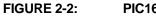


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f870-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F870/871 REGISTER FILE MAP

	File Address		File Address		File Address		File Addres
ndirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180ŀ
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181ŀ
PCL	02h	PCL	82h	PCL	102h	PCL	182ł
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183ł
FSR	04h	FSR	84h	FSR	104h	FSR	184ł
PORTA	05h	TRISA	85h		105h		185ł
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186ł
PORTC	07h	TRISC	87h		107h		187ł
PORTD ⁽²⁾	08h	TRISD ⁽²⁾	88h		108h		188ł
PORTE ⁽²⁾	09h	TRISE ⁽²⁾	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18B
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18C
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18D
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18E
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18F
T1CON	10h		90h		110h		190
TMR2	11h		91h				
T2CON	12h	PR2	92h				
	13h		93h				
	14h		94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
	1Bh		9Bh				
	1Ch		9Ch				
	1Dh		9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		1005		1 4 01
	20h	General Purpose	A0h	accesses	120h	accesses	1A0
General		Register		20h-7Fh		A0h - BFh	
Purpose Register		32 Bytes	BFh C0h				1BF 1C0
96 Bytes			EFh F0h		16Fh 170h		1EF
	7Fh	accesses 70h-7Fh	FFh	accesses 70h-7Fh	17Fh	accesses 70h-7Fh	1F0I 1FF
Bank 0		Bank 1		Bank 2		Bank 3	

* Not a physical register.

Note 1: These registers are reserved; maintain these registers clear.

2: These registers are not implemented on the PIC16F870.

2.2.2.4 **PIE1** Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note:	Bit PEIE (INTCON<6>) must be set to
	enable any peripheral interrupt.

REGISTER 2-4:	PIE1 REGI	STER (AD	DRESS:	8Ch)				
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE
	bit 7							bit 0
bit 7	PSPIE ⁽¹⁾ : P	arallel Slav	e Port Read	d/Write Inter	rupt Enable bi	t		
	1 = Enables 0 = Disable							
bit 6	ADIE: A/D	Converter li	nterrupt Ena	able bit				
	1 = Enable: 0 = Disable			•				
bit 5	RCIE: USA	RT Receive	Interrupt E	nable bit				
	1 = Enables							
	0 = Disable	s the USAF	RT receive i	nterrupt				
bit 4	TXIE: USA	RT Transmi	t Interrupt E	nable bit				
	1 = Enables 0 = Disable			•				
bit 3	Unimplem	ented: Rea	d as '0'					
bit 2	CCP1IE: C	CP1 Interru	pt Enable b	it				
	1 = Enables		•					
	0 = Disable	s the CCP1	interrupt					
bit 1	TMR2IE: TI	MR2 to PR2	2 Match Inte	errupt Enabl	e bit			
				tch interrup				
				atch interrup	ot			
bit 0	TMR1IE: TI		-					
	1 = Enables			•				
	0 = Disable	s the TIVIR1	overnow II	iterrupt				
	Note 1.				070. alwaya m	aintain thia	hit cloar	

Note 1: PSPIE is reserved on the PIC16F870; always maintain this bit clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bit for the EEPROM write operation interrupt.

```
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.
```

REGISTER 2-7: PIR2 REGISTER (ADDRESS: 0Dh)

U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
—	—	—	EEIF	—	—	_	—
bit 7							bit 0

bit 7-5 Unimplemented: Read as '0'

bit 4 **EEIF**: EEPROM Write Operation Interrupt Flag bit

- 1 = The write operation completed (must be cleared in software)
- 0 = The write operation is not complete or has not been started

bit 3-0 Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) Since the microcontroller does not execute instructions during the write cycle, the firmware does not necessarily have to check either EEIF, or WR, to determine if the write had finished.

EXAMPLE 3-4: FLASH PROGRAM WRITE

BSF BCF	STATUS, RP1 STATUS, RP0	; ;Bank 2
	ADDRL, W	
	EEADR	;of desired
MOVF		
MOVWF	, EEADRH	1 5 1
	VALUEL, W	
	EEDATA	;program at
MOVF	VALUEH, W	;desired memory
MOVWF	EEDATH	;location
BSF	STATUS, RPO	;Bank 3
BSF	EECON1, EEPGD	;Point to Program memory
BSF	EECON1, WREN	;Enable writes
		;Only disable interrupts
BCF	INTCON, GIE	; if already enabled,
		;otherwise discard
MOVLW	0x55	;Write 55h to
MOVWF	EECON2	;EECON2
MOVLW	0xAA	;Write AAh to
	EECON2	;EECON2
BSF	EECON1, WR	;Start write operation
NOP		;Two NOPs to allow micro
NOP		;to setup for write
		;Only enable interrupts
BSF	INTCON, GIE	
		;otherwise discard
BCF	EECON1, WREN	;Disable writes

3.7 Write Verify

The PIC16F870/871 devices do not automatically verify the value written during a write operation. Depending on the application, good programming practice may dictate that the value written to memory be verified against the original value. This should be used in applications where excessive writes can stress bits near the specified endurance limits.

3.8 Protection Against Spurious Writes

There are conditions when the device may not want to write to the EEPROM data memory or FLASH program memory. To protect against these spurious write conditions, various mechanisms have been built into the PIC16F870/871 devices. On power-up, the WREN bit is cleared and the Power-up Timer (if enabled) prevents writes.

The write initiate sequence and the WREN bit together, help prevent any accidental writes during brown-out, power glitches, or firmware malfunction.

3.9 Operation While Code Protected

The PIC16F870/871 devices have two code protect mechanisms, one bit for EEPROM data memory and two bits for FLASH program memory. Data can be read and written to the EEPROM data memory, regardless of the state of the code protection bit, CPD. When code protection is enabled and CPD cleared, external access via ICSP is disabled, regardless of the state of the program memory code protect bits. This prevents the contents of EEPROM data memory from being read out of the device.

The state of the program memory code protect bits, CP0 and CP1, do not affect the execution of instructions out of program memory. The PIC16F870/871 devices can always read the values in program memory, regardless of the state of the code protect bits. However, the state of the code protect bits and the WRT bit will have different effects on writing to program memory. Table 4-1 shows the effect of the code protect bits and the WRT bit on program memory.

Once code protection has been enabled for either EEPROM data memory or FLASH program memory, only a full erase of the entire device will disable code protection.

3.10 FLASH Program Memory Write Protection

The configuration word contains a bit that write protects the FLASH program memory, called WRT. This bit can only be accessed when programming the PIC16F870/871 devices via ICSP. Once write protection is enabled, only an erase of the entire device will disable it. When enabled, write protection prevents any writes to FLASH program memory. Write protection does not affect program memory reads.

Con	figuration	Bits	Momentie	Internal	Internal	ICSP Read	ICSP Write
CP1	CP0	WRT	Memory Location	Read	Write	ICSP Read	ICSP write
0	0	x	All program memory	Yes	No	No	No
0	1	0	Unprotected areas	Yes	No	Yes	No
0	1	0	Protected areas	Yes	No	No	No
0	1	1	Unprotected areas	Yes	Yes	Yes	No
0	1	1	Protected areas	Yes	No	No	No
1	0	0	Unprotected areas	Yes	No	Yes	No
1	0	0	Protected areas	Yes	No	No	No
1	0	1	Unprotected areas	Yes	Yes	Yes	No
1	0	1	Protected areas	Yes	No	No	No
1	1	0	All program memory	Yes	No	Yes	Yes
1	1	1	All program memory	Yes	Yes	Yes	Yes

TABLE 3-1: READ/WRITE STATE OF INTERNAL FLASH PROGRAM MEMORY

TABLE 3-2: REGISTERS ASSOCIATED WITH DATA EEPROM/PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Dh	EEADR	EEPROM	Address	Register	, Low Byte	9				xxxx xxxx	uuuu uuuu
10Fh	EEADRH				EEPRON	1 Address,	High Byte			xxxx xxxx	uuuu uuuu
10Ch	EEDATA	EEPROM	Data Re	gister, Lo	w Byte					xxxx xxxx	uuuu uuuu
10Eh	EEDATH		_	EEPRON	EEPROM Data Register, High Byte					xxxx xxxx	uuuu uuuu
18Ch	EECON1	EEPGD	—	—	— — WRERR WREN WR RD						x u000
18Dh	EECON2	EEPROM	Control	Register2	(not a ph	ysical regis	ster)			_	_

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented, read as '0'. Shaded cells are not used during FLASH/EEPROM access.

Note 1: These bits are reserved; always maintain these bits clear.

IABLE 4 0.			-
Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM	bit3	TTL/ST ⁽¹⁾	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3:PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt or LVP mode.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 4-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	PORTB [PORTB Data Direction Register							1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

NOTES:

TIMER1 MODULE 6.0

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L), which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit, TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- · As a counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit, TMR1ON (T1CON<0>).

Timer1 also has an internal "RESET input". This RESET can be generated by either of the two CCP modules (Section 8.0). Register 6-1 shows the Timer1 control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored, and these pins read as '0'.

Additional information on timer modules is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

ER 6-1:	11CON: IIMER1 CONTROL REGISTER (ADDRESS: 10h)									
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N		
	bit 7							bit 0		
bit 7-6	Unimplem	ented: Rea	ad as '0'							
bit 5-4	T1CKPS1:	T1CKPS0:	Timer1 Inpu	t Clock Pres	cale Select bit	S				
	-	rescale valu								
		rescale valu								
		rescale valı rescale valı								
bit 3			scillator Enal	ole Control b	it					
		tor is enabl								
	0 = Oscilla	tor is shut-	off (the oscill	ator inverter	is turned off to	eliminate p	ower drain)		
bit 2	T1SYNC: 7	Fimer1 Exte	ernal Clock Ir	nput Synchro	onization Contr	ol bit				
	When TMF									
			e external cl							
	0 = Synchr When TMF		nal clock inp	out						
			ner1 uses th	e internal clo	ock when TMR	1CS = 0.				
bit 1		This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0. TMR1CS: Timer1 Clock Source Select bit								
	1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge)									
		0 = Internal clock (Fosc/4)								
bit 0	TMR1ON:	Timer1 On	bit							
	1 = Enable	s Timer1								
	0 = Stops 7	Timer1								
	Legend:									
	R = Reada	ble bit	W = V	Vritable bit	U = Unimpl	emented b	it, read as '()'		
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown		

T1CON: TIMER1 CONTROL REGISTER (ADDRESS: 10b) **REGISTER 6-1:**

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other RESET, except by the CCP1 special event trigger.

T1CON register is reset to 00h on a Power-on Reset, or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

6.8 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		all c	e on other SETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
0Eh	TMR1L	Holding R	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register							xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						r	xxxx	xxxx	uuuu	uuuu	
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

When setting up an Asynchronous Reception, follow these steps:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 9.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

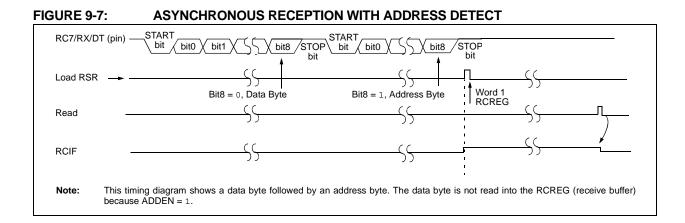
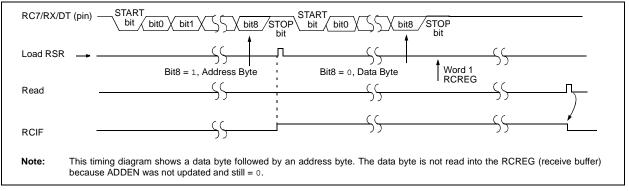

- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

TABLE 9-	ABLE 9-6: REGISTERS ASSOCIATED WITH ASTNCHRONOUS RECEPTION										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	USART Receive Register							0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	


 TABLE 9-6:
 REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

FIGURE 9-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

TABLE 9-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	x000 000x
1Ah	RCREG	USART Re	ceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

NOTES:

11.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and STATUS register). This will have to be implemented in software.

For the PIC16F870/871 devices, the register W_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., If W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1). The registers, PCLATH_TEMP and STATUS_TEMP, are only defined in bank 0.

Since the upper 16 bytes of each bank are common in the PIC16F870/871 devices, temporary holding registers W_TEMP, STATUS_TEMP, and PCLATH_TEMP should be placed in here. These 16 locations don't require banking and therefore, make it easier for context save and restore. The same code shown in Example 11-1 can be used.

EXAMPLE 11-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS TEMP	;Save status to bank zero STATUS TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
:		
:(ISR)		;(Insert user code here)
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS TEMP,W	;Swap STATUS TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W TEMP,F	;Swap W TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

MOVF	Move f						
Syntax:	[<i>label</i>] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(f) \rightarrow (destination)						
Status Affected:	Z						
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.						

NOP	No Operation				
Syntax:	[label] NOP				
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Description:	No operation.				

MOVLW	Move Literal to W						
Syntax:	[<i>label</i>] MOVLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W)$						
Status Affected:	None						
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.						

RETFIE	Return from Interrupt					
Syntax:	[label] RETFIE					
Operands:	None					
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$					
Status Affected:	None					

MOVWF	Move W to f						
Syntax:	[<i>label</i>] MOVWF f						
Operands:	$0 \leq f \leq 127$						
Operation:	$(W) \rightarrow (f)$						
Status Affected:	None						
Description:	Move data from W register to register 'f'.						

RETLW	Return with Literal in W						
Syntax:	[<i>label</i>] RETLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$						
Status Affected:	None						
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.						

13.20 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/De-multiplexed and 16-bit Memory modes. The board includes 2 Mb external FLASH memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

13.21 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PIC microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature onboard LIN transceivers. A PIC16F874 FLASH microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.

13.22 PICkit[™] 1 FLASH Starter Kit

A complete "development system in a box", the PICkit FLASH Starter Kit includes a convenient multi-section board for programming, evaluation, and development of 8/14-pin FLASH PIC[®] microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB[®] IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin FLASH PIC[®] Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin FLASH PIC microcontrollers, as well as many future planned devices.

13.23 PICDEM USB PIC16C7X5 Demonstration Board

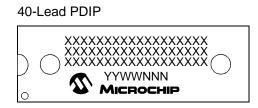
The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

13.24 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and rfLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.


NOTES:

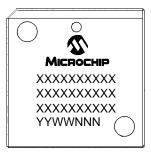
14.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S	3. Tcc:st	(I ² C specifications only)				
2. TppS		4. Ts	(I ² C specifications only)				
Т			· · · · · · · · · · · · · · · · · · ·				
F	Frequency	Т	Time				
Lowercas	e letters (pp) and their meanings:						
рр							
СС	CCP1	OSC	OSC1				
ck	CLKO	rd	RD				
CS	CS	rw	RD or WR				
di	SDI	SC	SCK				
do	SDO	SS	SS				
dt	Data in	tO	TOCKI				
io	I/O port	t1	T1CKI				
mc	MCLR	wr	WR				
Uppercas	Uppercase letters and their meanings:						
S							
F	Fall	Р	Period				
н	High	R	Rise				
I	Invalid (Hi-impedance)	V	Valid				
L	Low	Z	Hi-impedance				
I ² C only							
AA	output access	High	High				
BUF	Bus free	Low	Low				
TCC:ST (I	² C specifications only)						
CC							
HD	Hold	SU	Setup				
ST							
DAT	DATA input hold	STO	STOP condition				
STA	START condition						

Package Marking Information (Cont'd)

Example PIC16F871-I/P


Example

44-Lead TQFP

44-Lead PLCC

Example

APPENDIX E: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN726, "PIC17CXXX to PIC18CXXX Migration." This Application Note is available as Literature Number DS00726.

STATUS Register	
PD Bit	
TO Bit	
Synchronous Master Reception	
Associated Registers	75
Synchronous Master Transmission	
Associated Registers	73
Synchronous Slave Reception	
Associated Registers	77
Synchronous Slave Transmission	
Associated Registers	76

Т

T1CKPS0 Bit	49
T1CKPS1 Bit	49
T1CON Register	
T1OSCEN Bit	
T1SYNC Bit	49
T2CKPS0 Bit	53
T2CKPS1 Bit	
T2CON Register	
TAD	
Time-out Sequence	
Timer0	
Associated Registers	
Clock Source Edge Select (T0SE Bit)	
Clock Source Select (TOCS Bit)	
External Clock	
Interrupt	
Overflow Enable (T0IE Bit)	
Overflow Flag (T0IF Bit)	
Overflow Interrupt	
Prescaler	
TOCKI	
Timer1	-
Associated Registers	52
Asynchronous Counter Mode Reading and Writing to	F 4
Counter Operation	
Incrementing Edge (figure)	
Operation in Asynchronous Counter Mode	
Operation in Synchronized Counter Mode	50
Operation in Timer Mode	
Oscillator	
Capacitor Selection	
Prescaler	52
Resetting of Timer1 Register Pair	
(TMR1H, TMR1L)	
Resetting Timer1 Using a CCP Trigger Output	
TMR1H	
TMR1L	
Timer2	
Associated Registers	
Output	
Postscaler	
Prescaler	
Prescaler and Postscaler	54
Timing Diagrams	
A/D Conversion	
Asynchronous Master Transmission	67
Asynchronous Master Transmission	
(Back to Back)	67
Asynchronous Reception with	
Address Byte First	71

Asynchronous Reception with
Address Detect 71
Brown-out Reset 129
Capture/Compare/PWM (CCP1) 131
CLKO and I/O 128
External Clock 126
Parallel Slave Port (PSP) Read 43
Parallel Slave Port (PSP) Write 43
RESET, Watchdog Timer, Oscillator
Start-up Timer and Power-up Timer
Slow Rise Time (MCLR Tied to VDD)
Time-out Sequence on Power-up
(MCLR Not Tied to VDD)
Case 1
Case 2
Time-out Sequence on Power-up
(MCLR Tied to VDD)
Timer0 and Timer1 External Clock
USART Asynchronous Reception
USART Synchronous Receive (Master/Slave)
USART Synchronous Reception
(Master Mode, SREN) 75
USART Synchronous Transmission73
USART Synchronous Transmission
(Master/Slave) 133
Wake-up from SLEEP via Interrupt 101
Timing Parameter Symbology 125
TMR0 Register 13, 15
TMR1CS Bit
TMR1H Register
TMR1L Register
1 MR10N Bit
TMR10N Bit
TMR2 Register 13
TMR2 Register
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB 15
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISC Register 14 TRISD 15
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISD Register 14 TRISD Register 14
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISD Register 14 TRISD 15 TRISD Register 14 TRISD Register 14 TRISD Register 14 TRISD Register 15 TRISD Register 14 TRISD Register 15 TRISD Register 14 TRISE 15
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISD Register 14 TRISE Register 14 TRISE Register 14
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISD Register 14 TRISE Register 14 IBF Bit 40
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISD Register 14 TRISD Register 14 TRISD Register 14 TRISE Register 14 TRISD Register 14 TRISE Register 14 IBF Bit 40 IBOV Bit 40
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14 TRISC 15 TRISC Register 14 TRISD Register 14 TRISD Register 14 TRISE Register 14 TRISD Register 14 TRISE Register 14 IBF Bit 40 IBOV Bit 40 OBF Bit 40
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISD 15 TRISD Register 14 TRISE Register 14 TRISD Register 14 TRISE Register 14 IBF Bit 40 OBF Bit 40 PSPMODE Bit 38, 39, 40, 42
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14 TRISC 15 TRISC Register 14 TRISD Register 14 TRISD Register 14 TRISE Register 14 TRISD Register 14 TRISE Register 14 IBF Bit 40 IBOV Bit 40 OBF Bit 40
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISD 15 TRISD Register 14 TRISE Register 14 TRISD Register 14 TRISE Register 14 IBF Bit 40 OBF Bit 40 PSPMODE Bit 38, 39, 40, 42
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISD Register 14 TRISE Register 14 TRISE Register 14 TRISE Register 14 TISE Register 14 IBF Bit 40 IBOV Bit 40 OBF Bit 38, 39, 40, 42 TXREG Register 13
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14 TRISD Register 14 TRISD Register 14 TRISE Register 14 IBF Bit 40 IBOV Bit 40 OBF Bit 38, 39, 40, 42 TXREG Register 13 TXSTA 15
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB 15 TRISC 15 TRISC Register 14 TRISD 15 TRISD Register 14 TRISD Register 14 TRISD Register 14 TRISE Register 14 IBF Bit 40 IBOV Bit 40 OBF Bit 38, 39, 40, 42 TXREG Register 13 TXSTA 15 TXSTA Register 14
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB 15 TRISC 15 TRISC Register 14 TRISD 15 TRISD Register 14 TRISE 15 TRISD Register 14 TRISE 15 TRISE Register 14 TRISE 15 TRISE Register 14 TRISE Register 14 IBF Bit 40 IBOV Bit 40 OBF Bit 38, 39, 40, 42 TXREG Register 13 TXSTA 15 TXSTA Register 14 BRGH Bit 61
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB 15 TRISC 15 TRISC Register 14 TRISD 15 TRISD Register 14 TRISD Register 14 TRISE Register 14 TRISE Register 14 TRISE Register 14 TRISE Register 14 IBF Bit 40 IBOV Bit 40 OBF Bit 38, 39, 40, 42 TXREG Register 13 TXSTA 15 TXSTA Register 14 BRGH Bit 61 CSRC Bit 61
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB Register 14, 15 TRISC 15 TRISC Register 14, 15 TRISC Register 14 TRISD Register 14 TRISD Register 14 TRISE Register 14 TRISE Register 14 TRISE Register 14 TRISE Register 14 IBF Bit 40 IBOV Bit 40 OBF Bit 38, 39, 40, 42 TXREG Register 14 TXSTA 15 TXSTA Register 14 BRGH Bit 61 CSRC Bit 61 TRMT Bit 61
TMR2 Register. 13 TMR2ON Bit 53 TOUTPS0 Bit 53 TOUTPS1 Bit 53 TOUTPS2 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TOUTPS3 Bit 53 TRISA 15 TRISA Register 14 TRISB 15 TRISC 15 TRISC Register 14 TRISD 15 TRISD Register 14 TRISD Register 14 TRISD Register 14 TRISE Register 14 TRISE Register 14 TRISE Register 14 IBF Bit 40 IBOV Bit 40 OBF Bit 38, 39, 40, 42 TXREG Register 13 TXSTA 15 TXSTA Register 14 BRGH Bit 61 CSRC Bit 61