

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                     |
|----------------------------|------------------------------------------------------------|
| Core Processor             | S08                                                        |
| Core Size                  | 8-Bit                                                      |
| Speed                      | 50MHz                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SCI, SPI                         |
| Peripherals                | LVD, PWM, WDT                                              |
| Number of I/O              | 70                                                         |
| Program Memory Size        | 96KB (96K x 8)                                             |
| Program Memory Type        | FLASH                                                      |
| EEPROM Size                | -                                                          |
| RAM Size                   | 6K x 8                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                |
| Data Converters            | A/D 24x12b                                                 |
| Oscillator Type            | Internal                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                          |
| Mounting Type              | Surface Mount                                              |
| Package / Case             | 80-LQFP                                                    |
| Supplier Device Package    | 80-LQFP (14x14)                                            |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08qe96clk |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



\_\_\_\_\_

| Part Number   | Package Description | Original (gold wire)<br>package document number | Current (copper wire)<br>package document number |
|---------------|---------------------|-------------------------------------------------|--------------------------------------------------|
| MC68HC908JW32 | 48 QFN              | 98ARH99048A                                     | 98ASA00466D                                      |
| MC9S08AC16    |                     |                                                 |                                                  |
| MC9S908AC60   |                     |                                                 |                                                  |
| MC9S08AC128   |                     |                                                 |                                                  |
| MC9S08AW60    |                     |                                                 |                                                  |
| MC9S08GB60A   |                     |                                                 |                                                  |
| MC9S08GT16A   |                     |                                                 |                                                  |
| MC9S08JM16    |                     |                                                 |                                                  |
| MC9S08JM60    |                     |                                                 |                                                  |
| MC9S08LL16    |                     |                                                 |                                                  |
| MC9S08QE128   |                     |                                                 |                                                  |
| MC9S08QE32    |                     |                                                 |                                                  |
| MC9S08RG60    |                     |                                                 |                                                  |
| MCF51CN128    |                     |                                                 |                                                  |
| MC9RS08LA8    | 48 QFN              | 98ARL10606D                                     | 98ASA00466D                                      |
| MC9S08GT16A   | 32 QFN              | 98ARH99035A                                     | 98ASA00473D                                      |
| MC9S908QE32   | 32 QFN              | 98ARE10566D                                     | 98ASA00473D                                      |
| MC9S908QE8    | 32 QFN              | 98ASA00071D                                     | 98ASA00736D                                      |
| MC9S08JS16    | 24 QFN              | 98ARL10608D                                     | 98ASA00734D                                      |
| MC9S08QB8     |                     |                                                 |                                                  |
| MC9S08QG8     | 24 QFN              | 98ARL10605D                                     | 98ASA00474D                                      |
| MC9S08SH8     | 24 QFN              | 98ARE10714D                                     | 98ASA00474D                                      |
| MC9RS08KB12   | 24 QFN              | 98ASA00087D                                     | 98ASA00602D                                      |
| MC9S08QG8     | 16 QFN              | 98ARE10614D                                     | 98ASA00671D                                      |
| MC9RS08KB12   | 8 DFN               | 98ARL10557D                                     | 98ASA00672D                                      |
| MC9S08QG8     | 1                   |                                                 |                                                  |
| MC9RS08KA2    | 6 DFN               | 98ARL10602D                                     | 98ASA00735D                                      |



MC9S08QE128 Series Comparison

# 1 MC9S08QE128 Series Comparison

The following table compares the various device derivatives available within the MC9S08QE128 series.

#### Table 1. MC9S08QE128 Series Features by MCU and Package

| Feature               | MC9S08QE128  |           |    |    | MC9S08QE96 |       |      |    | MC9S08QE64 |    |    |    |
|-----------------------|--------------|-----------|----|----|------------|-------|------|----|------------|----|----|----|
| Flash size (bytes)    | 131072 98304 |           |    |    |            | 65536 |      |    |            |    |    |    |
| RAM size (bytes)      |              | 8064 6016 |    |    |            |       | 4096 |    |            |    |    |    |
| Pin quantity          | 80           | 64        | 48 | 44 | 80         | 64    | 48   | 44 | 64         | 48 | 44 | 32 |
| ACMP1                 | yes          |           |    |    |            |       |      |    |            |    |    |    |
| ACMP2                 |              |           |    |    |            | ye    | es   |    |            |    |    |    |
| ADC channels          | 24           | 22        | 10 | 10 | 24         | 22    | 10   | 10 | 22         | 10 | 10 | 10 |
| DBG                   |              |           |    |    |            | ye    | es   |    |            |    |    |    |
| ICS                   |              |           |    |    |            | ye    | es   |    |            |    |    |    |
| IIC1                  | yes          |           |    |    |            |       |      |    |            |    |    |    |
| IIC2                  | yes          | yes       | no | no | yes        | yes   | no   | no | yes        | no | no | no |
| IRQ                   | yes          |           |    |    |            |       |      |    |            |    |    |    |
| КВІ                   | 16           | 16        | 16 | 16 | 16         | 16    | 16   | 16 | 16         | 16 | 16 | 12 |
| Port I/O <sup>1</sup> | 70           | 54        | 38 | 34 | 70         | 54    | 38   | 34 | 54         | 38 | 34 | 26 |
| RTC                   | yes          |           |    |    |            |       |      |    |            |    |    |    |
| SCI1                  |              |           |    |    | yes        |       |      |    |            |    |    |    |
| SCI2                  |              |           |    |    |            | ye    | es   |    |            |    |    |    |
| SPI1                  |              |           |    |    |            | ye    | es   |    |            |    |    |    |
| SPI2                  |              |           |    |    |            | ye    | es   |    |            |    |    |    |
| TPM1 channels         |              |           |    |    | 3          |       |      |    |            |    |    |    |
| TPM2 channels         |              | 3         |    |    |            |       |      |    |            |    |    |    |
| TPM3 channels         | 6            |           |    |    |            |       |      |    |            |    |    |    |
| XOSC                  |              |           |    |    |            | ye    | es   |    |            |    |    |    |

<sup>1</sup> Port I/O count does not include the input only PTA5/IRQ/TPM1CLK/RESET or the output only PTA4/ACMP1O/BKGD/MS.



|    | Pir | n Num | ber |    | Lowest   | ←       | Priority | $\longrightarrow$ | Highest         |
|----|-----|-------|-----|----|----------|---------|----------|-------------------|-----------------|
| 80 | 64  | 48    | 44  | 32 | Port Pin | Alt 1   | Alt 2    | Alt 3             | Alt 4           |
| 41 | 33  | 25    | 23  | 17 | PTB1     | KBI1P5  | TxD1     |                   | ADP5            |
| 42 | 34  | 26    | 24  | 18 | PTB0     | KBI1P4  | RxD1     |                   | ADP4            |
| 43 |     |       |     |    | PTJ3     |         |          |                   |                 |
| 44 |     |       |     |    | PTJ2     |         |          |                   |                 |
| 45 | 35  | _     |     |    | PTF3     |         |          |                   | ADP13           |
| 46 | 36  | _     | _   | _  | PTF2     |         |          |                   | ADP12           |
| 47 | 37  | 27    | 25  | 19 | PTA7     | TPM2CH2 |          |                   | ADP9            |
| 48 | 38  | 28    | 26  | 20 | PTA6     | TPM1CH2 |          |                   | ADP8            |
| 49 | 39  | 29    |     |    | PTE4     |         |          |                   |                 |
| 50 | 40  | 30    | 27  |    |          |         |          |                   | V <sub>DD</sub> |
| 51 | 41  | 31    | 28  |    |          |         |          |                   | V <sub>SS</sub> |
| 52 | 42  |       |     |    | PTF1     |         |          |                   | ADP11           |
| 53 | 43  | _     | —   |    | PTF0     |         |          |                   | ADP10           |
| 54 | _   | _     | —   | _  | PTJ1     |         |          |                   |                 |
| 55 | _   | _     | —   | _  | PTJ0     |         |          |                   |                 |
| 56 | 44  | 32    | 29  | _  | PTD4     | KBI2P4  |          |                   |                 |
| 57 | 45  | 33    | 30  | 21 | PTD3     | KBI2P3  | SS2      |                   |                 |
| 58 | 46  | 34    | 31  | 22 | PTD2     | KBI2P2  | MISO2    |                   |                 |
| 59 | 47  | 35    | 32  | 23 | PTA3     | KBI1P3  | SCL1     |                   | ADP3            |
| 60 | 48  | 36    | 33  | 24 | PTA2     | KBI1P2  | SDA1     |                   | ADP2            |
| 61 | 49  | 37    | 34  | 25 | PTA1     | KBI1P1  | TPM2CH0  | ADP1              | ACMP1-          |
| 62 | 50  | 38    | 35  | 26 | PTA0     | KBI1P0  | TPM1CH0  | ADP0              | ACMP1+          |
| 63 | 51  | 39    | 36  | 27 | PTC7     | TxD2    |          |                   | ACMP2-          |
| 64 | 52  | 40    | 37  | 28 | PTC6     | RxD2    |          |                   | ACMP2+          |
| 65 |     |       |     |    | PTG7     |         |          |                   | ADP23           |
| 66 |     |       |     |    | PTG6     |         |          |                   | ADP22           |
| 67 | _   | _     | _   | _  | PTG5     |         |          |                   | ADP21           |
| 68 | _   | _     | _   | _  | PTG4     |         |          |                   | ADP20           |
| 69 | 53  | 41    | _   | _  | PTE3     | SS1     |          |                   |                 |
| 70 | 54  | 42    | 38  | _  | PTE2     | MISO1   |          |                   |                 |
| 71 | 55  | _     | _   | _  | PTG3     |         |          |                   | ADP19           |
| 72 | 56  | _     | _   | _  | PTG2     |         |          |                   | ADP18           |
| 73 | 57  | _     |     |    | PTG1     |         |          |                   |                 |
| 74 | 58  | —     |     | —  | PTG0     |         |          |                   |                 |
| 75 | 59  | 43    | 39  | —  | PTE1     | MOSI1   |          |                   |                 |
| 76 | 60  | 44    | 40  | —  | PTE0     | TPM2CLK | SPSCK1   |                   |                 |
| 77 | 61  | 45    | 41  | 29 | PTC5     | TPM3CH5 |          |                   | ACMP2O          |
| 78 | 62  | 46    | 42  | 30 | PTC4     | TPM3CH4 | RSTO     |                   |                 |
| 79 | 63  | 47    | 43  | 31 | PTA5     | IRQ     | TPM1CLK  | RESET             |                 |
| 80 | 64  | 48    | 44  | 32 | PTA4     | ACMP10  | BKGD     | MS                |                 |

#### Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count (continued)

<sup>3</sup> Power supply must maintain regulation within operating V<sub>DD</sub> range during instantaneous and operating maximum current conditions. If positive injection current (V<sub>In</sub> > V<sub>DD</sub>) is greater than I<sub>DD</sub>, the injection current may flow out of V<sub>DD</sub> and could result in external power supply going out of regulation. Ensure external V<sub>DD</sub> load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

### 3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take  $P_{I/O}$  into account in power calculations, determine the difference between actual pin voltage and  $V_{SS}$  or  $V_{DD}$  and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and  $V_{SS}$  or  $V_{DD}$  will be very small.

|    | Rating                                  | Symbol          | Value     | Unit             |  |
|----|-----------------------------------------|-----------------|-----------|------------------|--|
| 0  | perating temperature range (packaged)   | T <sub>A</sub>  | -40 to 85 | °C               |  |
| Μ  | aximum junction temperature             | Т <sub>ЈМ</sub> | 95        | °C               |  |
| Tł | nermal resistance<br>Single-layer board |                 |           |                  |  |
|    | 32-pin LQFP                             |                 | 82        |                  |  |
|    | 44-pin LQFP                             | $\theta_{JA}$   | 68        | °C/W             |  |
|    | 48-pin QFN                              |                 | 81        |                  |  |
|    | 64-pin LQFP                             | 0               | 69        | °C/W             |  |
|    | 80-pin LQFP                             | бја             | 60        | 0/11             |  |
| Tł | nermal resistance<br>Four-layer board   |                 |           |                  |  |
|    | 32-pin LQFP                             |                 | 54        |                  |  |
|    | 44-pin LQFP                             | $\theta_{JA}$   | 46        | °C/W             |  |
|    | 48-pin QFN                              |                 | 26        |                  |  |
|    | 64-pin LQFP                             | θ               | 50        | °C/M             |  |
|    | 80-pin LQFP                             | ♥JA             | 47        | <sup>2</sup> C/W |  |

|  | Table 5 | . Thermal | Characteristic | s |
|--|---------|-----------|----------------|---|
|--|---------|-----------|----------------|---|

The average chip-junction temperature  $(T_I)$  in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $\begin{array}{l} T_A = \text{Ambient temperature, }^{\circ}\text{C} \\ \theta_{JA} = \text{Package thermal resistance, junction-to-ambient, }^{\circ}\text{C/W} \\ P_D = P_{int} + P_{I/O} \\ P_{int} = I_{DD} \times V_{DD}, \text{Watts } \text{ -- chip internal power} \\ P_{I/O} = \text{Power dissipation on input and output pins } \text{ -- user determined} \end{array}$ 



### 3.8 External Oscillator (XOSC) Characteristics

Reference Figure 13 and Figure 14 for crystal or resonator circuits.

| Table 11. XOSC and ICS Specifications (Temper | rature Range = -40 to 85°C Ambient) |
|-----------------------------------------------|-------------------------------------|
|-----------------------------------------------|-------------------------------------|

| Num | С | Characteristic                                                                                                                                                                                                                                         | Symbol                                                | Min          | Typ <sup>1</sup>            | Max                                    | Unit              |
|-----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------|-----------------------------|----------------------------------------|-------------------|
| 1   | с | Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)<br>Low range (RANGE = 0)<br>High range (RANGE = 1), high gain (HGO = 1)<br>High range (RANGE = 1), low power (HGO = 0)                                                                        | f <sub>lo</sub><br>f <sub>hi</sub><br>f <sub>hi</sub> | 32<br>1<br>1 |                             | 38.4<br>16<br>8                        | kHz<br>MHz<br>MHz |
| 2   | D | Load capacitors<br>Low range (RANGE=0), low power (HGO=0)<br>Other oscillator settings                                                                                                                                                                 | C <sub>1,</sub> C <sub>2</sub>                        |              | See N<br>See N              | Note <sup>2</sup><br>Note <sup>3</sup> |                   |
| 3   | D | Feedback resistor<br>Low range, low power (RANGE=0, HGO=0) <sup>2</sup><br>Low range, High Gain (RANGE=0, HGO=1)<br>High range (RANGE=1, HGO=X)                                                                                                        | R <sub>F</sub>                                        |              | —<br>10<br>1                |                                        | MΩ                |
| 4   | D | Series resistor —<br>Low range, low power (RANGE = 0, HGO = 0) <sup>2</sup><br>Low range, high gain (RANGE = 0, HGO = 1)<br>High range, low power (RANGE = 1, HGO = 0)<br>High range, high gain (RANGE = 1, HGO = 1)<br>$\geq 8$ MHz<br>4 MHz<br>1 MHz | R <sub>S</sub>                                        |              | <br>0<br>100<br>0<br>0<br>0 | <br><br>10<br>20                       | kΩ                |
| 5   | с | Crystal start-up time <sup>4</sup><br>Low range, low power<br>Low range, high power<br>High range, low power<br>High range, high power                                                                                                                 | t <sub>CSTL</sub>                                     | <br>         | 200<br>400<br>5<br>15       | <br>                                   | ms                |
| 6   | D | Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)<br>FEE or FBE mode<br>FBELP mode                                                                                                                                                            | f <sub>extal</sub>                                    | 0.03125<br>0 | _                           | 40.0<br>50.33                          | MHz<br>MHz        |

<sup>1</sup> Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

<sup>2</sup> Load capacitors ( $C_1, C_2$ ), feedback resistor ( $R_F$ ) and series resistor ( $R_S$ ) are incorporated internally when RANGE=HGO=0.

<sup>3</sup> See crystal or resonator manufacturer's recommendation.

<sup>4</sup> Proper PC board layout procedures must be followed to achieve specifications.









Figure 14. Typical Crystal or Resonator Circuit: Low Range/Low Gain

### 3.9 Internal Clock Source (ICS) Characteristics

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

| Num | С           | Charac                                                                                               | Symbol                            | Min                      | Typ <sup>1</sup> | Max    | Unit  |                   |
|-----|-------------|------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|------------------|--------|-------|-------------------|
| 1   | Ρ           | Average internal reference frequency — factory trimmed<br>at $V_{DD}$ = 3.6 V and temperature = 25°C |                                   | f <sub>int_ft</sub>      | _                | 32.768 | _     | kHz               |
| 2   | Ρ           | Internal reference frequency — u                                                                     | user trimmed                      | f <sub>int_ut</sub>      | 31.25            | _      | 39.06 | kHz               |
| 3   | Т           | Internal reference start-up time                                                                     |                                   | t <sub>IRST</sub>        |                  | 60     | 100   | μS                |
|     | Ρ           |                                                                                                      | Low range (DRS=00)                | f <sub>dco_u</sub>       | 16               | _      | 20    |                   |
| 4   | 4 P<br>P    | trimmed <sup>2</sup>                                                                                 | Mid range (DRS=01)                |                          | 32               | _      | 40    | MHz               |
|     |             |                                                                                                      | High range (DRS=10)               |                          | 48               | _      | 60    |                   |
|     | Ρ           | DCO output frequency <sup>2</sup>                                                                    | Low range (DRS=00)                | f <sub>dco_DMX32</sub>   | _                | 19.92  |       |                   |
| 5   | Ρ           | Reference = 32768 Hz                                                                                 | Mid range (DRS=01)                |                          | _                | 39.85  |       | MHz               |
|     | P DMX32 = 1 | DMX32 = 1                                                                                            | High range (DRS=10)               |                          | _                | 59.77  | _     |                   |
| 6   | С           | Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)            |                                   | $\Delta f_{dco\_res\_t}$ | _                | ± 0.1  | ± 0.2 | %f <sub>dco</sub> |
| 7   | С           | Resolution of trimmed DCO outp temperature (not using FTRIM)                                         | ut frequency at fixed voltage and | $\Delta f_{dco\_res\_t}$ | _                | ± 0.2  | ± 0.4 | %f <sub>dco</sub> |



| Num | С | Rating                                                                                                                                                                   | Symbol                                | Min                           | Typ <sup>1</sup> | Мах | Unit |
|-----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|------------------|-----|------|
| 7   | D | IRQ pulse width<br>Asynchronous path <sup>2</sup><br>Synchronous path <sup>4</sup>                                                                                       | t <sub>ILIH,</sub> t <sub>IHIL</sub>  | 100<br>1.5 x t <sub>cyc</sub> |                  |     | ns   |
| 8   | D | Keyboard interrupt pulse width<br>Asynchronous path <sup>2</sup><br>Synchronous path <sup>4</sup>                                                                        | t <sub>ILIH,</sub> t <sub>IHIL</sub>  | 100<br>1.5 x t <sub>cyc</sub> |                  |     | ns   |
| q   | C | Port rise and fall time —<br>Low output drive (PTxDS = 0) (load = 50 pF) <sup>5</sup><br>Slew rate control disabled (PTxSE = 0)<br>Slew rate control enabled (PTxSE = 1) | t <sub>Rise</sub> , t <sub>Fall</sub> |                               | 8<br>31          |     | ns   |
| 5   | 0 | Port rise and fall time —<br>High output drive (PTxDS = 1) (load = 50 pF)<br>Slew rate control disabled (PTxSE = 0)<br>Slew rate control enabled (PTxSE = 1)             | t <sub>Rise</sub> , t <sub>Fall</sub> |                               | 7<br>24          |     | ns   |
| 10  |   | Voltage regulator recovery time                                                                                                                                          | t <sub>VRR</sub>                      | —                             | 4                | _   | μS   |

#### Table 13. Control Timing (continued)

<sup>1</sup> Typical values are based on characterization data at  $V_{DD}$  = 3.0V, 25°C unless otherwise stated.

<sup>2</sup> This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

 $^{3}$  To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t<sub>MSH</sub> after V<sub>DD</sub> rises above V<sub>LVD</sub>.

<sup>4</sup> This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 $^5\,$  Timing is shown with respect to 20%  $V_{DD}$  and 80%  $V_{DD}$  levels. Temperature range –40°C to 85°C.



Figure 18. IRQ/KBIPx Timing



### 3.10.3 SPI Timing

Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.

| No. | С | Function                                          | Symbol                             | Min                              | Мах                                        | Unit                                   |
|-----|---|---------------------------------------------------|------------------------------------|----------------------------------|--------------------------------------------|----------------------------------------|
| _   | D | Operating frequency<br>Master<br>Slave            | f <sub>op</sub>                    | f <sub>Bus</sub> /2048<br>0      | f <sub>Bus</sub> /2<br>f <sub>Bus</sub> /4 | Hz<br>Hz                               |
| 1   | D | SPSCK period<br>Master<br>Slave                   | t <sub>SPSCK</sub>                 | 2<br>4                           | 2048<br>—                                  | t <sub>cyc</sub><br>t <sub>cyc</sub>   |
| 2   | D | Enable lead time<br>Master<br>Slave               | t <sub>Lead</sub>                  | 1/2<br>1                         |                                            | t <sub>SPSCK</sub><br>t <sub>сус</sub> |
| 3   | D | Enable lag time<br>Master<br>Slave                | t <sub>Lag</sub>                   | 1/2<br>1                         |                                            | t <sub>SPSCK</sub><br>t <sub>сус</sub> |
| 4   | D | Clock (SPSCK) high or low time<br>Master<br>Slave | t <sub>wspsck</sub>                | $t_{cyc} - 30$<br>$t_{cyc} - 30$ | 1024 t <sub>cyc</sub>                      | ns<br>ns                               |
| 5   | D | Data setup time (inputs)<br>Master<br>Slave       | t <sub>SU</sub>                    | 15<br>15                         |                                            | ns<br>ns                               |
| 6   | D | Data hold time (inputs)<br>Master<br>Slave        | t <sub>HI</sub>                    | 0<br>25                          |                                            | ns<br>ns                               |
| 7   | D | Slave access time                                 | t <sub>a</sub>                     | —                                | 1                                          | t <sub>cyc</sub>                       |
| 8   | D | Slave MISO disable time                           | t <sub>dis</sub>                   | _                                | 1                                          | t <sub>cyc</sub>                       |
| 9   | D | Data valid (after SPSCK edge)<br>Master<br>Slave  | t <sub>v</sub>                     | _                                | 25<br>25                                   | ns<br>ns                               |
| 10  | D | Data hold time (outputs)<br>Master<br>Slave       | t <sub>HO</sub>                    | 0<br>0                           |                                            | ns<br>ns                               |
| 11  | D | Rise time<br>Input<br>Output                      | t <sub>RI</sub><br>t <sub>RO</sub> |                                  | t <sub>cyc</sub> – 25<br>25                | ns<br>ns                               |
| 12  | D | Fall time<br>Input<br>Output                      | t <sub>FI</sub><br>t <sub>FO</sub> |                                  | t <sub>cyc</sub> – 25<br>25                | ns<br>ns                               |

### Table 15. SPI Timing





#### NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

#### Figure 21. SPI Master Timing (CPHA = 0)



NOTES:

1.  $\overline{SS}$  output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.





## 3.11 Analog Comparator (ACMP) Electricals

**Table 16. Analog Comparator Electrical Specifications** 

| С | Characteristic                         | Symbol             | Min                   | Typical | Max      | Unit |
|---|----------------------------------------|--------------------|-----------------------|---------|----------|------|
| D | Supply voltage                         | V <sub>DD</sub>    | 1.80                  |         | 3.6      | V    |
| С | Supply current (active)                | I <sub>DDAC</sub>  | —                     | 20      | 35       | μA   |
| D | Analog input voltage                   | V <sub>AIN</sub>   | V <sub>SS</sub> – 0.3 |         | $V_{DD}$ | V    |
| С | Analog input offset voltage            | V <sub>AIO</sub>   |                       | 20      | 40       | mV   |
| С | Analog comparator hysteresis           | V <sub>H</sub>     | 3.0                   | 9.0     | 15.0     | mV   |
| Р | Analog input leakage current           | I <sub>ALKG</sub>  | —                     | _       | 1.0      | μA   |
| С | Analog comparator initialization delay | t <sub>AINIT</sub> | —                     | _       | 1.0      | μS   |

### 3.12 ADC Characteristics

#### С Characteristic Conditions Symb Typ<sup>1</sup> Unit Comment Min Max Supply voltage V Absolute 1.8 3.6 V<sub>DDAD</sub> D Delta to V<sub>DD</sub> (V<sub>DD</sub>-V<sub>DDAD</sub>)<sup>2</sup> $\Delta V_{DDAD}$ -100 0 +100 mV Delta to V<sub>SS</sub> (V<sub>SS</sub>-V<sub>SSAD</sub>)<sup>2</sup> -100 0 +100 D Ground voltage $\Delta V_{SSAD}$ mV Ref Voltage High 1.8 V D $V_{REFH}$ V<sub>DDAD</sub> V<sub>DDAD</sub> V D Ref Voltage Low V<sub>REFL</sub> V<sub>SSAD</sub> V<sub>SSAD</sub> V<sub>SSAD</sub> D Input Voltage V V<sub>ADIN</sub> V<sub>REFL</sub> V<sub>REFH</sub> Input C<sub>ADIN</sub> 4.5 5.5 С pF Capacitance С Input Resistance $\mathsf{R}_{\mathsf{ADIN}}$ 5 7 kΩ External to MCU Analog Source 12 bit mode R<sub>AS</sub> Resistance $f_{ADCK} > 4MHz$ 2 $f_{ADCK} < 4MHz$ 5 \_\_\_\_ С 10 bit mode kΩ $f_{ADCK} > 4MHz$ 5 f<sub>ADCK</sub> < 4MHz 10 8 bit mode (all valid f<sub>ADCK</sub>) 10 ADC Conversion High Speed (ADLPC=0) 0.4 8.0 **f**ADCK MHz D Clock Freg. Low Power (ADLPC=1) 0.4 4.0

#### Table 17. 12-bit ADC Operating Conditions

<sup>1</sup> Typical values assume V<sub>DDAD</sub> = 3.0V, Temp = 25°C, f<sub>ADCK</sub>=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

<sup>2</sup> DC potential difference.



|                        | • •••                    |   |                     |     | - 1     |      |                  |                                            |  |
|------------------------|--------------------------|---|---------------------|-----|---------|------|------------------|--------------------------------------------|--|
| Characteristic         | Conditions               | С | Symb                | Min | Тур'    | Мах  | Unit             | Comment                                    |  |
| Conversion Time        | Short Sample (ADLSMP=0)  | Р | t <sub>ADC</sub>    | —   | 20      | —    | ADCK             | See the ADC                                |  |
| sample time)           | Long Sample (ADLSMP=1)   | С |                     | _   | 40      | _    | cycles           | chapter in the MC9S08QE128                 |  |
| Sample Time            | Short Sample (ADLSMP=0)  | Р | t <sub>ADS</sub>    | _   | 3.5     |      | ADCK             | for conversion time                        |  |
|                        | Long Sample (ADLSMP=1)   | С |                     | _   | 23.5    | _    | cycles           | variances                                  |  |
| Total Unadjusted       | 12 bit mode              | Т | E <sub>TUE</sub>    | _   | ±3.0    |      | LSB <sup>2</sup> | Includes                                   |  |
| Error                  | 10 bit mode              | Р |                     | _   | ±1      | ±2.5 |                  | Quantization                               |  |
|                        | 8 bit mode               | Т |                     |     | ±0.5    | ±1.0 |                  |                                            |  |
| Differential           | 12 bit mode              | Т | DNL                 | _   | ±1.75   | _    | LSB <sup>2</sup> |                                            |  |
| Non-Linearity          | 10 bit mode <sup>3</sup> | Ρ |                     | _   | ±0.5    | ±1.0 |                  |                                            |  |
|                        | 8 bit mode <sup>3</sup>  | Т |                     |     | ±0.3    | ±0.5 |                  |                                            |  |
| Integral               | 12 bit mode              | Т | INL                 | _   | ±1.5    | _    | LSB <sup>2</sup> |                                            |  |
| Non-Linearity          | 10 bit mode              | Т |                     |     | ±0.5    | ±1.0 |                  |                                            |  |
|                        | 8 bit mode               | Т |                     |     | ±0.3    | ±0.5 |                  |                                            |  |
| Zero-Scale Error       | 12 bit mode              | Т | E <sub>ZS</sub>     |     | ±1.5    |      | LSB <sup>2</sup> | V <sub>ADIN</sub> = V <sub>SSAD</sub>      |  |
|                        | 10 bit mode              | Р |                     | _   | ±0.5    | ±1.5 |                  |                                            |  |
|                        | 8 bit mode               | Т |                     |     | ±0.5    | ±0.5 |                  |                                            |  |
| Full-Scale Error       | 12 bit mode              | Т | E <sub>FS</sub>     |     | ±1.0    |      | LSB <sup>2</sup> | V <sub>ADIN</sub> = V <sub>DDAD</sub>      |  |
|                        | 10 bit mode              | Р |                     | _   | ±0.5    | ±1   |                  |                                            |  |
|                        | 8 bit mode               | Т |                     |     | ±0.5    | ±0.5 |                  |                                            |  |
| Quantization           | 12 bit mode              | D | EQ                  | _   | -1 to 0 | _    | LSB <sup>2</sup> |                                            |  |
| Error                  | 10 bit mode              |   |                     |     | —       | ±0.5 |                  |                                            |  |
|                        | 8 bit mode               |   |                     |     | —       | ±0.5 |                  |                                            |  |
| Input Leakage          | 12 bit mode              | D | E <sub>IL</sub>     | _   | ±2      | _    | LSB <sup>2</sup> | Pad leakage <sup>4</sup> * R <sub>AS</sub> |  |
| Error                  | 10 bit mode              |   |                     | _   | ±0.2    | ±4   | 1                |                                            |  |
|                        | 8 bit mode               |   |                     | _   | ±0.1    | ±1.2 |                  |                                            |  |
| Temp Sensor            | -40°C to 25°C            | D | m                   | _   | 1.646   |      | mV/°C            |                                            |  |
| Slope                  | 25°C to 85°C             | 1 |                     | _   | 1.769   | _    | 1                |                                            |  |
| Temp Sensor<br>Voltage | 25°C                     | D | V <sub>TEMP25</sub> |     | 701.2   | —    | mV               |                                            |  |

### Table 18. 12-bit ADC Characteristics ( $V_{REFH} = V_{DDAD}$ , $V_{REFL} = V_{SSAD}$ ) (continued)

<sup>1</sup> Typical values assume V<sub>DDAD</sub> = 3.0V, Temp = 25°C, f<sub>ADCK</sub>=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

<sup>2</sup> 1 LSB =  $(V_{REFH} - V_{REFL})/2^N$ 

<sup>3</sup> Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

<sup>4</sup> Based on input pad leakage current. Refer to pad electricals.





### 3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal  $V_{DD}$  supply. For more detailed information about program/erase operations, see the Memory section of the *MC9S08QE128 Reference Manual*.

| С | Characteristic                                                                                                   | Symbol                  | Min    | Typical | Мах  | Unit              |
|---|------------------------------------------------------------------------------------------------------------------|-------------------------|--------|---------|------|-------------------|
| D | Supply voltage for program/erase<br>-40°C to 85°C                                                                | V <sub>prog/erase</sub> | 1.8    |         | 3.6  | V                 |
| D | Supply voltage for read operation                                                                                | V <sub>Read</sub>       | 1.8    |         | 3.6  | V                 |
| D | Internal FCLK frequency <sup>1</sup>                                                                             | f <sub>FCLK</sub>       | 150    |         | 200  | kHz               |
| D | Internal FCLK period (1/FCLK)                                                                                    | t <sub>Fcyc</sub>       | 5      |         | 6.67 | μS                |
| Р | Byte program time (random location) <sup>(2)</sup>                                                               | t <sub>prog</sub>       |        | 9       |      | t <sub>Fcyc</sub> |
| Р | Byte program time (burst mode) <sup>(2)</sup>                                                                    | t <sub>Burst</sub>      |        | 4       |      | t <sub>Fcyc</sub> |
| Р | Page erase time <sup>2</sup>                                                                                     | t <sub>Page</sub>       |        | 4000    |      | t <sub>Fcyc</sub> |
| Р | Mass erase time <sup>(2)</sup>                                                                                   | t <sub>Mass</sub>       |        | 20,000  |      | t <sub>Fcyc</sub> |
|   | Byte program current <sup>3</sup>                                                                                | R <sub>IDDBP</sub>      |        | 4       |      | mA                |
|   | Page erase current <sup>3</sup>                                                                                  | R <sub>IDDPE</sub>      | —      | 6       | —    | mA                |
| С | Program/erase endurance <sup>4</sup><br>T <sub>L</sub> to T <sub>H</sub> = $-40^{\circ}$ C to + 85°C<br>T = 25°C |                         | 10,000 |         |      | cycles            |
| С | Data retention <sup>5</sup>                                                                                      | t <sub>D_ret</sub>      | 15     | 100     | _    | years             |

| Table 19. Flash Ch | naracteristics |
|--------------------|----------------|
|--------------------|----------------|

<sup>1</sup> The frequency of this clock is controlled by a software setting.

<sup>2</sup> These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

- <sup>3</sup> The program and erase currents are additional to the standard run  $I_{DD}$ . These values are measured at room temperatures with  $V_{DD}$  = 3.0 V, bus frequency = 4.0 MHz.
- <sup>4</sup> Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.
- <sup>5</sup> Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory*.



**Ordering Information** 

# 4 Ordering Information

This section contains ordering information for MC9S08QE128, MC9S08QE96, and MC9S08QE64 devices.

| Erococolo Bart Number <sup>1</sup> | Memory    |            |            | Package <sup>2</sup> |  |
|------------------------------------|-----------|------------|------------|----------------------|--|
|                                    | Flash RAM |            |            |                      |  |
| MC9S08QE128CLK                     |           |            | -40 to +85 | 80 LQFP              |  |
| MC9S08QE128CLH                     | 1201      | ٥ <i>۲</i> | -40 to +85 | 64 LQFP              |  |
| MC9S08QE128CFT                     | IZON      | ON         | -40 to +85 | 48 QFN               |  |
| MC9S08QE128CLD                     |           |            | -40 to +85 | 44 LQFP              |  |
| MC9S08QE96CLK                      |           |            | -40 to +85 | 80 LQFP              |  |
| MC9S08QE96CLH                      | OGK       | GK         | -40 to +85 | 64 LQFP              |  |
| MC9S08QE96CFT                      | 901       | UN         | -40 to +85 | 48 QFN               |  |
| MC9S08QE96CLD                      |           |            | -40 to +85 | 44 QFP               |  |
| MC9S08QE64CLH                      |           |            | -40 to +85 | 64 LQFP              |  |
| MC9S08QE64CFT                      | 61K       | 116        | -40 to +85 | 48 QFN               |  |
| MC9S08QE64CLD                      | 04N       | 41         | -40 to +85 | 44 QFP               |  |
| MC9S08QE64CLC                      |           |            | -40 to +85 | 32 LQFP              |  |

#### Table 20. Ordering Information

<sup>1</sup> See the reference manual, *MC9S08QE128RM*, for a complete description of modules included on each device.

<sup>2</sup> See Table 21 for package information.

### 4.1 Device Numbering System

Example of the device numbering system:



# 5 Package Information

The below table details the various packages available.

| Table | 21. | Package | Descriptions |
|-------|-----|---------|--------------|
|-------|-----|---------|--------------|

| Pin Count | Package Type          | Abbreviation | Designator | Case No. | Document No. |
|-----------|-----------------------|--------------|------------|----------|--------------|
| 80        | Low Quad Flat Package | LQFP         | LK         | 917A     | 98ASS23237W  |
| 64        | Low Quad Flat Package | LQFP         | LH         | 840F     | 98ASS23234W  |
| 48        | Quad Flat No-Leads    | QFN          | FT         | 1314     | 98ARH99048A  |
| 44        | Low Quad Flat Package | LQFP         | LD         | 824D     | 98ASS23225W  |
| 32        | Low Quad Flat Package | LQFP         | LC         | 873A     | 98ASH70029A  |







-X-

Figure 26. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)

02

9° 14

9° 14°



NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- /4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.
- 5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
- ATHIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- /7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- $\frac{8}{2}$  THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.

| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICA | L OUTLINE    | PRINT VERSION NO | DT TO SCALE |
|---------------------------------------------------------|-----------|--------------|------------------|-------------|
| TITLE: 64LD LQFP,                                       |           | DOCUMENT NO  | ): 98ASS23234₩   | REV: D      |
| 10 X 10 X 1.4 PKG,<br>O.5 PITCH, CASE OUTLINE           |           | CASE NUMBER  | 2: 840F-02       | 06 APR 2005 |
|                                                         |           | STANDARD: JE | DEC MS-026 BCD   |             |

#### Figure 29. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 3 of 3





| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICA                        | LOUTLINE                      | PRINT VERSION NO | T TO SCALE |
|---------------------------------------------------------|----------------------------------|-------------------------------|------------------|------------|
| TITLE: THERMALLY ENHANCED                               | QUAD                             | DOCUMENT NO                   | ): 98ARH99048A   | REV: F     |
| FLAT NON-LEADED PACKA                                   | CASE NUMBER: 1314-05 05 DEC 2005 |                               |                  |            |
| 48 TERMINAL, 0.5 PITCH (7 X 7 X 1)                      |                                  | STANDARD: JEDEC-MO-220 VKKD-2 |                  | 2          |

Figure 30. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 1 of 3





DETAIL M PIN 1 BACKSIDE IDENTIFIER OPTION

DETAIL M PIN 1 BACKSIDE IDENTIFIER OPTION



| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICA  | LOUTLINE     | PRINT VERSION NO  | T TO SCALE  |
|---------------------------------------------------------|------------|--------------|-------------------|-------------|
| TITLE: THERMALLY ENHANCED                               | QUAD       | DOCUMENT NO  | ): 98ARH99048A    | REV: F      |
| FLAT NON-LEADED PACKA                                   | GE (QFN)   | CASE NUMBER  | : 1314–05         | 05 DEC 2005 |
| 48 TERMINAL, 0.5 PITCH (7                               | ′ X 7 X 1) | STANDARD: JE | DEC-MO-220 VKKD-2 | 2           |

Figure 32. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 3 of 3





| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED.    | MECHANICAL OUTLINE |              | PRINT VERSION NO | IT TO SCALE |
|------------------------------------------------------------|--------------------|--------------|------------------|-------------|
| TITLE:<br>44 LD LQFP,<br>10 X 10 PKG, 0.8 PITCH, 1.4 THICK |                    | DOCUMENT NE  | ]: 98ASS23225W   | RE∨: D      |
|                                                            |                    | CASE NUMBER  | 824D-02          | 26 FEB 2007 |
|                                                            |                    | STANDARD: JE | DEC MS-026-BCB   |             |







| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED.    | MECHANICAL OUTLINE |              | PRINT VERSION NO | IT TO SCALE |
|------------------------------------------------------------|--------------------|--------------|------------------|-------------|
| TITLE:<br>44 LD LQFP,<br>10 X 10 PKG, 0.8 PITCH, 1.4 THICK |                    | DOCUMENT NE  | 1: 98ASS23225W   | RE∨: D      |
|                                                            |                    | CASE NUMBER  | 2:824D-02        | 26 FEB 2007 |
|                                                            |                    | STANDARD: JE | DEC MS-026 BCB   |             |

Figure 34. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 2 of 3





| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICA                     | L OUTLINE    | PRINT VERSION NO | IT TO SCALE |
|---------------------------------------------------------|-------------------------------|--------------|------------------|-------------|
| TITLE:                                                  |                               | DOCUMENT NE  | ]: 98ASH70029A   | RE∨: D      |
| LOW PROFILE QUAD FLAT PA                                | CASE NUMBER: 873A-03 19 MAY 2 |              |                  |             |
| 32 LEAD, 0.8 PIICH (/ X / X 1.4)                        |                               | STANDARD: JE | DEC MS-026 BBA   |             |

Figure 37. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 2 of 3