

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	70
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qe128clk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MC98	S08QE128 Series Comparison4
2	Pin A	ssignments
3	Elect	rical Characteristics
	3.1	Introduction
	3.2	Parameter Classification
	3.3	Absolute Maximum Ratings12
	3.4	Thermal Characteristics
	3.5	ESD Protection and Latch-Up Immunity14
	3.6	DC Characteristics
	3.7	Supply Current Characteristics
	3.8	External Oscillator (XOSC) Characteristics
	3.9	Internal Clock Source (ICS) Characteristics
	3.10	AC Characteristics

		3.10.1 Control Timing
		3.10.2 TPM Module Timing
		3.10.3 SPI Timing 27
	3.11	Analog Comparator (ACMP) Electricals 30
	3.12	ADC Characteristics
	3.13	Flash Specifications
4	Order	ing Information
	4.1	Device Numbering System 34
5	Packa	age Information
	5.1	Mechanical Drawings
6	Produ	ct Documentation 49
7	Revis	ion History

2 Pin Assignments

This section describes the pin assignments for the available packages. See Table 2 for pin availability by package pin-count.

Figure 2. Pin Assignments in 80-Pin LQFP

Pin Assignments

Figure 5. Pin Assignments in 44-Pin LQFP Package

	Pin Number			Lowest	←	$\longleftarrow \qquad Priority \qquad \longrightarrow \qquad \qquad$			
80	64	48	44	32	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
41	33	25	23	17	PTB1	KBI1P5	TxD1		ADP5
42	34	26	24	18	PTB0	KBI1P4	RxD1		ADP4
43					PTJ3				
44					PTJ2				
45	35	_			PTF3				ADP13
46	36	_	_	_	PTF2				ADP12
47	37	27	25	19	PTA7	TPM2CH2			ADP9
48	38	28	26	20	PTA6	TPM1CH2			ADP8
49	39	29			PTE4				
50	40	30	27						V _{DD}
51	41	31	28						V _{SS}
52	42				PTF1				ADP11
53	43	_	—		PTF0				ADP10
54	_	_	—	_	PTJ1				
55	_	_	—	_	PTJ0				
56	44	32	29	_	PTD4	KBI2P4			
57	45	33	30	21	PTD3	KBI2P3	SS2		
58	46	34	31	22	PTD2	KBI2P2	MISO2		
59	47	35	32	23	PTA3	KBI1P3	SCL1		ADP3
60	48	36	33	24	PTA2	KBI1P2	SDA1		ADP2
61	49	37	34	25	PTA1	KBI1P1	TPM2CH0	ADP1	ACMP1-
62	50	38	35	26	PTA0	KBI1P0	TPM1CH0	ADP0	ACMP1+
63	51	39	36	27	PTC7	TxD2			ACMP2-
64	52	40	37	28	PTC6	RxD2			ACMP2+
65					PTG7				ADP23
66					PTG6				ADP22
67	_	_	_	_	PTG5				ADP21
68	_	_	_	_	PTG4				ADP20
69	53	41	_	_	PTE3	SS1			
70	54	42	38	_	PTE2	MISO1			
71	55	_	_	_	PTG3				ADP19
72	56	_	_	_	PTG2				ADP18
73	57	_			PTG1				
74	58	—		—	PTG0				
75	59	43	39	—	PTE1	MOSI1			
76	60	44	40	—	PTE0	TPM2CLK	SPSCK1		
77	61	45	41	29	PTC5	TPM3CH5			ACMP2O
78	62	46	42	30	PTC4	TPM3CH4	RSTO		
79	63	47	43	31	PTA5	IRQ	TPM1CLK	RESET	
80	64	48	44	32	PTA4	ACMP10	BKGD	MS	

Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count (continued)

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
,	Number of pulses per pin	_	3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	_	3	
Latch-un	Minimum input voltage limit		- 2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 6. ESD and Latch-up Test Conditions

No.	Rating ¹	Symbol	Min	Мах	Unit
1	Human body model (HBM)	V _{HBM}	± 2000	—	V
2	Machine model (MM)	V _{MM}	± 200	—	V
3	Charge device model (CDM)	V _{CDM}	± 500	—	V
4	Latch-up current at T _A = 85°C	I _{LAT}	± 100	—	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

Figure 9. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)

Figure 10. Typical High-Side (Source) Characteristics — Low Drive (PTxDSn = 0)

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)
	Р	Stop2 mode supply current		n/a		0.35	0.6		-40 to 25
	С				3	0.98	2.0		70
6	Ρ		S2I			2.5	7.5		85
0	С		DD			0.25	0.5		-40 to 25
	С				2	1.4	1.9		70
	С					1.91	6.5		85
	Р	Stop3 mode supply current				0.45	1.0		-40 to 25
	С				3	1.99	4.2		70
7	Р		S3I	n/a		5.0	15.0	пΔ	85
	С		DD	n/a		0.35	0.7	μι	-40 to 25
	С				2	2.9	3.9		70
	С					3.77	13.2		85

Table 9. Supply Current Characteristics (continued)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

Table 10. Stop Mode Adders

Num C	C	C Parameter	Condition		Unite			
			Condition	-40	25	70	85	0
1	Т	LPO		50	75	100	150	nA
2	Т	ERREFSTEN	RANGE = HGO = 0	1000	1000	1100	1500	nA
3	Т	IREFSTEN ¹		63	70	77	81	uA
4	Т	RTC	does not include clock source current	50	75	100	150	nA
5	Т	LVD ¹	LVDSE = 1	90	100	110	115	uA
6	Т	ACMP ¹	not using the bandgap (BGBE = 0)	18	20	22	23	uA
7	Т	ADC ¹	ADLPC = ADLSMP = 1 not using the bandgap (BGBE = 0)	95	106	114	120	uA

¹ Not available in stop2 mode.

Figure 14. Typical Crystal or Resonator Circuit: Low Range/Low Gain

3.9 Internal Clock Source (ICS) Characteristics

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Charac	teristic	Symbol	Min	Typ ¹	Max	Unit
1	Ρ	Average internal reference frequ at V _{DD} = 3.6 V and temperatu	f _{int_ft}	_	32.768	_	kHz	
2	Ρ	Internal reference frequency — u	user trimmed	f _{int_ut}	31.25	_	39.06	kHz
3	Т	Internal reference start-up time				60	100	μS
	Ρ	DCO output frequency range —	Low range (DRS=00)		16	_	20	
4	Ρ		Mid range (DRS=01)	f _{dco_u}	32	_	40	MHz
	Ρ		High range (DRS=10)		48	_	60	
	Ρ	DCO output frequency ²	Low range (DRS=00)	f _{dco_DMX32}	_	19.92		
5	Ρ	Reference = 32768 Hz	Mid range (DRS=01)		_	39.85		MHz
	Ρ	DMX32 = 1	High range (DRS=10)		_	59.77	_	
6	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	± 0.1	± 0.2	%f _{dco}
7	С	Resolution of trimmed DCO outp temperature (not using FTRIM)	ut frequency at fixed voltage and	$\Delta f_{dco_res_t}$	_	± 0.2	± 0.4	%f _{dco}

Num	С	Characteristic	Symbol	Min	Typ ¹	Мах	Unit
8	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	+ 0.5 -1.0	±2	%f _{dco}
9	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0°C to 70 °C	Δf_{dco_t}	_	± 0.5	± 1	%f _{dco}
10	С	FLL acquisition time ³	t _{Acquire}	—	—	1	ms
11	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ⁴	C _{Jitter}	—	0.02	0.2	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient) (continued)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Figure 15. Deviation of DCO Output Across Temperature at V_{DD} = 3.0 V

Figure 16. Deviation of DCO Output Across V_{DD} at 25°C

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

3.10.1 Control Timing

Table 13. Control Timing

Num	С	Rating	Symbol	Min	Typ ¹	Мах	Unit
1	D	Bus frequency ($t_{cyc} = 1/f_{Bus}$) $V_{DD} \ge 1.8V$ $V_{DD} > 2.1V$ $V_{DD} > 2.4V$	f _{Bus}	dc		10 20 25.165	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	—	1300	μS
3	D	External reset pulse width ²	t _{extrst}	100	—	_	ns
4	D	Reset low drive	t _{rstdrv}	34 x t _{cyc}	_		ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	_	_	μS

3.10.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Мах	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{ciki}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Figure 19. Timer External Clock

Figure 20. Timer Input Capture Pulse

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 21. SPI Master Timing (CPHA = 0)

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1. Not defined but normally MSB of character just received

NOTE:

1. Not defined but normally LSB of character just received

Figure 24. SPI Slave Timing (CPHA = 1)

Figure 25. ADC Input Impedance Equivalency Diagram

Fable 18. 12-bit ADC Characteristics	(V _{REFH} =	V _{DDAD} ,	V _{REFL} =	V _{SSAD})
---	----------------------	---------------------	---------------------	---------------------

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Supply Current ADLPC=1 ADLSMP=1 ADCO=1		Т	I _{DDAD}		120		μA	
Supply Current ADLPC=1 ADLSMP=0 ADCO=1		Т	I _{DDAD}	—	202	_	μA	
Supply Current ADLPC=0 ADLSMP=1 ADCO=1		Т	I _{DDAD}	—	288	_	μΑ	
Supply Current ADLPC=0 ADLSMP=0 ADCO=1		D	I _{DDAD}	—	0.532	1	mA	
Supply Current	Stop, Reset, Module Off	Р	I _{DDAD}	_	0.007	0.8	μA	
ADC Asynchronous Clock Source	High Speed (ADLPC=0)	Ρ	f _{ADACK}	2	3.3	5		$t_{ADACK} = 1/f_{ADACK}$
	Low Power (ADLPC=1)	Ρ		1.25	2	3.3	IVITIZ	

	• •••				- 1			
Characteristic	Conditions	С	Symb	Min	Тур'	Мах	Unit	Comment
Conversion Time	Short Sample (ADLSMP=0)	Р	t _{ADC}	—	20	—	ADCK	See the ADC chapter in the MC9S08QE128
sample time)	Long Sample (ADLSMP=1)	С		_	40	—	cycles	
Sample Time	Short Sample (ADLSMP=0)	Р	t _{ADS}	_	3.5	—	ADCK	for conversion time
	Long Sample (ADLSMP=1)	С		_	23.5	—	cycles	variances
Total Unadjusted	12 bit mode	Т	E _{TUE}	_	±3.0	—	LSB ²	Includes
Error	10 bit mode	Р		_	±1	±2.5		Quantization
	8 bit mode	Т			±0.5	±1.0		
Differential	12 bit mode	Т	DNL	_	±1.75		LSB ²	
Non-Linearity	10 bit mode ³	Ρ		_	±0.5	±1.0		
	8 bit mode ³	Т			±0.3	±0.5		
Integral	12 bit mode	Т	INL	_	±1.5		LSB ²	
Non-Linearity	10 bit mode	Т			±0.5	±1.0		
	8 bit mode	Т			±0.3	±0.5		
Zero-Scale Error	12 bit mode	Т	E _{ZS}		±1.5		LSB ²	V _{ADIN} = V _{SSAD}
	10 bit mode	Р		_	±0.5	±1.5		
	8 bit mode	Т			±0.5	±0.5		
Full-Scale Error	12 bit mode	Т	E _{FS}		±1.0		LSB ²	V _{ADIN} = V _{DDAD}
	10 bit mode	Р		_	±0.5	±1		
	8 bit mode	Т			±0.5	±0.5		
Quantization	12 bit mode	D	EQ	_	-1 to 0		LSB ²	
Error	10 bit mode				—	±0.5		
	8 bit mode				—	±0.5		
Input Leakage	12 bit mode	D	E _{IL}	_	±2		LSB ²	Pad leakage ⁴ * R _{AS}
Error	10 bit mode			_	±0.2	±4	1	
	8 bit mode			_	±0.1	±1.2		
Temp Sensor	-40°C to 25°C	D	m	_	1.646	—	mV/°C	
Slope	25°C to 85°C	1		_	1.769	_	1	
Temp Sensor Voltage	25°C	D	V _{TEMP25}	—	701.2	—	mV	

Table 18. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

Ordering Information

4 Ordering Information

This section contains ordering information for MC9S08QE128, MC9S08QE96, and MC9S08QE64 devices.

Erococolo Bart Number ¹	Mer	mory		Package ²	
	Flash	RAM			
MC9S08QE128CLK			-40 to +85	80 LQFP	
MC9S08QE128CLH	1201	٥ <i>۲</i>	-40 to +85	64 LQFP	
MC9S08QE128CFT	IZON	on	-40 to +85	48 QFN	
MC9S08QE128CLD			-40 to +85	44 LQFP	
MC9S08QE96CLK			-40 to +85	80 LQFP	
MC9S08QE96CLH	061/	OEK		-40 to +85	64 LQFP
MC9S08QE96CFT	901	UN	-40 to +85	48 QFN	
MC9S08QE96CLD			-40 to +85	44 QFP	
MC9S08QE64CLH			-40 to +85	64 LQFP	
MC9S08QE64CFT	61K	416	-40 to +85	48 QFN	
MC9S08QE64CLD	04N	41	-40 to +85	44 QFP	
MC9S08QE64CLC			-40 to +85	32 LQFP	

Table 20. Ordering Information

¹ See the reference manual, *MC9S08QE128RM*, for a complete description of modules included on each device.

² See Table 21 for package information.

4.1 Device Numbering System

Example of the device numbering system:

5 Package Information

The below table details the various packages available.

Table	21.	Package	Descriptions
-------	-----	---------	--------------

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W
48	Quad Flat No-Leads	QFN	FT	1314	98ARH99048A
44	Low Quad Flat Package	LQFP	LD	824D	98ASS23225W
32	Low Quad Flat Package	LQFP	LC	873A	98ASH70029A

Package Information

-X-

Figure 26. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)

02

9° 14

9° 14°

Package Information

© FREESCALE SEMICONDUCTOR, INC. All rights reserved. MECHANICA		L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:	DOCUMENT NE	1: 98ASS23225W	RE∨: D	
44 LD LQFP, 10 X 10 PKG, 0.8 PITCH, 1.4 THICK		CASE NUMBER: 824D-02 26 FEB 2007		
	STANDARD: JE	DEC MS-026 BCB		

Figure 34. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 2 of 3

Package Information

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:	DOCUMENT NE]: 98ASH70029A	REV: D	
LOW PROFILE QUAD FLAT PA	CASE NUMBER: 873A-03 19 MAY 200			
32 LEAD, 0.8 PIICH (7 X	STANDARD: JE	DEC MS-026 BBA		

Figure 37. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 2 of 3