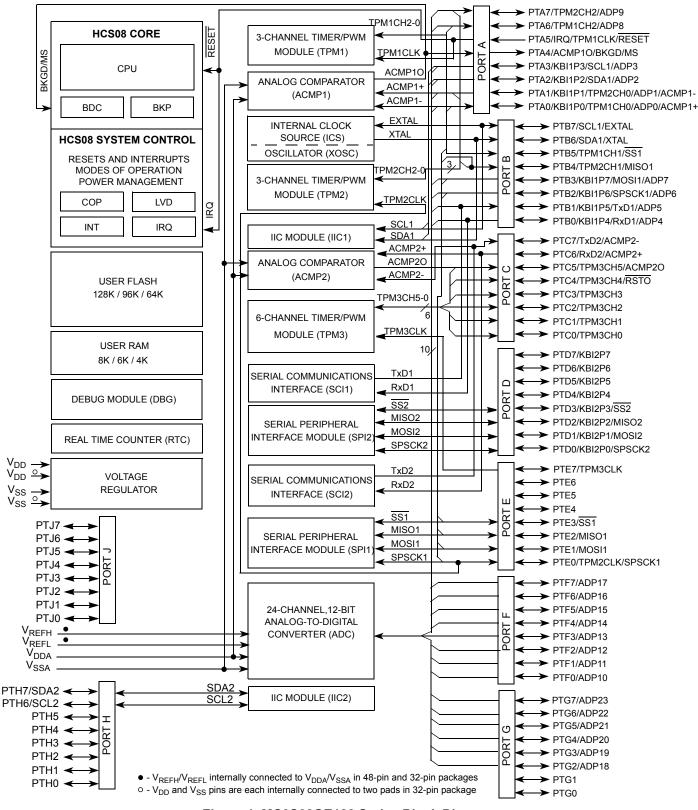


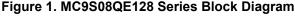
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qe128cld

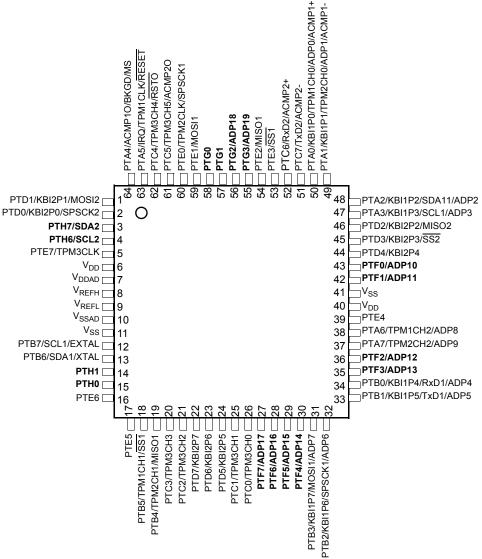
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MC9S08QE128 Series Comparison

1 MC9S08QE128 Series Comparison

The following table compares the various device derivatives available within the MC9S08QE128 series.


Table 1. MC9S08QE128 Series Features by MCU and Package

Feature	MC9S08QE128			MC9S08QE96			MC9S08QE64			64		
Flash size (bytes)	131072					98304			65536			
RAM size (bytes)		80	64			60	16			40	96	
Pin quantity	80	64	48	44	80	64	48	44	64	48	44	32
ACMP1				•	•	ye	es	•			•	
ACMP2						ye	es					
ADC channels	24	22	10	10	24	22	10	10	22	10	10	10
DBG						ye	es					
ICS						ye	es					
IIC1						ye	es					
IIC2	yes	yes	no	no	yes	yes	no	no	yes	no	no	no
IRQ						ye	es					
КВІ	16	16	16	16	16	16	16	16	16	16	16	12
Port I/O ¹	70	54	38	34	70	54	38	34	54	38	34	26
RTC						ye	es					
SCI1						ye	es					
SCI2						ye	es					
SPI1						ye	es					
SPI2						ye	es					
TPM1 channels		3										
TPM2 channels		3										
TPM3 channels						6	3					
XOSC						ye	es					

¹ Port I/O count does not include the input only PTA5/IRQ/TPM1CLK/RESET or the output only PTA4/ACMP1O/BKGD/MS.

Pin Assignments

Pins in **bold** are added from the next smaller package.

Figure 3. Pin Assignments in 64-Pin LQFP Package

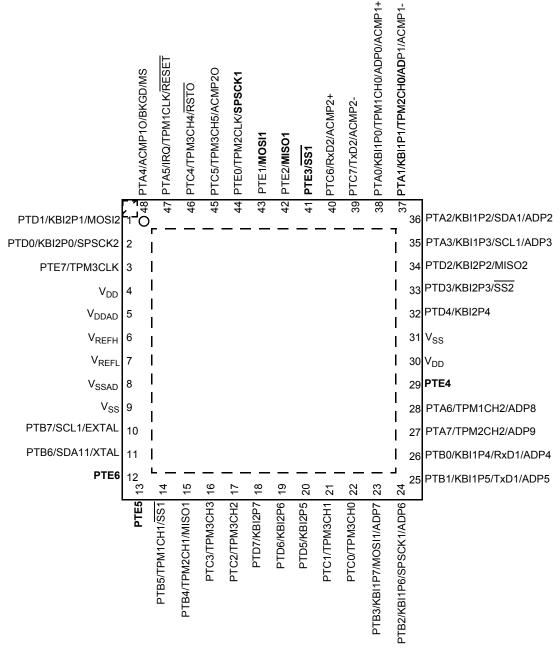


Figure 4. Pin Assignments in 48-Pin QFN Package

3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08QE128 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 3. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	± 25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

 Table 4. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and $V_{DD}.$

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

	Rating	Symbol	Value	Unit	
0	perating temperature range (packaged)	T _A	-40 to 85	°C	
Μ	aximum junction temperature	T _{JM}	95	°C	
T	hermal resistance Single-layer board				
	32-pin LQFP		82		
	44-pin LQFP	θ_{JA}	68	°C/W	
	48-pin QFN		81		
	64-pin LQFP	0	69	°C/W	
	80-pin LQFP	θ_{JA}	60	C/VV	
T	hermal resistance Four-layer board				
	32-pin LQFP		54		
	44-pin LQFP	θ_{JA}	46	°C/W	
	48-pin QFN]	26		
	64-pin LQFP	Α	50	°C/W	
	80-pin LQFP	θ_{JA}	47	°C/W	

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $\begin{array}{l} T_A = \text{Ambient temperature, } ^{\circ}\text{C} \\ \theta_{JA} = \text{Package thermal resistance, junction-to-ambient, } ^{\circ}\text{C/W} \\ P_D = P_{int} + P_{I/O} \\ P_{int} = I_{DD} \times V_{DD}, \text{Watts } \text{ -- chip internal power} \\ P_{I/O} = \text{Power dissipation on input and output pins } \text{ -- user determined} \end{array}$

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Cha	Characteristic Symbol			Min	Typ ¹	Мах	Unit
1		Operating Voltage	9			1.8 ²		3.6	V
	С	Output high voltage	All I/O pins, low-drive strength		1.8 V, I _{Load} = -2 mA	V _{DD} – 0.5	_	_	
2	Ρ		All I/O pins,	V _{OH}	2.7 V, I _{Load} = -10 mA	V _{DD} – 0.5	_	—	V
	Т		high-drive strength		2.3 V, I _{Load} = –6 mA	V _{DD} – 0.5	_	—	
	С				1.8V, I _{Load} = –3 mA	V _{DD} – 0.5	—	—	
3	D	Output high current	Max total I _{OH} for all ports	I _{OHT}		—	—	100	mA
	С	Output low voltage	All I/O pins, low-drive strength		1.8 V, I _{Load} = 2 mA	—	_	0.5	
4	Ρ		All I/O pins,	V _{OL}	2.7 V, I _{Load} = 10 mA	—	_	0.5	V
	Т		high-drive strength		2.3 V, I _{Load} = 6 mA	—	—	0.5	
	С				1.8 V, I _{Load} = 3 mA	—	_	0.5	
5	D	Output low current	Max total I _{OL} for all ports	I _{OLT}		—	—	100	mA
6		Input high	all digital inputs	V _{IH}	V_{DD} > 2.7 V	$0.70 ext{ x V}_{ ext{DD}}$	—	—	
0	С	voltage		٩H	V _{DD} > 1.8 V	$0.85 \times V_{DD}$	—	—	V
7	Ρ	Input low voltage	all digital inputs	V _{IL}	$V_{DD} > 2.7 V$	—	_	$0.35 \times V_{DD}$	•
-	С			- 12	V _{DD} >1.8 V			0.30 x V _{DD}	
8	С	Input hysteresis	all digital inputs	V _{hys}		$0.06 \times V_{DD}$	_	—	mV
9	Ρ	Input leakage current	all input only pins (Per pin)	I _{In}	V_{In} = V_{DD} or V_{SS}	—	—	1	μA
10	Ρ	Hi-Z (off-state) leakage current	all input/output (per pin)	I _{OZ}	V_{In} = V_{DD} or V_{SS}	_	_	1	μA
11	Ρ	Pull-up resistors	all digital inputs, when enabled	R _{PU}		17.5	—	52.5	kΩ
		DC injection	Single pin limit			-0.2	_	0.2	mA
12	D	current ^{3, 4, 5}	Total MCU limit, includes sum of all stressed pins	I _{IC}	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-5	_	5	mA
13	С	Input Capacitance	e, all pins	C _{In}		_	_	8	pF
14	С	RAM retention vo	Itage	V _{RAM}		—	0.6	1.0	V
15	С	POR re-arm volta	ge ⁶	V _{POR}		0.9	1.4	1.79	V
16	D	POR re-arm time		t _{POR}		10	—	—	μS
17	Ρ	Low-voltage dete high range ⁷	ction threshold —	V _{LVDH} ⁸	V _{DD} falling V _{DD} rising	2.11 2.16	2.16 2.21	2.22 2.27	V

Table 8. DC Characteristics

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
18	Ρ	Low-voltage detection threshold — low range ⁷	V _{LVDL}	V _{DD} falling V _{DD} rising	1.80 1.86	1.82 1.90	1.91 1.99	V
19	Ρ	Low-voltage warning threshold — high range ⁷	V _{LVWH}	V _{DD} falling V _{DD} rising	2.36 2.36	2.46 2.46	2.56 2.56	V
20	Ρ	Low-voltage warning threshold — low range ⁷	V _{LVWL}	V _{DD} falling V _{DD} rising	2.11 2.16	2.16 2.21	2.22 2.27	V
21	С	Low-voltage inhibit reset/recover hysteresis ⁷	V _{hys}		_	50	_	mV
22	Ρ	Bandgap Voltage Reference ⁹	V _{BG}		1.15	1.17	1.18	V

Table 8. DC Characteristics (continued)

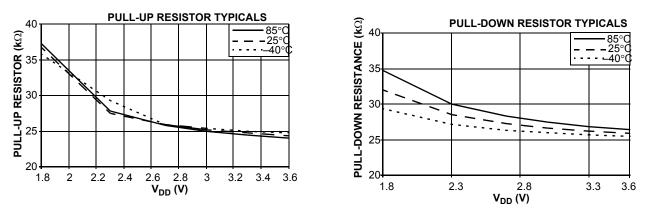
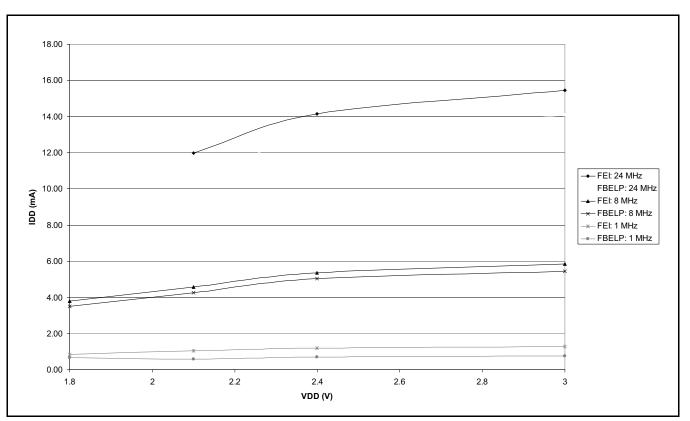
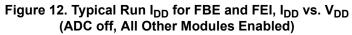
¹ Typical values are measured at 25°C. Characterized, not tested

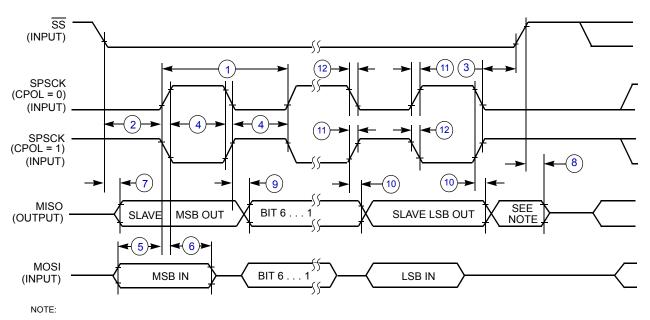
² As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above V_{LVDL}.

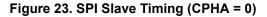
 3 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

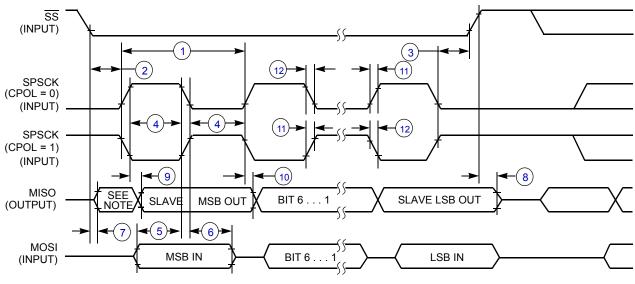
⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

- ⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁶ Maximum is highest voltage that POR is guaranteed.
- ⁷ Low voltage detection and warning limits measured at 1 MHz bus frequency.
- ⁸ Run at 1 MHz bus frequency
- ⁹ Factory trimmed at V_{DD} = 3.0 V, Temp = 25°C


Figure 7. Pull-up and Pull-down Typical Resistor Values





1. Not defined but normally MSB of character just received

NOTE:

1. Not defined but normally LSB of character just received

Figure 24. SPI Slave Timing (CPHA = 1)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
	Short Sample (ADLSMP=0)	Р	t _{ADC}	—	20	—	ADCK	See the ADC
(Including sample time)	Long Sample (ADLSMP=1)	С		_	40	_	cycles	chapter in the MC9S08QE128
Sample Time	Short Sample (ADLSMP=0)	Ρ	t _{ADS}	_	3.5	_	ADCK	<i>Reference Manual</i> for conversion time
	Long Sample (ADLSMP=1)	С		—	23.5	—	cycles	variances
Total Unadjusted	12 bit mode	Т	E _{TUE}	—	±3.0		LSB ²	Includes
Error	10 bit mode	Р		—	±1	±2.5		Quantization
	8 bit mode	Т	1 1	_	±0.5	±1.0	1	
Differential	12 bit mode	Т	DNL	_	±1.75	_	LSB ²	
Non-Linearity	10 bit mode ³	Р	1 1	_	±0.5	±1.0	1	
	8 bit mode ³	Т			±0.3	±0.5	1	
Integral	12 bit mode	Т	INL		±1.5	_	LSB ²	
Non-Linearity	10 bit mode	Т			±0.5	±1.0	1	
	8 bit mode	Т		_	±0.3	±0.5	1	
Zero-Scale Error	12 bit mode	Т	E _{ZS}		±1.5	_	LSB ²	V _{ADIN} = V _{SSAD}
	10 bit mode	Ρ		_	±0.5	±1.5	1	
	8 bit mode	Т			±0.5	±0.5	1	
Full-Scale Error	12 bit mode	Т	E _{FS}		±1.0	_	LSB ²	V _{ADIN} = V _{DDAD}
	10 bit mode	Р	1 1	_	±0.5	±1	1	
	8 bit mode	Т			±0.5	±0.5	1	
Quantization	12 bit mode	D	EQ	_	-1 to 0	_	LSB ²	
Error	10 bit mode			_	_	±0.5	1	
	8 bit mode		-			±0.5	1	
Input Leakage	12 bit mode	D	E _{IL}		±2	_	LSB ²	Pad leakage ⁴ * R _{AS}
Error	10 bit mode		-		±0.2	±4	1	
	8 bit mode			_	±0.1	±1.2	1	
Temp Sensor	-40°C to 25°C	D	m	_	1.646	_	mV/°C	
Slope	25°C to 85°C	1		_	1.769	_	1	
Temp Sensor Voltage	25°C	D	V _{TEMP25}	_	701.2	_	mV	

Table 18. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section of the *MC9S08QE128 Reference Manual*.

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage for program/erase -40°C to 85°C	V _{prog/erase}	1.8		3.6	V
D	Supply voltage for read operation	V _{Read}	1.8		3.6	V
D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μS
Р	Byte program time (random location) ⁽²⁾	t _{prog}	9			t _{Fcyc}
Р	Byte program time (burst mode) ⁽²⁾	t _{Burst}	4			t _{Fcyc}
Р	Page erase time ²	t _{Page}		4000		t _{Fcyc}
Р	Mass erase time ⁽²⁾	t _{Mass}		20,000		t _{Fcyc}
	Byte program current ³	R _{IDDBP}	_	4	_	mA
	Page erase current ³	R _{IDDPE}	_	6	_	mA
с	Program/erase endurance ⁴ T _L to T _H = -40° C to + 85°C T = 25°C		10,000	 100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100		years

Table	19.	Flash	Characteristics
-------	-----	-------	-----------------

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

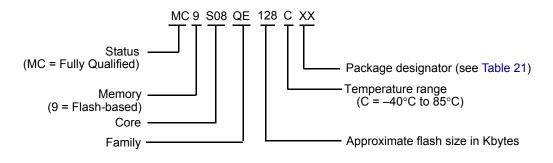
- ³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with V_{DD} = 3.0 V, bus frequency = 4.0 MHz.
- ⁴ Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.
- ⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory*.

Ordering Information

4 Ordering Information

This section contains ordering information for MC9S08QE128, MC9S08QE96, and MC9S08QE64 devices.

Freescale Part Number ¹	Men	nory	Temperature range (°C)	Package ²	
Fleescale Fait Nulliber	Flash	RAM		Fackage	
MC9S08QE128CLK			-40 to +85	80 LQFP	
MC9S08QE128CLH	128K	917	-40 to +85	64 LQFP	
MC9S08QE128CFT		8K	-40 to +85	48 QFN	
MC9S08QE128CLD			-40 to +85	44 LQFP	
MC9S08QE96CLK		6К	-40 to +85	80 LQFP	
MC9S08QE96CLH	96K		-40 to +85	64 LQFP	
MC9S08QE96CFT	901		-40 to +85	48 QFN	
MC9S08QE96CLD			-40 to +85	44 QFP	
MC9S08QE64CLH			-40 to +85	64 LQFP	
MC9S08QE64CFT	64K	4K	-40 to +85	48 QFN	
MC9S08QE64CLD	04K	41	-40 to +85	44 QFP	
MC9S08QE64CLC			-40 to +85	32 LQFP	

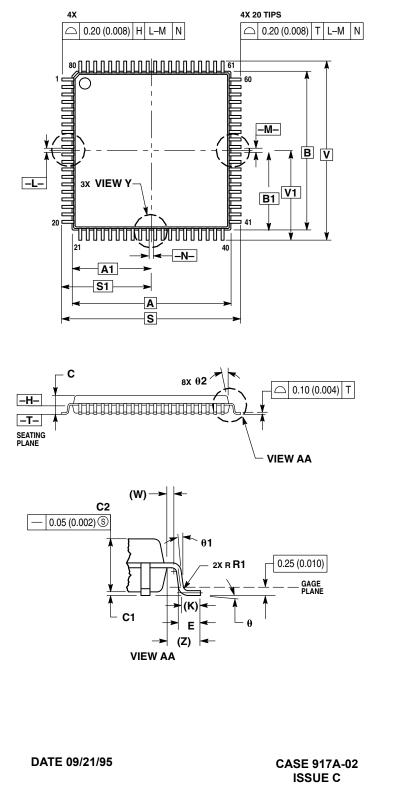

Table 20. Ordering Information

¹ See the reference manual, *MC9S08QE128RM*, for a complete description of modules included on each device.

² See Table 21 for package information.

4.1 Device Numbering System

Example of the device numbering system:


5 Package Information

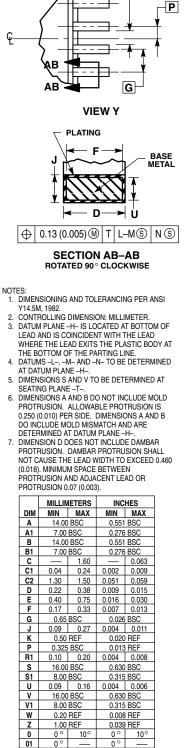

The below table details the various packages available.

Table	21.	Package	Descriptions
-------	-----	---------	--------------

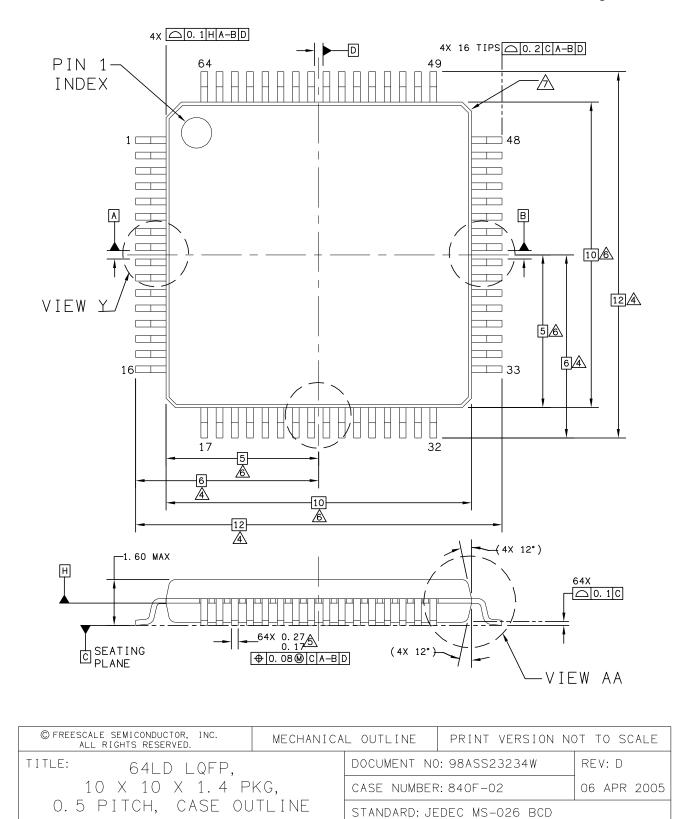
Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W
48	Quad Flat No-Leads	QFN	FT	1314	98ARH99048A
44	Low Quad Flat Package	LQFP	LD	824D	98ASS23225W
32	Low Quad Flat Package	LQFP	LC	873A	98ASH70029A

-X-

X= L. M. N

Figure 26. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)

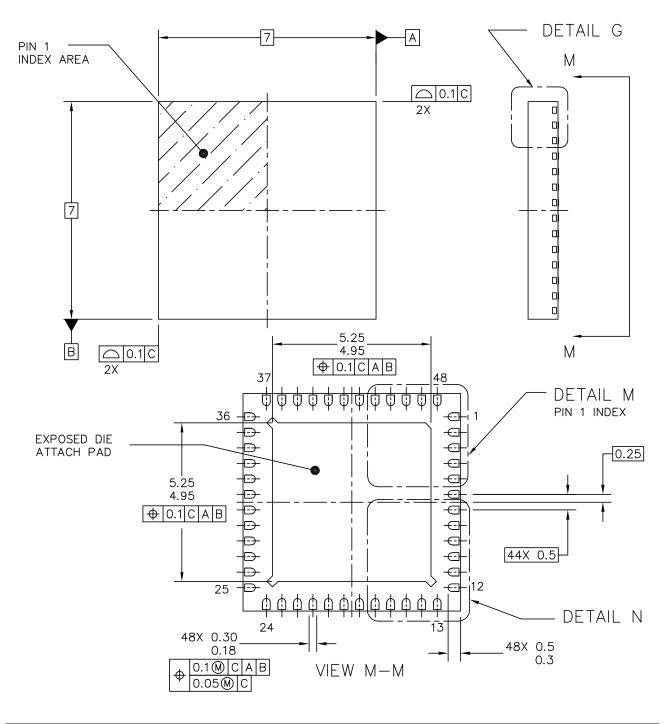
MC9S08QE128 Series Data Sheet, Rev. 7


14°

9 °

02

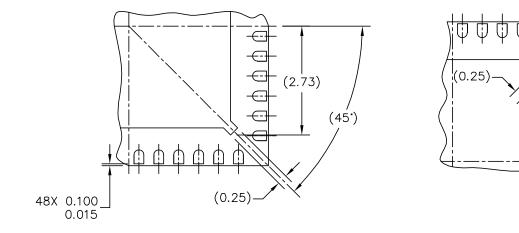
9° 14


NOTES:

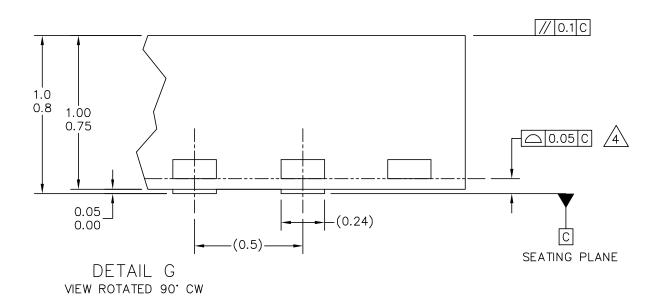
- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- /4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.
- 5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
- ATHIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- /7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- $\frac{8}{2}$ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: 64LD LQFP,		DOCUMENT NO): 98ASS23234₩	REV: D
10 X 10 X 1.4 P	CASE NUMBER	2: 840F-02	06 APR 2005	
0.5 PITCH, CASE OUTLINE		STANDARD: JE	DEC MS-026 BCD	

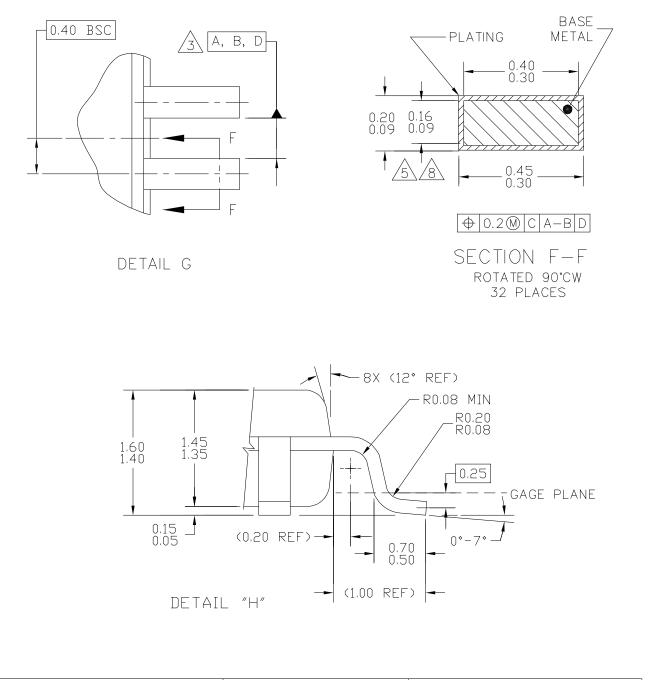
Figure 29. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 3 of 3



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO): 98ARH99048A	REV: F
FLAT NON-LEADED PACKA	CASE NUMBER	: 1314–05	05 DEC 2005	
48 TERMINAL, 0.5 PITCH (7 X 7 X 1)		STANDARD: JEDEC-MO-220 VKKD-2		


Figure 30. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 1 of 3

DETAIL N PREFERRED CORNER CONFIGURATION


DETAIL M PREFERED PIN 1 BACKSIDE IDENTIFIER

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED	DOCUMENT NO): 98ARH99048A	REV: F	
FLAT NON-LEADED PACKA	CASE NUMBER		05 DEC 2005	
48 TERMINAL, 0.5 PITCH (7	STANDARD: JEDEC-MO-220 VKKD-2			

Figure 31. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 2 of 3

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	FREESCALE SEMICONDUCTOR, INC. MECHANICA		PRINT VERSION NOT TO SCALE	
TITLE:	DOCUMENT NE]: 98ASH70029A	RE∨: D	
LOW PROFILE QUAD FLAT PA	CASE NUMBER	R: 873A-03	19 MAY 2005	
32 LEAD, 0.8 PITCH (7 X	STANDARD: JE	IDEC MS-026 BBA		

Figure 37. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 2 of 3

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994.

 $\sqrt{3}$ datums a, b, and d to be determined at datum plane H.

 $\overline{/4.}$ dimensions to be determined at seating plane datum c.

5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION: 0.07 MM.

6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.

/7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 MM AND 0.25 MM FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA		L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:	DOCUMENT NO]: 98ASH70029A	RE∨: D	
LOW PROFILE QUAD FLAT PA	CASE NUMBER	2: 873A-03	19 MAY 2005	
32 LEAD, 0.8 PITCH (7 X	STANDARD: JE	DEC MS-026 BBA		

Figure 38. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 3 of 3