

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qe128clhr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D
MC9S08AC16			
MC9S908AC60			
MC9S08AC128			
MC9S08AW60			
MC9S08GB60A			
MC9S08GT16A			
MC9S08JM16			
MC9S08JM60			
MC9S08LL16			
MC9S08QE128			
MC9S08QE32			
MC9S08RG60			
MCF51CN128			
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D
MC9S08QB8			
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D
MC9S08QG8			
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D

Freescale Semiconductor Data Sheet: Technical Data

An Energy Efficient Solution by Freescale

Document Number: MC9S08QE128

Rev. 7, 10/2008

MC9S08QE128 Series

Covers: MC9S08QE128, MC9S08QE96, MC9S08QE64

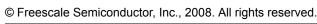
- 8-Bit HCS08 Central Processor Unit (CPU)
 - Up to 50.33-MHz HCS08 CPU above 2.4V, 40-MHz CPU above 2.1V, and 20-MHz CPU above 1.8V, across temperature range
 - HC08 instruction set with added BGND instruction
 - Support for up to 32 interrupt/reset sources
- On-Chip Memory
 - Flash read/program/erase over full operating voltage and temperature
 - Random-access memory (RAM)
 - Security circuitry to prevent unauthorized access to RAM and flash contents
- Power-Saving Modes
 - Two low power stop modes; reduced power wait mode
 - Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode
 - Very low power external oscillator can be used in stop3 mode to provide accurate clock to active peripherals
 - Very low power real time counter for use in run, wait, and stop modes with internal and external clock sources
 - 6 µs typical wake up time from stop modes
- Clock Source Options
 - Oscillator (XOSC) Loop-control Pierce oscillator; Crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - Internal Clock Source (ICS) FLL controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation; supports CPU freq. from 2 to 50.33 MHz
- System Protection
 - Watchdog computer operating properly (COP) reset with option to run from dedicated 1-kHz internal clock source or bus clock
 - Low-voltage detection with reset or interrupt; selectable trip points
 - Illegal opcode detection with reset
 - Flash block protection
- Development Support
 - Single-wire background debug interface
 - Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints)
 - On-chip in-circuit emulator (ICE) debug module containing two comparators and nine trigger modes.

MC9S08QE128

48-QFN Case 1314

 7 mm^2

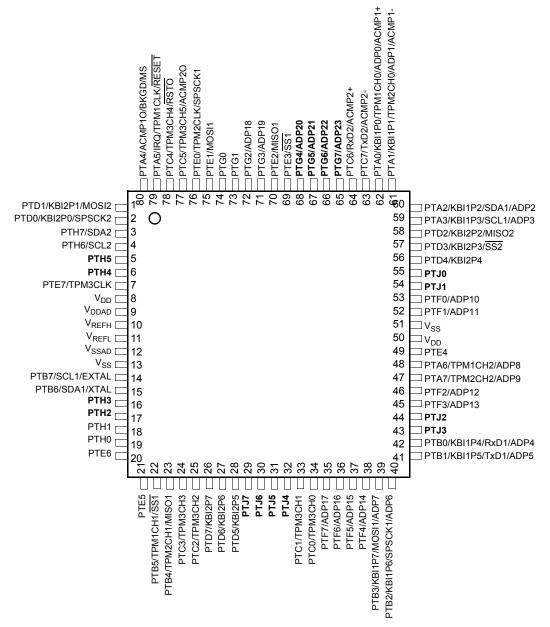
64-LQFP Case 840F 10 mm^2


44-LQFP Case 824D 10 mm²

Eight deep FIFO for storing change-of-flow addresses and event-only data. Debug module supports both tag and force breakpoints.

- ADC 24-channel, 12-bit resolution; 2.5 µs conversion time; automatic compare function; 1.7 mV/°C temperature sensor; internal bandgap reference channel; operation in stop3; fully functional from 3.6V to 1.8V
- ACMPx Two analog comparators with selectable interrupt on rising, falling, or either edge of comparator output; compare option to fixed internal bandgap reference voltage; outputs can be optionally routed to TPM module; operation in stop3
- SCIx Two SCIs with full duplex non-return to zero (NRZ); LIN master extended break generation; LIN slave extended break detection; wake up on active edge
- SPIx—Two serial peripheral interfaces with Full-duplex or single-wire bidirectional; Double-buffered transmit and receive; MSB-first or LSB-first shifting
- IICx Two IICs with; Up to 100 kbps with maximum bus loading; Multi-master operation; Programmable slave address; Interrupt driven byte-by-byte data transfer; supports broadcast mode and 10 bit addressing
- TPMx One 6-channel and two 3-channel; Selectable input capture, output compare, or buffered edge- or center-aligned PWMs on each channel
- RTC 8-bit modulus counter with binary or decimal based prescaler; External clock source for precise time base, time-of-day, calendar or task scheduling functions; Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components
- Input/Output
 - 70 GPIOs and 1 input-only and 1 output-only pin
 - 16 KBI interrupts with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins.
 - SET/CLR registers on 16 pins (PTC and PTE)

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.



2 Pin Assignments

This section describes the pin assignments for the available packages. See Table 2 for pin availability by package pin-count.

Pins in \boldsymbol{bold} are added from the next smaller package.

Figure 2. Pin Assignments in 80-Pin LQFP

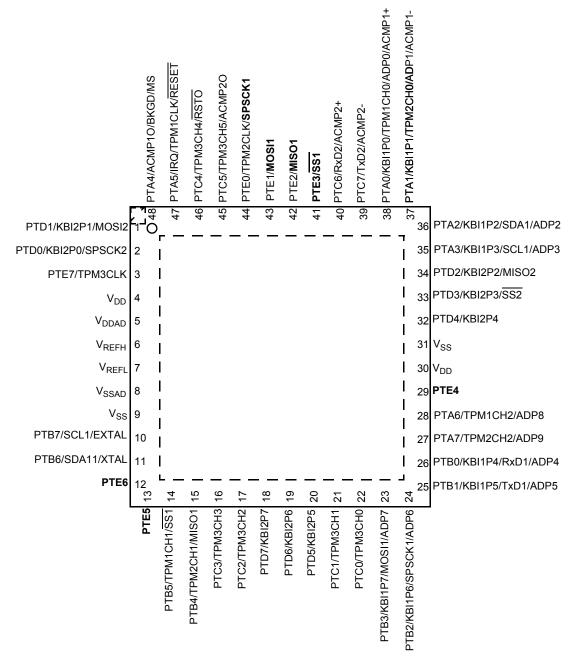


Figure 4. Pin Assignments in 48-Pin QFN Package

Pin Assignments

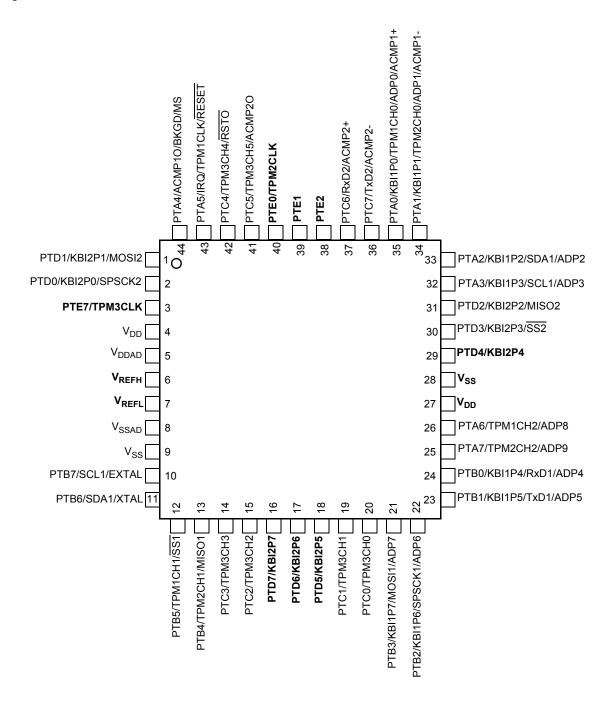


Figure 5. Pin Assignments in 44-Pin LQFP Package

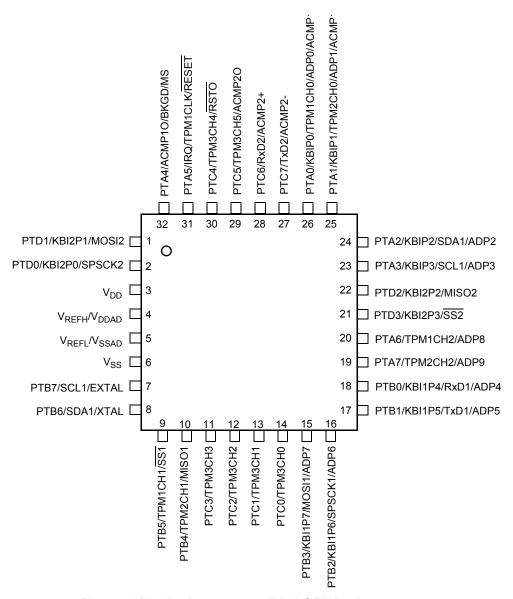


Figure 6. Pin Assignments 32-Pin LQFP Package

Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count (continued)

	Pir	n Num	ber		Lowest	←	Priority	\longrightarrow	Highest
80	64	48	44	32	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
41	33	25	23	17	PTB1	KBI1P5	TxD1		ADP5
42	34	26	24	18	PTB0	KBI1P4	RxD1		ADP4
43	_	_			PTJ3				
44	_	_		_	PTJ2				
45	35	_		_	PTF3				ADP13
46	36	_	_	_	PTF2				ADP12
47	37	27	25	19	PTA7	TPM2CH2			ADP9
48	38	28	26	20	PTA6	TPM1CH2			ADP8
49	39	29	1	1	PTE4				
50	40	30	27	-					V_{DD}
51	41	31	28	1					V_{SS}
52	42	_	1	l	PTF1				ADP11
53	43	_			PTF0				ADP10
54	_	_	1	l	PTJ1				
55	_	_	_	-	PTJ0				
56	44	32	29		PTD4	KBI2P4			
57	45	33	30	21	PTD3	KBI2P3	SS2		
58	46	34	31	22	PTD2	KBI2P2	MISO2		
59	47	35	32	23	PTA3	KBI1P3	SCL1		ADP3
60	48	36	33	24	PTA2	KBI1P2	SDA1		ADP2
61	49	37	34	25	PTA1	KBI1P1	TPM2CH0	ADP1	ACMP1-
62	50	38	35	26	PTA0	KBI1P0	TPM1CH0	ADP0	ACMP1+
63	51	39	36	27	PTC7	TxD2			ACMP2-
64	52	40	37	28	PTC6	RxD2			ACMP2+
65	_	_	_	l	PTG7				ADP23
66	_	_	1	l	PTG6				ADP22
67	_	_	_	-	PTG5				ADP21
68		_	_	_	PTG4				ADP20
69	53	41	_	_	PTE3	SS1			
70	54	42	38	_	PTE2	MISO1			
71	55	_		_	PTG3				ADP19
72	56	_	_	_	PTG2				ADP18
73	57	_	_	_	PTG1				
74	58	_			PTG0				
75	59	43	39	_	PTE1	MOSI1			
76	60	44	40	_	PTE0	TPM2CLK	SPSCK1		
77	61	45	41	29	PTC5	TPM3CH5			ACMP2O
78	62	46	42	30	PTC4	TPM3CH4	RSTO		
79	63	47	43	31	PTA5	IRQ	TPM1CLK	RESET	
80	64	48	44	32	PTA4	ACMP10	BKGD	MS	

3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08QE128 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 3. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Table 4. Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	-0.3 to +3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	-0.3 to $V_{DD} + 0.3$	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	± 25	mA
Storage temperature range	T _{stg}	-55 to 150	°C

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

MC9S08QE128 Series Data Sheet, Rev. 7

 $^{^{2}}$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_\Delta + 273^{\circ}C) + \theta_{A\Delta} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
	Number of pulses per pin	_	3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	_	3	
Latch-up	Minimum input voltage limit		- 2.5	V
Lateri-up	Maximum input voltage limit		7.5	V

Table 6. ESD and Latch-up Test Conditions

Table 7. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	± 2000	_	V
2	Machine model (MM)	V _{MM}	± 200	_	V
3	Charge device model (CDM)	V_{CDM}	± 500	_	V
4	Latch-up current at T _A = 85°C	I _{LAT}	± 100	_	mA

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

MC9S08QE128 Series Data Sheet, Rev. 7

14

Freescale Semiconductor

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 8. DC Characteristics

Num	С	Characteristic		Symbol	Condition	Min	Typ ¹	Max	Unit
1		Operating Voltage)			1.8 ²		3.6	V
	С	Output high voltage	All I/O pins, low-drive strength		1.8 V, I _{Load} = –2 mA	V _{DD} – 0.5	_	_	
2	Р		All I/O pins,	V_{OH}	2.7 V, I _{Load} = -10 mA	V _{DD} – 0.5	_	_	V
	T		high-drive strength		2.3 V, I _{Load} = -6 mA	V _{DD} – 0.5		_	
	С				1.8V, $I_{Load} = -3 \text{ mA}$	$V_{DD} - 0.5$		_	
3	D	Output high current	Max total I _{OH} for all ports	I _{OHT}		_		100	mA
	С	Output low voltage	All I/O pins, low-drive strength		1.8 V, I _{Load} = 2 mA	_		0.5	
4	Р		All I/O pins,	V_{OL}	2.7 V, I _{Load} = 10 mA	_		0.5	V
	T		high-drive strength		2.3 V, I _{Load} = 6 mA	_		0.5	
	С				1.8 V, I _{Load} = 3 mA			0.5	
5	D	Output low current	Max total I _{OL} for all ports	I _{OLT}			1	100	mA
6	Р	Input high	all digital inputs	V _{IH}	V _{DD} > 2.7 V	0.70 x V _{DD}	_	_	
	С	voltage		VIΗ	V _{DD} > 1.8 V	0.85 x V _{DD}	_	_	V
7	Р	Input low voltage	all digital inputs	V _{IL}	V _{DD} > 2.7 V	_		0.35 x V _{DD}	•
•	С			¥ IL	V _{DD} >1.8 V		l	0.30 x V _{DD}	
8	С	Input hysteresis	all digital inputs	V_{hys}		$0.06 \times V_{DD}$		_	mV
9	Р	Input leakage current	all input only pins (Per pin)	I _{In}	$V_{In} = V_{DD}$ or V_{SS}		1	1	μА
10	Р	Hi-Z (off-state) leakage current	all input/output (per pin)	I _{OZ}	$V_{In} = V_{DD}$ or V_{SS}	_	_	1	μА
11	Р	Pull-up resistors	all digital inputs, when enabled	R _{PU}		17.5	_	52.5	kΩ
		DC injection	Single pin limit			-0.2		0.2	mA
12	D	current ^{3, 4, 5}	Total MCU limit, includes sum of all stressed pins	I _{IC}	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	- 5	_	5	mA
13	С	Input Capacitance	e, all pins	C _{In}		_		8	pF
14	С	RAM retention vo	Itage	V _{RAM}		_	0.6	1.0	V
15	С	POR re-arm volta	ge ⁶	V _{POR}		0.9	1.4	1.79	V
16	D	POR re-arm time		t _{POR}		10	_	_	μS
17	Р	Low-voltage deter high range ⁷	ction threshold —	V _{LVDH} ⁸	V _{DD} falling V _{DD} rising	2.11 2.16	2.16 2.21	2.22 2.27	V

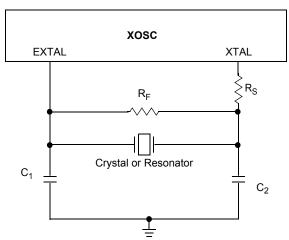


Figure 13. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

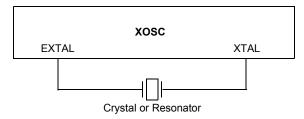


Figure 14. Typical Crystal or Resonator Circuit: Low Range/Low Gain

3.9 Internal Clock Source (ICS) Characteristics

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Charac	teristic	Symbol	Min	Typ ¹	Max	Unit
1	Р	Average internal reference frequency at V _{DD} = 3.6 V and temperatu		f _{int_ft}	_	32.768	_	kHz
2	Р	Internal reference frequency — L	ser trimmed	f _{int_ut}	31.25	_	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}	_	60	100	μS
	Р	D00 t t f	Low range (DRS=00)		16	_	20	
4	Р	DCO output frequency range — trimmed ²	Mid range (DRS=01)	f _{dco_u}	32	_	40	MHz
	Р	ummod	High range (DRS=10)		48	_	60	
	Р	DCO output frequency ²	Low range (DRS=00)	f _{dco_DMX32}	_	19.92	_	
5	Р	Reference = 32768 Hz and	Mid range (DRS=01)		_	39.85	_	MHz
	Р	DMX32 = 1	High range (DRS=10)		_	59.77	_	
6	С	Resolution of trimmed DCO outp temperature (using FTRIM)	Δf _{dco_res_t}	_	± 0.1	± 0.2	%f _{dco}	
7	С	Resolution of trimmed DCO outp temperature (not using FTRIM)	ut frequency at fixed voltage and	$\Delta f_{dco_res_t}$	_	± 0.2	± 0.4	%f _{dco}

Table 12. ICS Frequency	Specifications (Tomporaturo Bango	40 to 85°C	Ambient) (co	ntinuod\
Table 12. ICS Frequency	Specifications (remperature Rande	2 = -40 to 85°C	Ambient) (co	ntinuea)

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
8	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	+ 0.5 -1.0	± 2	%f _{dco}
9	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0°C to 70 °C	Δf_{dco_t}	_	± 0.5	± 1	%f _{dco}
10	С	FLL acquisition time ³	t _{Acquire}	_		1	ms
11	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ⁴	C _{Jitter}	_	0.02	0.2	%f _{dco}

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

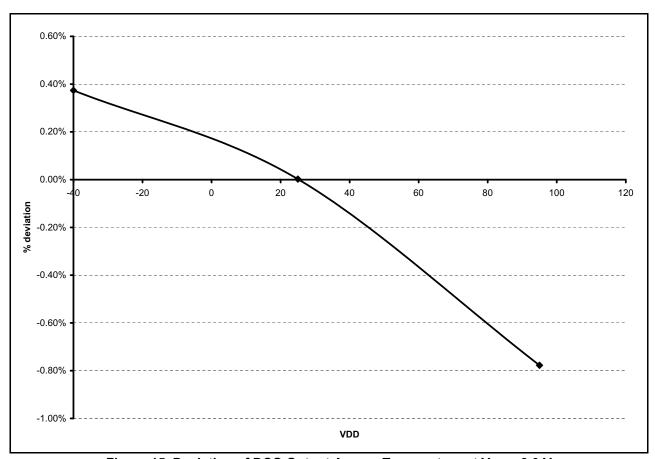


Figure 15. Deviation of DCO Output Across Temperature at V_{DD} = 3.0 V

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

Table 12	Control	Timina	(continued)
Table 13	. Control	- i imina	(continued)

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_ _	_	ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} , t _{IHIL}	100 1.5 x t _{cyc}	_ _	_	ns
9	С	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁵ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		8 31	-	ns
		Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		7 24		ns
10		Voltage regulator recovery time	t _{VRR}	_	4	_	μS

¹ Typical values are based on characterization data at V_{DD} = 3.0V, 25°C unless otherwise stated.

 $^{^5}$ Timing is shown with respect to 20% $\rm V_{DD}$ and 80% $\rm V_{DD}$ levels. Temperature range $-40^{\circ}\rm C$ to 85°C.

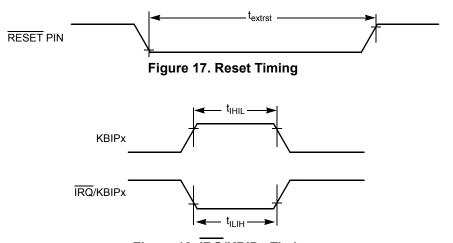


Figure 18. IRQ/KBIPx Timing

² This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

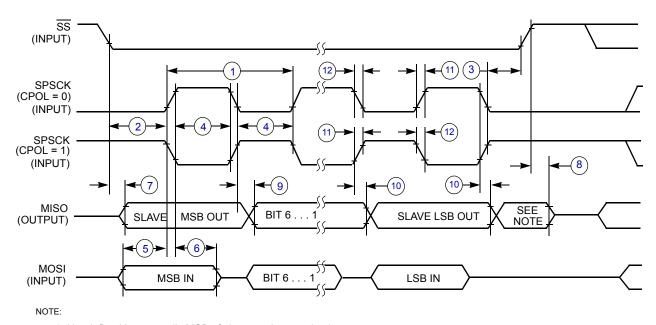
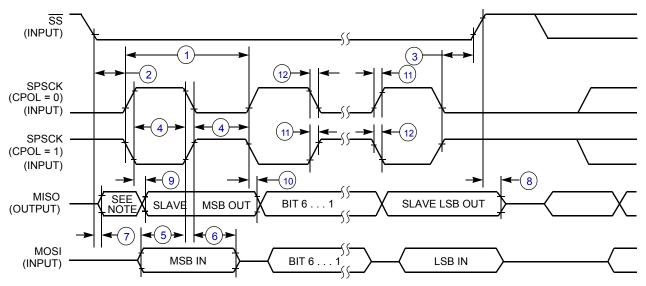

3.10.3 SPI Timing

Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.

Table 15. SPI Timing


No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048	f _{Bus} /2 f _{Bus} /4	Hz Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1	_	t _{SPSCK}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1	_	t _{SPSCK}
4	D	Clock (SPSCK) high or low time Master Slave	twspsck	t _{cyc} – 30 t _{cyc} – 30	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	_	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{НО}	0 0		ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}	_	t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI}	_	t _{cyc} – 25 25	ns ns

1. Not defined but normally MSB of character just received

Figure 23. SPI Slave Timing (CPHA = 0)

NOTE:

1. Not defined but normally LSB of character just received

Figure 24. SPI Slave Timing (CPHA = 1)

3.11 Analog Comparator (ACMP) Electricals

Table 16. Analog Comparator Electrical Specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DD}	1.80	_	3.6	V
С	Supply current (active)	I _{DDAC}	_	20	35	μΑ
D	Analog input voltage	V_{AIN}	$V_{SS} - 0.3$		V_{DD}	V
С	Analog input offset voltage	V_{AIO}		20	40	mV
С	Analog comparator hysteresis	V_{H}	3.0	9.0	15.0	mV
Р	Analog input leakage current	I _{ALKG}	_		1.0	μА
С	Analog comparator initialization delay	t _{AINIT}	_	_	1.0	μS

3.12 ADC Characteristics

Table 17. 12-bit ADC Operating Conditions

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
D	Supply voltage	Absolute	V_{DDAD}	1.8	_	3.6	V	
		Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV	
D	Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	ΔV_{SSAD}	-100	0	+100	mV	
D	Ref Voltage High		V _{REFH}	1.8	V_{DDAD}	V_{DDAD}	V	
D	Ref Voltage Low		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V	
D	Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
С	Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	
С	Input Resistance		R _{ADIN}	_	5	7	kΩ	
	Analog Source Resistance	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_	_	2 5		External to MCU
С		10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_	_	5 10	kΩ	
		8 bit mode (all valid f _{ADCK})		_		10		
D		High Speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	
	Clock Freq.	Low Power (ADLPC=1)		0.4	_	4.0	IVII IZ	

Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- 4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
- THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- A EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- AND 0.25 mm FROM THE LEAD TIP.

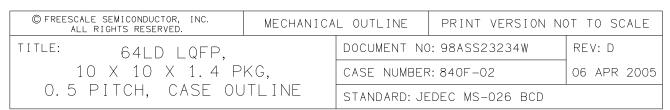
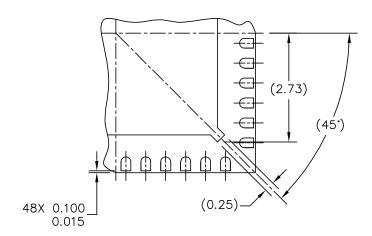
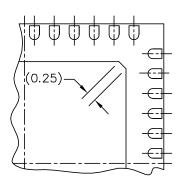
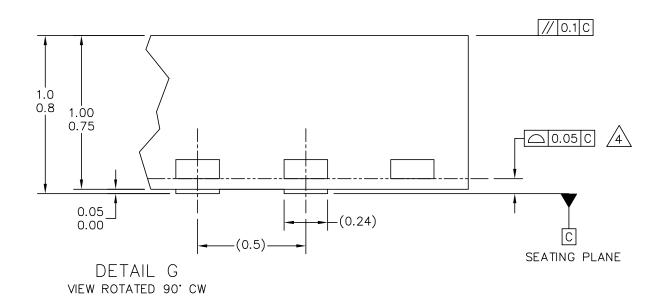




Figure 29. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 3 of 3

MC9S08QE128 Series Data Sheet, Rev. 7



DETAIL N
PREFERRED CORNER CONFIGURATION

DETAIL M
PREFERED PIN 1 BACKSIDE IDENTIFIER

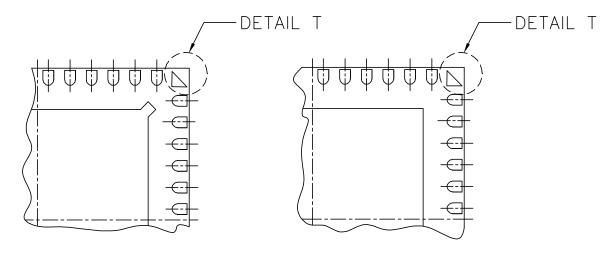
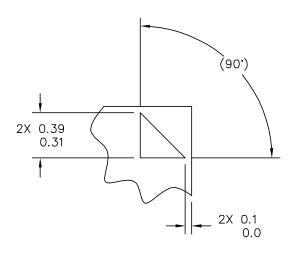

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NOT TO SCALE			
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO): 98ARH99048A	REV: F	
FLAT NON-LEADED PACKA	` '	CASE NUMBER		05 DEC 2005	
48 TERMINAL, 0.5 PITCH (7	′ X / X 1)	STANDARD: JE	DEC-MO-220 VKKD-2	2	

Figure 31. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 2 of 3

MC9S08QE128 Series Data Sheet, Rev. 7



Package Information

DETAIL M
PIN 1 BACKSIDE IDENTIFIER OPTION

DETAIL M
PIN 1 BACKSIDE IDENTIFIER OPTION

DETAIL T

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. THE COMPLETE JEDEC DESIGNATOR FOR THIS PACKAGE IS: HF-PQFN.

4. COPLANARITY APPLIES TO LEADS, CORNER LEADS, AND DIE ATTACH PAD.

5. MIN METAL GAP SHOULD BE 0.2MM.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NOT TO SCALE			
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO): 98ARH99048A	REV: F	
FLAT NON-LEADED PACKA	٠, ,	CASE NUMBER	2: 1314–05	05 DEC 2005	
48 TERMINAL, 0.5 PITCH (7	7 X 7 X 1)	STANDARD: JEDEC-MO-220 VKKD-2			

Figure 32. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 3 of 3

MC9S08QE128 Series Data Sheet, Rev. 7

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9S08QE128

Rev. 7 10/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale $^{\text{TM}}$ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

