E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08qe96clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D
MC9S08AC16			
MC9S908AC60			
MC9S08AC128			
MC9S08AW60			
MC9S08GB60A			
MC9S08GT16A			
MC9S08JM16			
MC9S08JM60			
MC9S08LL16			
MC9S08QE128			
MC9S08QE32			
MC9S08RG60			
MCF51CN128			
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D
MC9S08QB8			
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D
MC9S08QG8			
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D

MC9S08QE128 Series Comparison

1 MC9S08QE128 Series Comparison

The following table compares the various device derivatives available within the MC9S08QE128 series.

Table 1. MC9S08QE128 Series Features by MCU and Package

Feature	M	MC9S08QE128			MC9S08QE96			MC9S08QE64				
Flash size (bytes)		131	072		98304			65536				
RAM size (bytes)		8064				60	16		4096			
Pin quantity	80	64	48	44	80	64	48	44	64	48	44	32
ACMP1				•	•	ye	es	•			•	
ACMP2						ye	es					
ADC channels	24	22	10	10	24	22	10	10	22	10	10	10
DBG						ye	es					
ICS						ye	es					
IIC1						ye	es					
IIC2	yes	yes	no	no	yes	yes	no	no	yes	no	no	no
IRQ						ye	es					
КВІ	16	16	16	16	16	16	16	16	16	16	16	12
Port I/O ¹	70	54	38	34	70	54	38	34	54	38	34	26
RTC		yes										
SCI1						ye	es					
SCI2						ye	es					
SPI1						ye	es					
SPI2						ye	es					
TPM1 channels						3	3					
TPM2 channels		3										
TPM3 channels		6										
XOSC						ye	es					

¹ Port I/O count does not include the input only PTA5/IRQ/TPM1CLK/RESET or the output only PTA4/ACMP1O/BKGD/MS.

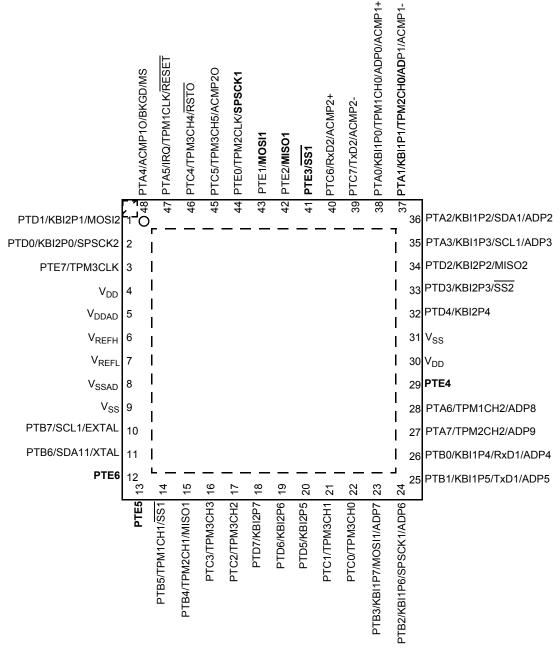


Figure 4. Pin Assignments in 48-Pin QFN Package

Pin Assignments

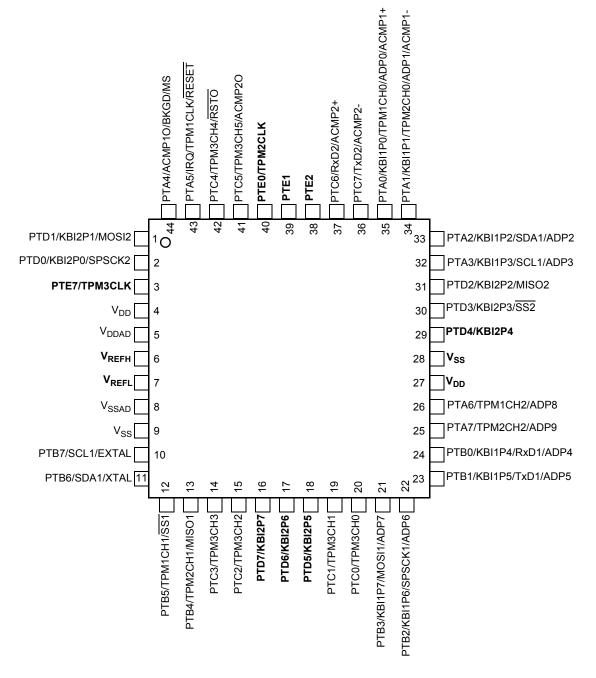


Figure 5. Pin Assignments in 44-Pin LQFP Package

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

	Rating	Symbol	Value	Unit
0	perating temperature range (packaged)	T _A	-40 to 85	°C
Μ	aximum junction temperature	T _{JM}	95	°C
T	hermal resistance Single-layer board			
	32-pin LQFP		82	
	44-pin LQFP	θ_{JA}	68	°C/W
	48-pin QFN		81	
	64-pin LQFP	0	69	°C/W
	80-pin LQFP	θ_{JA}	60	C/VV
T	hermal resistance Four-layer board			
	32-pin LQFP		54	
	44-pin LQFP	θ_{JA}	46	°C/W
	48-pin QFN	1	26	
	64-pin LQFP	Α	50	°C/W
	80-pin LQFP	θ_{JA}	47	0/11

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $\begin{array}{l} T_A = \text{Ambient temperature, } ^{\circ}\text{C} \\ \theta_{JA} = \text{Package thermal resistance, junction-to-ambient, } ^{\circ}\text{C/W} \\ P_D = P_{int} + P_{I/O} \\ P_{int} = I_{DD} \times V_{DD}, \text{Watts } \text{ -- chip internal power} \\ P_{I/O} = \text{Power dissipation on input and output pins } \text{ -- user determined} \end{array}$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

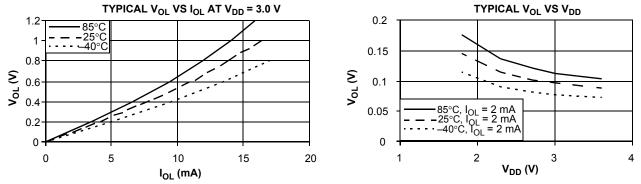
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

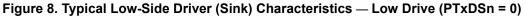
Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
,	Number of pulses per pin	—	3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	R1 1500 C 100 matrix 1500 C 100 R1 0 C 200 matrix 3 matrix -2.5	pF
	Number of pulses per pin	—	3	
Latch-up	Minimum input voltage limit		- 2.5	V
Laten-up	Maximum input voltage limit		7.5	V

Table 6. ESD and Latch-up Test Conditions

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	± 2000	_	V
2	Machine model (MM)	V _{MM}	±200	_	V
3	Charge device model (CDM)	V _{CDM}	± 500	_	V
4	Latch-up current at T _A = 85°C	I _{LAT}	± 100	_	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.


3.6 DC Characteristics


This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Cha	aracteristic	Symbol	Condition	Min	Typ ¹	Мах	Unit
1		Operating Voltage	9			1.8 ²		3.6	V
	С	Output high voltage	All I/O pins, low-drive strength		1.8 V, I _{Load} = -2 mA	V _{DD} – 0.5	_	_	
2	Ρ		All I/O pins,	V _{OH}	2.7 V, I _{Load} = -10 mA	V _{DD} – 0.5	_	—	V
	Т		high-drive strength		2.3 V, I _{Load} = –6 mA	V _{DD} – 0.5	_	—	
	С				1.8V, I _{Load} = –3 mA	V _{DD} – 0.5	—	—	
3	D	Output high current	Max total I _{OH} for all ports	I _{OHT}		—	—	100	mA
	С	Output low voltage	All I/O pins, low-drive strength		1.8 V, I _{Load} = 2 mA	—	_	0.5	
4	Ρ		All I/O pins,	V _{OL}	2.7 V, I _{Load} = 10 mA	—	_	0.5	V
	Т		high-drive strength		2.3 V, I _{Load} = 6 mA	—	—	0.5	
	С				1.8 V, I _{Load} = 3 mA	—	_	0.5	
5	D	Output low current	Max total I _{OL} for all ports	I _{OLT}		—	—	100	mA
6		Input high	all digital inputs	V _{IH}	V_{DD} > 2.7 V	$0.70 ext{ x V}_{ ext{DD}}$	—	—	
0	С	voltage		٩H	V _{DD} > 1.8 V	$0.85 \times V_{DD}$	—	—	V
7	Ρ	Input low voltage	all digital inputs	V _{IL}	$V_{DD} > 2.7 V$	—	_	$0.35 \times V_{DD}$	•
-	С			- 12	V _{DD} >1.8 V			0.30 x V _{DD}	
8	С	Input hysteresis	all digital inputs	V _{hys}		$0.06 \times V_{DD}$	_	—	mV
9	Ρ	Input leakage current	all input only pins (Per pin)	I _{In}	V_{In} = V_{DD} or V_{SS}	—	—	1	μA
10	Ρ	Hi-Z (off-state) leakage current	all input/output (per pin)	I _{OZ}	V_{In} = V_{DD} or V_{SS}	_	_	1	μA
11	Ρ	Pull-up resistors	all digital inputs, when enabled	R _{PU}		17.5	—	52.5	kΩ
		DC injection	Single pin limit			-0.2	_	0.2	mA
12	D	current ^{3, 4, 5}	Total MCU limit, includes sum of all stressed pins	I _{IC}	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-5	_	5	mA
13	С	Input Capacitance	e, all pins	C _{In}		_	_	8	pF
14	С	RAM retention vo	Itage	V _{RAM}		—	0.6	1.0	V
15	С	POR re-arm volta	ge ⁶	V _{POR}		0.9	1.4	1.79	V
16	D	POR re-arm time		t _{POR}		10	—	—	μS
17	Ρ	Low-voltage dete high range ⁷	ction threshold —	V _{LVDH} ⁸	V _{DD} falling V _{DD} rising	2.11 2.16	2.16 2.21	2.22 2.27	V

Table 8. DC Characteristics

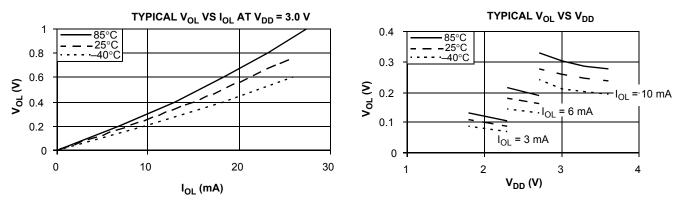


Figure 9. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)

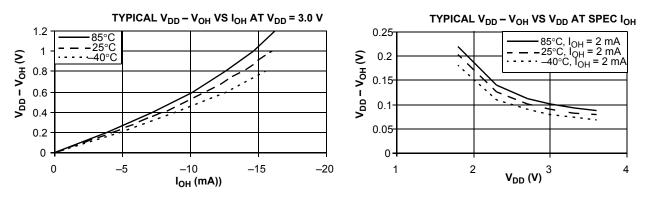


Figure 10. Typical High-Side (Source) Characteristics — Low Drive (PTxDSn = 0)

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)
	Р	Stop2 mode supply current				0.35	0.6		-40 to 25
	С				3	0.98	2.0		70
6	Ρ		521	n/a		2.5	7.5	μA	85
0	С		S2I _{DD}	n/a		0.25	0.5	μ Λ	-40 to 25
	С				2	1.4	1.9		70
	С					1.91	6.5		85
	Р	Stop3 mode supply current	621	n/a –		0.45	1.0		-40 to 25
	С	No clocks active			3	1.99	4.2		70
7	Р					5.0	15.0	μA	85
	С		S3I _{DD}	n/a		0.35	0.7	μι	-40 to 25
	С				2	2.9	3.9		70
	С					3.77	13.2		85

Table 9. Supply Current Characteristics (continued)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

Table 10. Stop Mode Adders

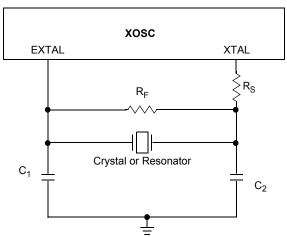
Num C	C	Parameter	Condition		Units			
Nulli		Farameter	Condition	-40	25	70	85	onito
1	Т	LPO		50	75	100	150	nA
2	Т	ERREFSTEN	RANGE = HGO = 0	1000	1000	1100	1500	nA
3	Т	IREFSTEN ¹		63	70	77	81	uA
4	Т	RTC	does not include clock source current	50	75	100	150	nA
5	Т	LVD ¹	LVDSE = 1	90	100	110	115	uA
6	Т	ACMP ¹	not using the bandgap (BGBE = 0)	18	20	22	23	uA
7	Т	ADC ¹	ADLPC = ADLSMP = 1 not using the bandgap (BGBE = 0)	95	106	114	120	uA

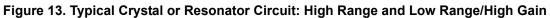
¹ Not available in stop2 mode.

3.8 External Oscillator (XOSC) Characteristics

Reference Figure 13 and Figure 14 for crystal or resonator circuits.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C _{1,} C ₂		See N See N		
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, High Gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F		 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		 100 0 0 0	 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high power High range, low power High range, high power	t _{CSTL}	 	200 400 5 15	 	ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode FBELP mode	f _{extal}	0.03125 0	_	40.0 50.33	MHz MHz


¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.


² Load capacitors (C_1, C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE=HGO=0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

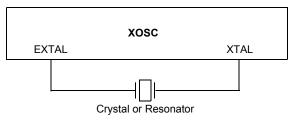


Figure 14. Typical Crystal or Resonator Circuit: Low Range/Low Gain

3.9 Internal Clock Source (ICS) Characteristics

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic		Symbol	Min	Typ ¹	Мах	Unit
1	Ρ	Average internal reference frequency — factory trimmed at V _{DD} = 3.6 V and temperature = 25°C		f _{int_ft}	_	32.768	_	kHz
2	Ρ	Internal reference frequency — u	iser trimmed	f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}		60	100	μS
	P		Low range (DRS=00)		16	—	20	
4	Ρ	DCO output frequency range — trimmed ²	Mid range (DRS=01)	f _{dco_u}	32	—	40	MHz
	P		High range (DRS=10)		48	—	60	
	Ρ	DCO output frequency ²	Low range (DRS=00)	f _{dco_DMX32}		19.92		
5	Ρ	Reference = 32768 Hz and	Mid range (DRS=01)		_	39.85	_	MHz
	Ρ	DMX32 = 1	High range (DRS=10)			59.77		
6	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	± 0.1	± 0.2	%f _{dco}
7	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)		$\Delta f_{dco_res_t}$	_	± 0.2	± 0.4	%f _{dco}

3.10.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Мах	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{ciki}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}



Figure 19. Timer External Clock

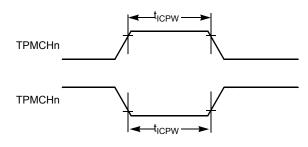


Figure 20. Timer Input Capture Pulse

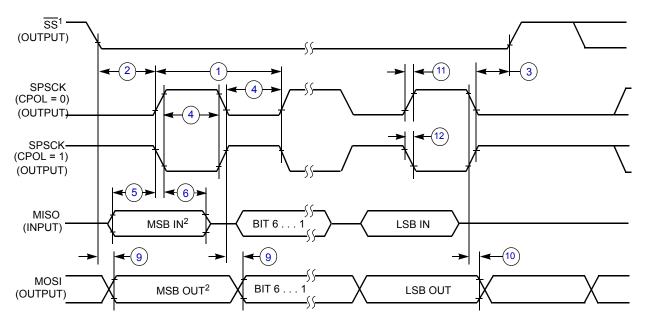
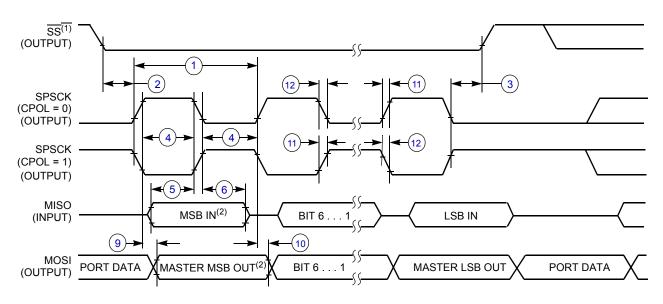

3.10.3 SPI Timing

Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Мах	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{сус}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{сус}
4	D	Clock (SPSCK) high or low time Master Slave	t _{WSPSCK}	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	_	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	tно	0 0		ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}	_	t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI} t _{FO}	_	t _{cyc} – 25 25	ns ns

Table 15. SPI Timing

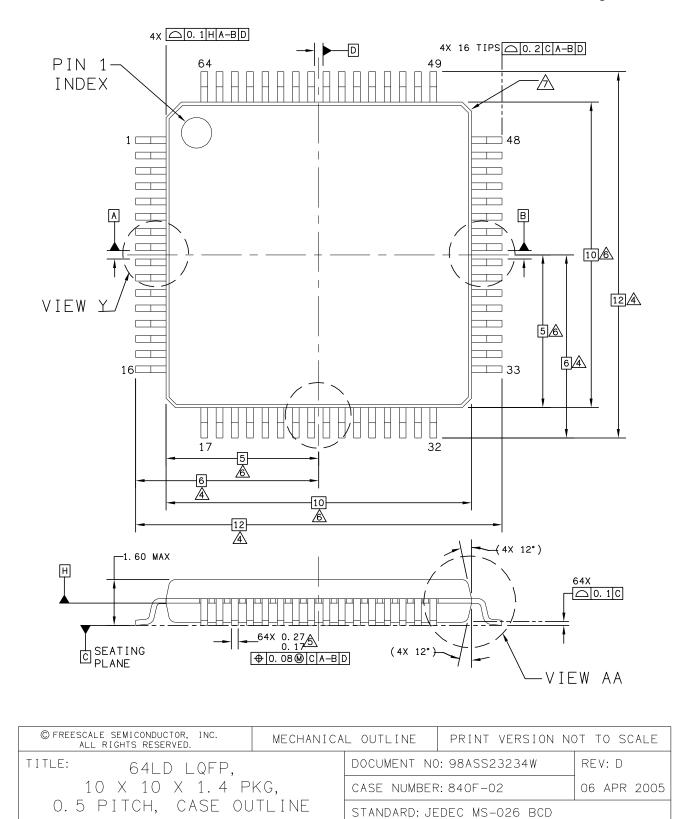


NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

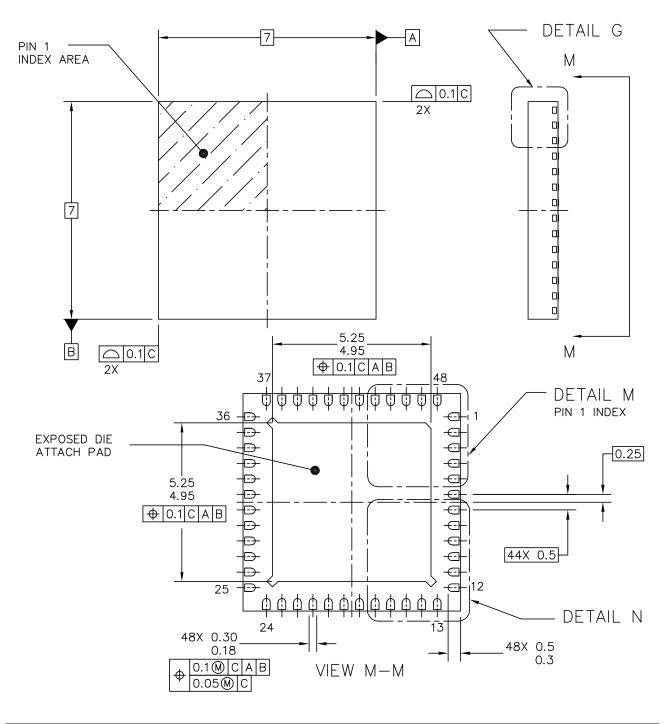
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

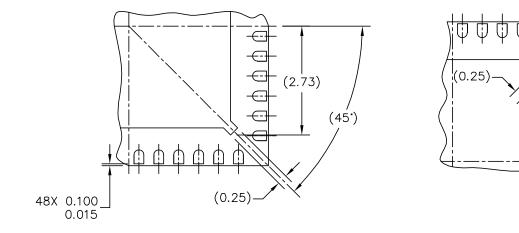
Figure 21. SPI Master Timing (CPHA = 0)


NOTES:

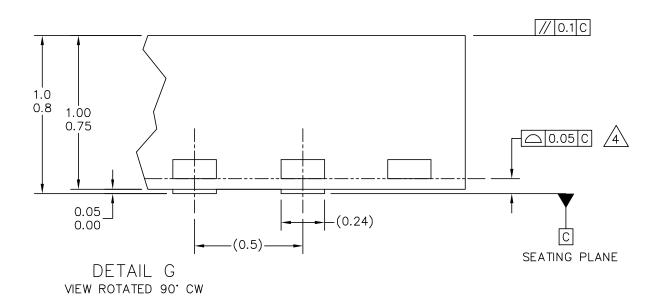
1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

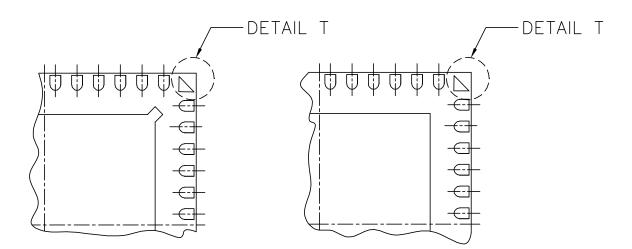




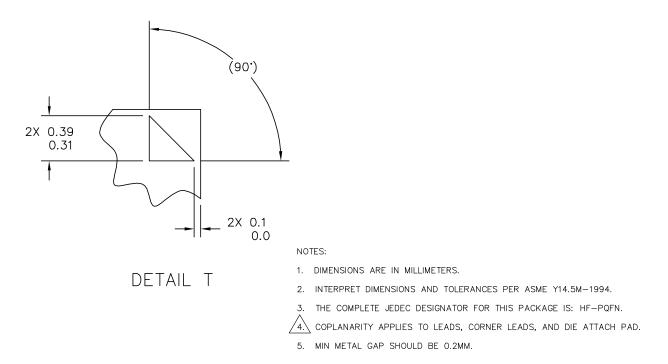
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO): 98ARH99048A	REV: F
FLAT NON-LEADED PACKA		CASE NUMBER	: 1314–05	05 DEC 2005
48 TERMINAL, 0.5 PITCH (7	X / X 1)	STANDARD: JE	DEC-MO-220 VKKD-2	2


Figure 30. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 1 of 3

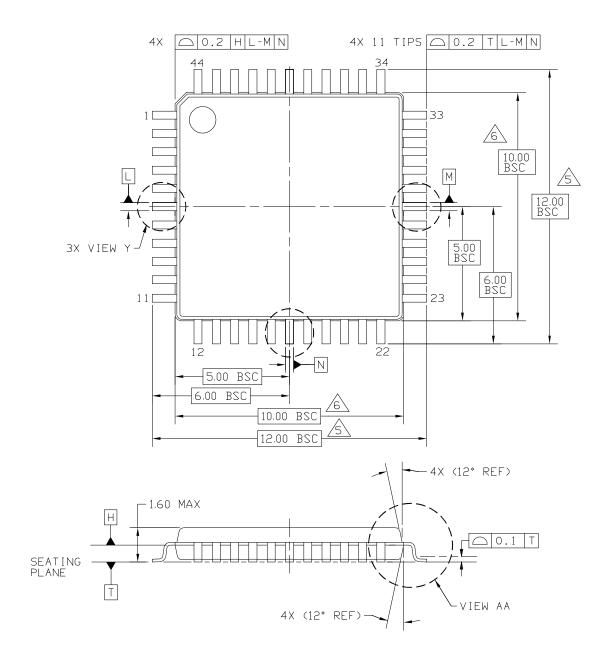
DETAIL N PREFERRED CORNER CONFIGURATION


DETAIL M PREFERED PIN 1 BACKSIDE IDENTIFIER

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO): 98ARH99048A	REV: F
FLAT NON-LEADED PACKA	CASE NUMBER		05 DEC 2005	
48 TERMINAL, 0.5 PITCH (7	X / X 1)	STANDARD: JE	DEC-MO-220 VKKD-2	2

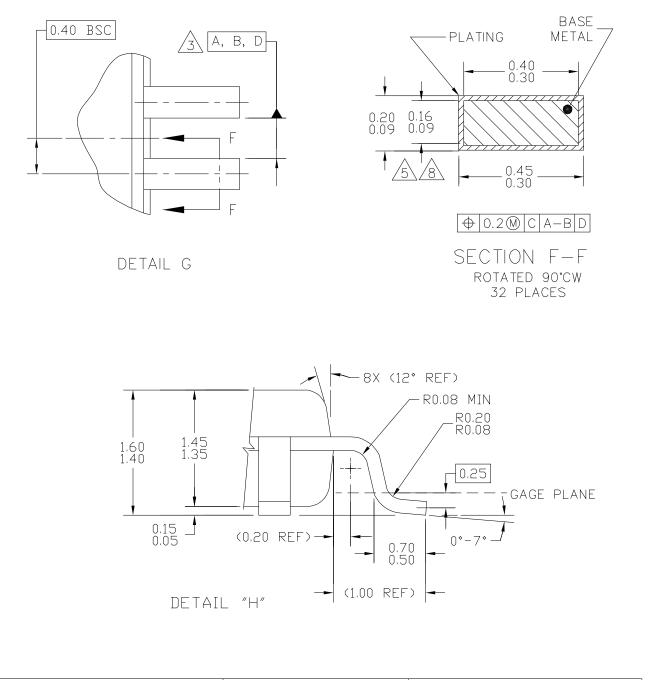

Figure 31. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 2 of 3

DETAIL M PIN 1 BACKSIDE IDENTIFIER OPTION


DETAIL M PIN 1 BACKSIDE IDENTIFIER OPTION

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO): 98ARH99048A	REV: F
FLAT NON-LEADED PACKA	CASE NUMBER	: 1314–05	05 DEC 2005	
48 TERMINAL, 0.5 PITCH (7	7 X 7 X 1)	STANDARD: JE	DEC-MO-220 VKKD-2	2

Figure 32. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 3 of 3



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:		DOCUMENT NE	1: 98ASS23225W	RE∨∶D
44 LD LQFP, 10 X 10 PKG, 0.8 PITCH,	1.4 THICK	CASE NUMBER	2: 824D-02	26 FEB 2007
		STANDARD: JE	DEC MS-026-BCB	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA			IT TO SCALE
TITLE:	DOCUMENT NE]: 98ASH70029A	RE∨: D	
LOW PROFILE QUAD FLAT PA		CASE NUMBER	R: 873A-03	19 MAY 2005
32 LEAD, 0.8 PITCH (7 X	STANDARD: JE	IDEC MS-026 BBA		

Figure 37. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 2 of 3