 — ococt713.1(p	

Table 3–18. LE Internal	Timing Microparameters	for MAX V Devices	(Part 1 of 2)
-------------------------	-------------------------------	-------------------	---------------

Symbol Parameter		51	/40Z/ 5M 5M240Z	80Z/ 5M1 2/ 5M5702	60Z/ Z	5M1270Z/ 5M2210Z				
	C4		C5, I5		C4		C5, I5		Unit	
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{CLKHL}	Minimum clock high or low time	253	_	339	_	216	_	266	_	ps
t _C	Register control delay	_	1,356		1,741	_	1,114		1,372	ps

Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 2 of 2)

Table 3–19. IOE Internal Timing Microparameters for MAX V Devices

		51	040Z/ 5M8 5M240Z	80Z/ 5M1 / 5M5702	160Z/ Z		5M1270Z/ 5M2210Z			
Symbol	Parameter	C	24	C	5, I 5		C4	С	5, I5	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{FASTIO}	Data output delay from adjacent LE to I/O block	—	170	—	428	—	207	—	254	ps
t _{IN}	I/O input pad and buffer delay	—	907	—	986	—	920	—	1,132	ps
t _{GLOB} (1)	I/O input pad and buffer delay used as global signal pin	_	2,261	_	3,322	_	1,974	_	2,430	ps
t _{IOE}	Internally generated output enable delay	—	530	_	1,410	_	374	_	460	ps
t _{DL}	Input routing delay		318	_	509	_	291	_	358	ps
t _{oD} <i>(2)</i>	Output delay buffer and pad delay	—	1,319	—	1,543	_	1,383	—	1,702	ps
t _{xz} (3)	Output buffer disable delay	—	1,045	—	1,276	—	982	—	1,209	ps
t _{ZX} (4)	Output buffer enable delay	_	1,160	_	1,353	_	1,303	_	1,604	ps

Notes to Table 3-19:

(1) Delay numbers for t_{GLOB} differ for each device density and speed grade. The delay numbers for t_{GLOB}, shown in Table 3–19, are based on a 5M240Z device target.

(2) For more information about delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–34 on page 3–24 and Table 3–35 on page 3–25.

(3) For more information about t_{XZ}

External Timing Parameters

External timing parameters are specified by device density and speed grade. All external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the

Table 3–26lists the external I/O timing parameters for the 5M40Z, 5M80Z, 5M160Z, and 5M240Z devices.

Table 3–27

Table 3–30

External Timing I/O Delay Adders

The I/O delay timing parameters for the I/O standard input and output adders and the input delays are specified by speed grade, independent of device density.

Table 3–32through Table 3–36 on page 3–25 ist the adder delays associated with I/O pins for all packages. If you select an I/O standard other than 3.3-V LVTTL, add the input delay adder to the external t _{SU} timing parameters listed in Table 3–26 on page 3–20 through Table 3–31 If you select an I/O standard other than 3.3-V LVTTL with 16 mA drive strength and fast slew rate, add the output delay adder to the external t_{CO} and t_{PD} listed in Table 3–26 on page 3–20 through Table 3–31

	5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z									
I/O Standard	C4		C5, I5		C4		C5, I5		Unit	
	Min	Max	Min	Max	Min	Max	Min	Max		
2 2 \/ I \/TTI	16 mA	_	5,913	—	6,043		6,612	—	6,293	3 ps
3.3-V LVIIL	8 mA	—	6,488	—	6,645	—	7,313	_	6,994	1 ps
2.2.1/1/0000	8 mA	_	5,913	—	6,043	—	6,612		6,293	3 ps
3.3-V LVCIVIO3	4 mA	—	6,488	—	6,645	—	7,313	_	6,994	1 ps
	14 mA	_	9,088	—	9,222	—	10,02	1 —	9,70	2 ps
2.5-V LVIIL/LVCIVIC	7 mA	_	9,808	—	9,962	—	10,88	1 —	10,56	2 ps
	6 mA	_	21,758	—	21,782	2 —	21,13	4 —	20,81	5 ps
	3 mA	—	23,028	—	23,032	2 —	22,39	9 —	22,08	80 ps
	4 mA	—	39,068	—	39,032	2 —	34,49	9 —	34,18	80 ps
1.5-V LVCIVIOS	2 mA	_	40,578	—	40,542	2 —	36,28	1 —	35,96	52 ps
1.2-V LVCMOS	3 mA	. —	69,33	32 —	70,2	57 —	- 55,	796 -	- 55,	477 p
3.3-V PCI	20 mA	. —	6,488	- 1	6,64	5 —	339) —	418	B ps

Table 3-35. External Timing Output Delay and Adders for Slow Slew Rate for MAX V Devices