NXP USA Inc. - MC9S08QE64CLH Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qe64clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Pin Assignments

This section describes the pin assignments for the available packages. See Table 2 for pin availability by package pin-count.

Figure 2. Pin Assignments in 80-Pin LQFP

Figure 6. Pin Assignments 32-Pin LQFP Package

	Pir	ו Num	ber		Lowest	$\longleftarrow \qquad Priority \qquad \longrightarrow \qquad$			Highest
80	64	48	44	32	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	1	1	PTD1	KBI2P1	MOSI2		
2	2	2	2	2	PTD0	KBI2P0	SPSCK2		
3	3	_	_	—	PTH7	SDA2			
4	4	_	_	_	PTH6	SCL2			
5	—	_	_	—	PTH5				
6	—				PTH4				
7	5	3	3	—	PTE7	TPM3CLK			
8	6	4	4	3					V _{DD}
9	7	5	5	4					V _{DDA}
10	8	6	6						V _{REFH}
11	9	7	7						V _{REFL}
12	10	8	8	5					V _{SSA}
13	11	9	9	6					V _{SS}
14	12	10	10	7	PTB7	SCL1			EXTAL
15	13	11	11	8	PTB6	SDA1			XTAL
16		_	_	—	PTH3				
17	_	_	_	_	PTH2				
18	14	_	_	—	PTH1				
19	15	_	_	_	PTH0				
20	16	12	_	—	PTE6				
21	17	13	_		PTE5				
22	18	14	12	9	PTB5	TPM1CH1	SS1		
23	19	15	13	10	PTB4	TPM2CH1	MISO1		
24	20	16	14	11	PTC3	TPM3CH3			
25	21	17	15	12	PTC2	TPM3CH2			
26	22	18	16	—	PTD7	KBI2P7			
27	23	19	17		PTD6	KBI2P6			
28	24	20	18		PTD5	KBI2P5			
29	—	_	_		PTJ7				
30	—	_	_		PTJ6				
31	—	_	_		PTJ5				
32	_	_	_	_	PTJ4				
33	25	21	19	13	PTC1	TPM3CH1			
34	26	22	20	14	PTC0	TPM3CH0			
35	27			—	PTF7				ADP17
36	28			—	PTF6				ADP16
37	29	_	_	_	PTF5				ADP15
38	30			—	PTF4				ADP14
39	31	23	21	15	PTB3	KBI1P7	MOSI1		ADP7
40	32	24	22	16	PTB2	KBI1P6	SPSCK1		ADP6

Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
,	Number of pulses per pin	_	3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	_	3	
Latch-un	Minimum input voltage limit		- 2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 6. ESD and Latch-up Test Conditions

No.	Rating ¹	Symbol	Min	Мах	Unit
1	Human body model (HBM)	V _{HBM}	± 2000	—	V
2	Machine model (MM)	V _{MM}	± 200	—	V
3	Charge device model (CDM)	V _{CDM}	± 500	—	V
4	Latch-up current at T _A = 85°C	I _{LAT}	± 100	—	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

Num	С	Characteristic	Symbol	Min	Typ ¹	Мах	Unit
8	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	+ 0.5 -1.0	±2	%f _{dco}
9	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0°C to 70 °C	Δf_{dco_t}	_	± 0.5	± 1	%f _{dco}
10	С	FLL acquisition time ³	t _{Acquire}	—	—	1	ms
11	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ⁴	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient) (continued)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Figure 15. Deviation of DCO Output Across Temperature at V_{DD} = 3.0 V

Figure 16. Deviation of DCO Output Across V_{DD} at 25°C

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

3.10.1 Control Timing

Table 13. Control Timing

Num	С	Rating	Symbol	Min	Typ ¹	Мах	Unit
1	D	Bus frequency ($t_{cyc} = 1/f_{Bus}$) $V_{DD} \ge 1.8V$ $V_{DD} > 2.1V$ $V_{DD} > 2.4V$	f _{Bus}	dc		10 20 25.165	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	—	1300	μS
3	D	External reset pulse width ²	t _{extrst}	100	—	_	ns
4	D	Reset low drive	t _{rstdrv}	34 x t _{cyc}	_		ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	_	_	μS

3.10.3 SPI Timing

Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Мах	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{сус}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{сус}
4	D	Clock (SPSCK) high or low time Master Slave	t _{wspsck}	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	—	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v	_	25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}		t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI} t _{FO}		t _{cyc} – 25 25	ns ns

Table 15. SPI Timing

NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 21. SPI Master Timing (CPHA = 0)

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

3.11 Analog Comparator (ACMP) Electricals

Table 16. Analog Comparator Electrical Specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V _{DD}	1.80		3.6	V
С	Supply current (active)	I _{DDAC}	—	20	35	μA
D	Analog input voltage	V _{AIN}	V _{SS} – 0.3		V_{DD}	V
С	Analog input offset voltage	V _{AIO}		20	40	mV
С	Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Р	Analog input leakage current	I _{ALKG}	—	_	1.0	μA
С	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μS

3.12 ADC Characteristics

С Characteristic Conditions Symb Typ¹ Unit Comment Min Max Supply voltage V Absolute 1.8 3.6 V_{DDAD} D Delta to V_{DD} (V_{DD}-V_{DDAD})² ΔV_{DDAD} -100 0 +100 mV Delta to V_{SS} (V_{SS}-V_{SSAD})² -100 0 +100 D Ground voltage ΔV_{SSAD} mV Ref Voltage High 1.8 V D V_{REFH} V_{DDAD} V_{DDAD} V D Ref Voltage Low V_{REFL} V_{SSAD} V_{SSAD} V_{SSAD} D Input Voltage V V_{ADIN} V_{REFL} V_{REFH} Input C_{ADIN} 4.5 5.5 С pF Capacitance С Input Resistance $\mathsf{R}_{\mathsf{ADIN}}$ 5 7 kΩ External to MCU Analog Source 12 bit mode R_{AS} Resistance $f_{ADCK} > 4MHz$ 2 $f_{ADCK} < 4MHz$ 5 ____ С 10 bit mode kΩ $f_{ADCK} > 4MHz$ 5 f_{ADCK} < 4MHz 10 8 bit mode (all valid f_{ADCK}) 10 ADC Conversion High Speed (ADLPC=0) 0.4 8.0 **f**ADCK MHz D Clock Freg. Low Power (ADLPC=1) 0.4 4.0

Table 17. 12-bit ADC Operating Conditions

¹ Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

	• •••				- 1			
Characteristic	Conditions	С	Symb	Min	Тур'	Мах	Unit	Comment
Conversion Time (Including sample time) Sample Time	Short Sample (ADLSMP=0)	Р	t _{ADC}	—	20	—	ADCK	See the ADC
	Long Sample (ADLSMP=1)	С		_	40	_	cycles	MC9S08QE128
Sample Time	Short Sample (ADLSMP=0)	Р	t _{ADS}	_	3.5		ADCK	for conversion time
	Long Sample (ADLSMP=1)	С		_	23.5	_	cycles	variances
Total Unadjusted	12 bit mode	Т	E _{TUE}	_	±3.0		LSB ²	Includes
Error	10 bit mode	Р		_	±1	±2.5		Quantization
	8 bit mode	Т			±0.5	±1.0		
Differential	12 bit mode	Т	DNL	_	±1.75	_	LSB ²	
Non-Linearity	10 bit mode ³	Ρ		_	±0.5	±1.0		
	8 bit mode ³	Т			±0.3	±0.5		
Integral	12 bit mode	Т	INL	_	±1.5	_	LSB ²	
Non-Linearity	10 bit mode	Т			±0.5	±1.0		
	8 bit mode	Т			±0.3	±0.5		
Zero-Scale Error	12 bit mode	Т	E _{ZS}		±1.5		LSB ²	V _{ADIN} = V _{SSAD}
	10 bit mode	Р		_	±0.5	±1.5		
	8 bit mode	Т			±0.5	±0.5		
Full-Scale Error	12 bit mode	Т	E _{FS}		±1.0		LSB ²	V _{ADIN} = V _{DDAD}
	10 bit mode	Р		_	±0.5	±1		
	8 bit mode	Т			±0.5	±0.5		
Quantization	12 bit mode	D	EQ	_	-1 to 0	_	LSB ²	
Error	10 bit mode				—	±0.5		
	8 bit mode				—	±0.5		
Input Leakage	12 bit mode	D	E _{IL}	_	±2	_	LSB ²	Pad leakage ⁴ * R _{AS}
Error	10 bit mode			_	±0.2	±4		
	8 bit mode			_	±0.1	±1.2		
Temp Sensor	-40°C to 25°C	D	m	_	1.646		mV/°C	
Slope	25°C to 85°C	1		_	1.769	_	1	
Temp Sensor Voltage	25°C	D	V _{TEMP25}		701.2		mV	

Table 18. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section of the *MC9S08QE128 Reference Manual*.

С	Characteristic	Symbol	Min	Typical	Мах	Unit	
D	Supply voltage for program/erase -40°C to 85°C	V _{prog/erase}	1.8		3.6	V	
D	Supply voltage for read operation	V _{Read}	1.8		3.6	V	
D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz	
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μS	
Р	Byte program time (random location) ⁽²⁾	t _{prog}			t _{Fcyc}		
Р	Byte program time (burst mode) ⁽²⁾	t _{Burst}			t _{Fcyc}		
Р	Page erase time ²	t _{Page}		4000			
Р	Mass erase time ⁽²⁾	t _{Mass}		20,000		t _{Fcyc}	
	Byte program current ³	R _{IDDBP}	—	4	—	mA	
	Page erase current ³	R _{IDDPE}	—	6	—	mA	
С	Program/erase endurance ⁴ T _L to T _H = -40° C to + 85°C T = 25°C		10,000			cycles	
С	Data retention ⁵	t _{D_ret}	15	100	—	years	

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

- ³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with V_{DD} = 3.0 V, bus frequency = 4.0 MHz.
- ⁴ Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.
- ⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory*.

-X-

Figure 26. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)

02

9° 14

9° 14°

VIEW AA

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: 64LD LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, CASE OUTLINE		DOCUMENT NO): 98ASS23234₩	REV: D
		CASE NUMBER	R: 840F-02	06 APR 2005
		STANDARD: JE	DEC MS-026 BCD	

Figure 28. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 2 of 3

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- /4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.
- 5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
- ATHIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- /7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- $\frac{8}{2}$ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: 64LD LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, CASE OUTLINE		DOCUMENT NO): 98ASS23234₩	REV: D
		CASE NUMBER	2: 840F-02	06 APR 2005
		STANDARD: JE	DEC MS-026 BCD	

Figure 29. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 3 of 3

DETAIL N PREFERRED CORNER CONFIGURATION

DETAIL M PREFERED PIN 1 BACKSIDE IDENTIFIER

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO): 98ARH99048A	REV: F
FLAT NON-LEADED PACKAGE (QFN)		CASE NUMBER: 1314-05 05 DEC 2005		
48 TERMINAL, 0.5 PITCH (7	/ X / X 1)	STANDARD: JE	DEC-MO-220 VKKD-2	2

Figure 31. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 2 of 3

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	IT TO SCALE
TITLE: 44 LD LQFP, 10 X 10 PKG, 0.8 PITCH, 1.4 THICK		DOCUMENT NE	1: 98ASS23225W	RE∨: D
		CASE NUMBER	2:824D-02	26 FEB 2007
		STANDARD: JE	DEC MS-026 BCB	

Figure 34. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 2 of 3

NOTES:

- 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. DATUMS L, M AND N TO BE DETERMINED AT DATUM PLANE H.

5. DIMENSIONS TO BE DETERMINED AT SEATING PLANE T.

- 6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE DIMENSION TO EXCEED 0.53. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	IT TO SCALE
TITLE: 44 LD LQFP, 10 X 10 PKG, 0.8 PITCH, 1.4 THICK		DOCUMENT NE]: 98ASS23225W	RE∨∶D
		CASE NUMBER	R: 824D-02	26 FEB 2007
	-	STANDARD: JE	IDEC MS-026 BCB	

Figure 35. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 3 of 3

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASH70029A	RE∨∶D
LOW PROFILE QUAD FLAT PACK (LQFP)		CASE NUMBER	2: 873A-03	19 MAY 2005
32 LEAD, U.8 PIICH (7 X	STANDARD: JE	DEC MS-026 BBA		

Figure 36. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 1 of 3

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASH70029A	REV: D
LOW PROFILE QUAD FLAT PACK (LQFP) 32 lead, 0.8 pitch (7 x 7 x 1.4)		CASE NUMBER	2: 873A-03	19 MAY 2005
		STANDARD: JE	DEC MS-026 BBA	

Figure 37. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 2 of 3

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994.

 $\sqrt{3}$ datums a, b, and d to be determined at datum plane H.

 $\overline{/4.}$ dimensions to be determined at seating plane datum c.

5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION: 0.07 MM.

6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.

/7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 MM AND 0.25 MM FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	IT TO SCALE
TITLE:		DOCUMENT NO]: 98ASH70029A	RE∨: D
LOW PROFILE QUAD FLAT PACK (LQFP) 32 lead, 0.8 pitch (7 x 7 x 1.4)		CASE NUMBER	8: 873A-03	19 MAY 2005
		STANDARD: JE	DEC MS-026 BBA	·

Figure 38. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 3 of 3