

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f870-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Features PICmicro™ Mid-Range MCU Family Reference Manual (DS33023)	PIC16F870	PIC16F871
Operating Frequency	DC - 20 MHz	DC - 20 MHz
RESETS (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	2K	2K
Data Memory (bytes)	128	128
EEPROM Data Memory	64	64
Interrupts	10	11
I/O Ports	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3
Capture/Compare/PWM modules	1	1
Serial Communications	USART	USART
Parallel Communications	—	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels
Instruction Set	35 Instructions	35 Instructions

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS ⁽²⁾
Bank 0											
00h ⁽⁴⁾	INDF	Addressing	this location	uses conte	ents of FSR to	o address dat	ta memory (n	ot a physica	l register)	0000 0000	0000 0000
01h	TMR0	Timer0 Mod	dule's Regist	er						xxxx xxxx	uuuu uuuu
02h ⁽⁴⁾	PCL	Program Co	ounter's (PC) Least Sigr	ificant Byte					0000 0000	0000 0000
03h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽⁴⁾	FSR	Indirect Dat	ta Memory A	ddress Poir	nter			•		xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	PORTA Da	ta Latch whe	n written: PO	RTA pins wh	ien read		0x 0000	0u 0000
06h	PORTB	PORTB Da	ta Latch whe	en written: P	ORTB pins v	vhen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	en written: F	ORTC pins v	when read				xxxx xxxx	uuuu uuuu
08h ⁽⁵⁾	PORTD	PORTD Da	ta Latch whe	en written: F	ORTD pins v	when read				XXXX XXXX	uuuu uuuu
09h ⁽⁵⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,4)	PCLATH	_	_	_	Write Buffer	for the upper	r 5 bits of the	Program Co	ounter	0 0000	0 0000
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
0Dh	PIR2	_	_	_	EEIF	_	_	_	_		0
0Eh	TMR1L	Holding Re	gister for the	Least Sign	ificant Byte o	f the 16-bit T	MR1 Registe	er		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding Re	gister for the	Most Signi	ficant Byte of	the 16-bit TM	VR1 Register	r		XXXX XXXX	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu
11h	TMR2	Timer2 Mod	dule's Regist	er						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	_	Unimpleme	nted							_	_
14h	_	Unimpleme	nted							_	_
15h	CCPR1L	Capture/Co	mpare/PWN	1 Register1	(LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWN	1 Register1	(MSB)					XXXX XXXX	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tra	Insmit Data I	Register						0000 0000	0000 0000
1Ah	RCREG	USART Re	ceive Data F	Register						0000 0000	0000 0000
1Bh	_	Unimpleme	nted							_	_
1Ch	—	Unimpleme	nted							_	_
1Dh	_	Unimpleme	nted							_	_
1Eh	ADRESH	-	Register Hig	h Byte						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS ⁽²⁾
Bank 1											
80h ⁽⁴⁾	INDF	Addressing	this location	uses conte	ents of FSR to	o address dat	ta memory (n	ot a physica	l register)	0000 0000	0000 0000
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽⁴⁾	PCL	Program Co	ounter's (PC) Least Sig	nificant Byte					0000 0000	0000 0000
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽⁴⁾	FSR	Indirect Dat	a Memory A	ddress Poi	nter					xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Da	ata Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction	Register						1111 1111	1111 1111
88h ⁽⁵⁾	TRISD	PORTD Da	ta Direction	Register						1111 1111	1111 1111
89h ⁽⁵⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Dat	a Direction E	Bits	0000 -111	0000 -111
8Ah ^(1,4)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	Program Co	ounter	0 0000	0 0000
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
8Dh	PIE2	_	_	_	EEIE	_	_	_	_	0	0
8Eh	PCON	_	_	_	_	_	_	POR	BOR	dd	uu
8Fh		Unimpleme	nted							_	—
90h		Unimpleme	nted							_	—
91h		Unimpleme	nted							_	—
92h	PR2	Timer2 Per	iod Register							1111 1111	1111 1111
93h	_	Unimpleme	nted							_	—
94h		Unimpleme	nted							_	—
95h		Unimpleme	nted							_	—
96h	—	Unimpleme	nted							_	_
97h	—	Unimpleme	nted							_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generator R	egister						0000 0000	0000 0000
9Ah	—	Unimpleme	nted							_	_
9Bh	_	Unimpleme	nted							_	_
9Ch	_	Unimpleme	nted							_	_
9Dh	_	Unimpleme								_	_
9Eh	ADRESL	A/D Result	Register Lov	w Byte						xxxx xxxx	uuuu uuuu
9Fh	ADCON1	ADFM	_	_		PCFG3	PCFG2	PCFG1	PCFG0	0 0000	0 0000

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

2.2.2.4 **PIE1** Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note:	Bit PEIE (INTCON<6>) must be set to
	enable any peripheral interrupt.

REGISTER 2-4:	PIE1 REGI	STER (AD	DRESS:	8Ch)				
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE
	bit 7							bit 0
bit 7	PSPIE ⁽¹⁾ : P	arallel Slav	e Port Read	d/Write Inter	rupt Enable bi	t		
	1 = Enables 0 = Disable							
bit 6	ADIE: A/D	Converter li	nterrupt Ena	able bit				
	1 = Enable: 0 = Disable			•				
bit 5	RCIE: USA	RT Receive	Interrupt E	nable bit				
	1 = Enables							
	0 = Disable	s the USAF	RT receive i	nterrupt				
bit 4	TXIE: USA	RT Transmi	t Interrupt E	nable bit				
	1 = Enables 0 = Disable			•				
bit 3	Unimplem	ented: Rea	d as '0'					
bit 2	CCP1IE: C	CP1 Interru	pt Enable b	it				
	1 = Enables		•					
	0 = Disable	s the CCP1	interrupt					
bit 1	TMR2IE: TI	MR2 to PR2	2 Match Inte	errupt Enabl	e bit			
				tch interrup				
				atch interrup	ot			
bit 0	TMR1IE: TI		-					
	1 = Enables			•				
	0 = Disable	s the TIVIR1	overnow II	iterrupt				
	Note 1.				070. alwaya m	aintain thia	hit cloar	

Note 1: PSPIE is reserved on the PIC16F870; always maintain this bit clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.5 PIR1 Register

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note:	Interrupt flag bits get set when an interrupt									
	condition occurs, regardless of the state of									
	its corresponding enable bit or the global									
	enable bit, GIE (INTCON<7>). User soft-									
	ware should ensure the appropriate inter-									
	rupt bits are clear prior to enabling an									
	interrupt.									

0.			DDILLOO.	uon)									
	R/W-0	R/W-0	R-0	R-0	U-0	R/W-0	R/W-0	R/W-0					
	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF					
	bit 7							bit 0					
	(1)												
bit 7					rrupt Flag bit								
	 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred 												
bit 6													
Sit 0	ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed 0 = The A/D conversion is not complete												
bit 5	RCIF: USA	RT Receive	e Interrupt F	lag bit									
			/e buffer is f										
			/e buffer is										
bit 4			it Interrupt F	-									
			mit buffer is mit buffer is										
bit 3	Unimplem	ented: Rea	d as '0'										
bit 2	CCP1IF: C	CP1 Interru	pt Flag bit										
	Capture me												
			apture occu capture occ		be cleared in s	oftware)							
	Compare n												
				tch occurred atch occurre	d (must be clea ed	ared in softw	vare)						
	PWM mode												
1.1.4	Unused in				.,								
bit 1				errupt Flag b		ara)							
	 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred 												
bit 0	TMR1IF: T	MR1 Overfl	ow Interrup	t Flag bit									
			•	•	ed in software)								
			not overflow										
	Note 1:	PSPIF is r	eserved on	the PIC16F	870; always m	aintain this	bit clear.						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

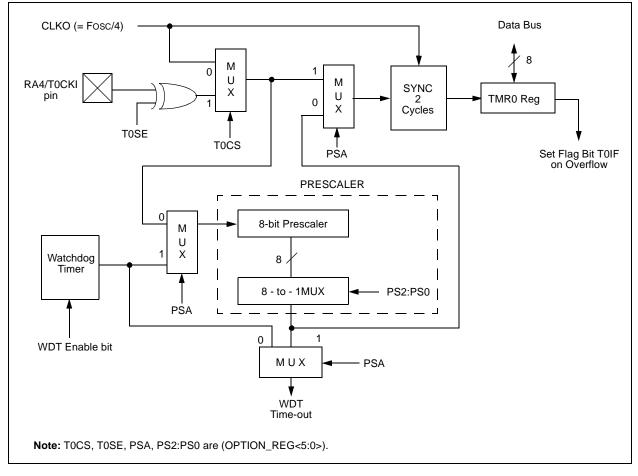
5.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Additional information on the Timer0 module is available in the PIC® Mid-Range MCU Family Reference Manual (DS33023).


Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register. Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment either on every rising, or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 5.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. Section 5.3 details the operation of the prescaler.

5.1 Timer0 Interrupt

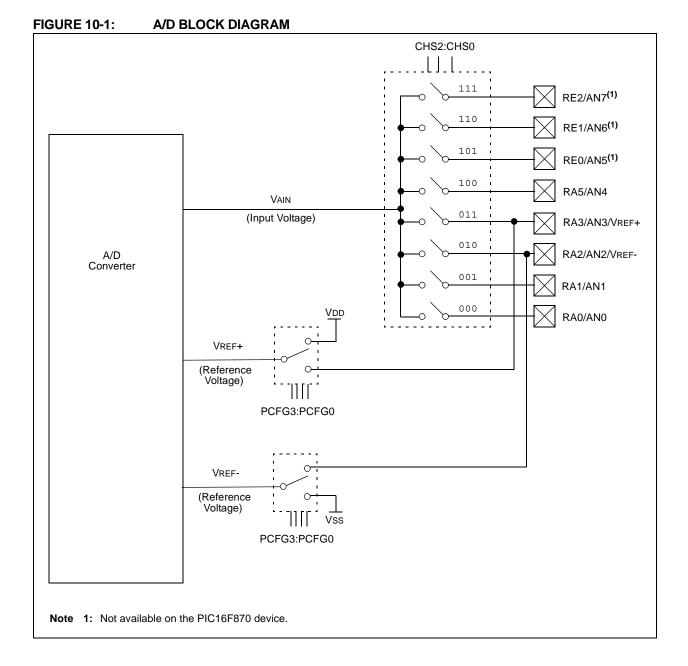
The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

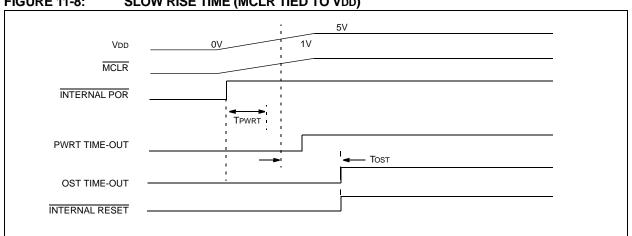
FIGURE 5-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

NOTES:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o POR, B	-	Valu all o RES	ther
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 0	00x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000 -	000	0000	-000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -	000	0000	-000
87h	TRISC	PORTC D	Data Directio	n Register						1111 1	111	1111	1111
11h	TMR2	Timer2 M	odule's Reg	ister						0000 0	000	0000	0000
92h	PR2	Timer2 M	odule's Peri	od Register						1111 1	111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0	000	-000	0000
15h	CCPR1L	Capture/C	Compare/PV	/M Register	r1 (LSB)					XXXX X	xxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/PV	/M Register	r1 (MSB)					xxxx x	xxx	uuuu	uuuu
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0	000	00	0000
Logond		(n	. I		monted rea							•	

TABLE 8-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2


Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.


Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

These steps should be followed for doing an A/D Conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - Set GIE bit

- 3. Wait the required acquisition time.
- 4. Start conversion:
 Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts enabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

SLOW RISE TIME (MCLR TIED TO VDD) **FIGURE 11-8:**

11.10 Interrupts

The PIC16F870/871 family has up to 14 sources of interrupt. The Interrupt Control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual	interru	pt fla	ag	bits	are	set,
	regardless	of	the	stat	tus	of	their
	correspond	ling ma	sk bit	t, or	the G	SIE b	it.

A global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt, and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register, INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or GIE bit.

; Q1 Q2 Q3 Q4; Q1 Q2 Q3 Q OSC1 ////////////////////////////////////	4, Q1		; Q1 Q2 Q3 Q4; ;/~_/~_/^_/ ;//	011 021 031 04; 	Q1 Q2 Q3 Q4 \/\/\/\
INTF Flag (INTCON<1>)			Interrupt Latency	2)	
GIE bit (INTCON<7>)	Processor in SLEEP	 		i	1 1 1
INSTRUCTION FLOW		l l	1 I 1 I	1	I I
PC X PC X PC+1	X PC+2	PC+2	X PC + 2 X	<u> 0004h X</u>	0005h
$ \begin{array}{l} \text{Instruction} \\ \text{Fetched} \end{array} \Big\{ \begin{array}{l} \text{Inst}(\text{PC}) = \text{SLEEP} & \text{Inst}(\text{PC}+1) \end{array} \Big\} \\ \end{array} \\$		Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction Executed { Inst(PC - 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, HS or LP Oscillator mode assume 2: Tost = 1024 Tosc (drawing not to sca		e there for RC Os	c mode.		

3: GIE = 1 assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.

4: CLKO is not available in these Osc modes, but shown here for timing reference.

11.14 In-Circuit Debugger

When the DEBUG bit in the configuration word is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] ICD. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 11-8 shows which features are consumed by the background debugger.

	TABLE 11-8:	DEBUGGER RESOURCES
--	-------------	--------------------

I/O pins	RB6, RB7
Stack	1 level
Program Memory	Address 0000h must be NOP
	Last 100h words
Data Memory	0x070 (0x0F0, 0x170, 0x1F0)
	0x1EB - 0x1EF

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, GND, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip, or one of the third party development tool companies.

11.15 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

11.16 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

12.0 INSTRUCTION SET SUMMARY

Each PIC16F870/871 instruction is a 14-bit word, divided into an OPCODE, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The PIC16F870/871 instruction set summary in Table 12-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 12-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 12-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
ТО	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles, with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 12-2 lists the instructions recognized by the MPASM[™] assembler.

Figure 12-1 shows the general formats that the instructions can have.

Note:	To maintain upward compatibility with
	future PIC16F870/871 products, do not
	use the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 12-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-orie	nted file reg	jister op	eratio	ns	
13		8 7	6		0
OP	CODE	d		f (FILE #)	
d =	d = 0 for destination W d = 1 for destination f f = 7-bit file register address				
Bit-orient	ed file regis	ter oper	ations	6	
13		10 9	7	6	0
0	PCODE	b (Bl	T #)	f (FILE #)	
f = Literal an General	3-bit bit add 7-bit file reg d control op	pister ac	6	5	
13		8	7		0
0	PCODE			k (literal)	
k = 8-bit immediate value					
CALL and	I GOTO insti	uctions	only		
13	11	10			0
OP	CODE		k (l	iteral)	
k =	k = 11-bit immediate value				

A description of each instruction is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

Rotate Left f through Carry
[<i>label</i>] RLF f,d
$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
See description below
С
The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

SLEEP

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS\toPC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W from Literal			
Syntax:	[<i>label</i>] SUBLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	$k \text{ - } (W) \rightarrow (W)$			
Status Affected:	C, DC, Z			
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.			

SUBWF	Subtract W from f				
Syntax:	[<i>label</i>] SUBWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - (W) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				

13.20 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/De-multiplexed and 16-bit Memory modes. The board includes 2 Mb external FLASH memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

13.21 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PIC microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature onboard LIN transceivers. A PIC16F874 FLASH microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.

13.22 PICkit[™] 1 FLASH Starter Kit

A complete "development system in a box", the PICkit FLASH Starter Kit includes a convenient multi-section board for programming, evaluation, and development of 8/14-pin FLASH PIC[®] microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB[®] IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin FLASH PIC[®] Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin FLASH PIC microcontrollers, as well as many future planned devices.

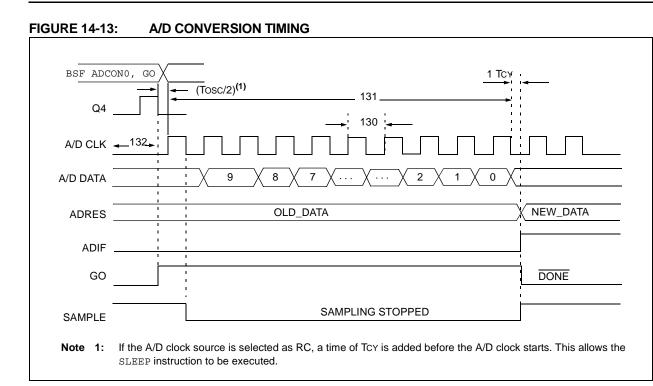
13.23 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

13.24 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and rfLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor


Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.

14.1 DC Characteristics: PIC16F870/871 (Industrial, Extended) PIC16LF870/871 (Commercial, Industrial)

PIC16LF870/871 (Commercial, Industrial)		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C} \leq TA \leq +85°C \mbox{ for Industrial} \\ \mbox{0°C} \leq TA \leq +70°C \mbox{ for Commercial} \end{array}$						
PIC16F870/871 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Sym Characteristic		Min	Тур†	Max	Units	Conditions	
	VDD Supply Voltage							
D001		PIC16LF870/871	2.0		5.5	V	All configurations. See Figure 14-2 for details.	
D001 D001A		PIC16F870/871	4.0 Vbor*	_	5.5 5.5	V V	All configurations. BOR enabled, FMAX = 14 MHz (Note 7) , -40°C to +85°C	
			VBOR	—	5.5	V	BOR enabled, FMAX = 10 MHz (Note 7) , -40°C to +125°C	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	—	V		
D003	Vpor	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See section on Power-on Reset for details	
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BOREN bit in configuration word enabled	

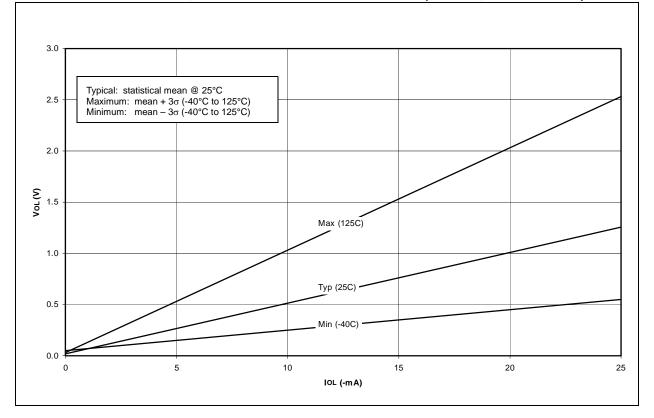
These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active Operation mode are:
 - <u>OSC1</u> = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
 - **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
 - **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

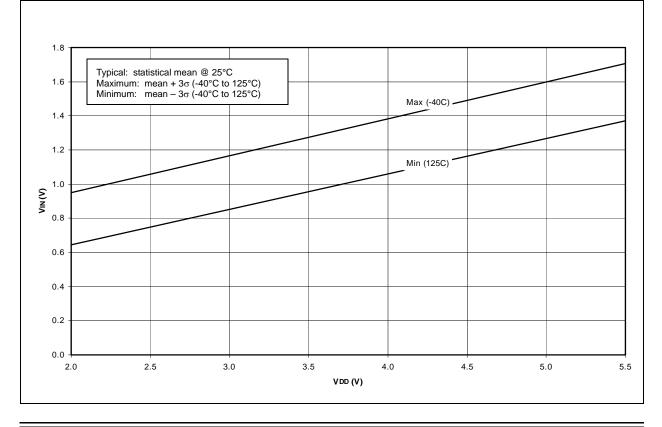
TABLE 14-10: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period Standard(F)		1.6	_		μS	Tosc based, VREF \geq 3.0V
			Extended(LF)	3.0	—	_	μS	Tosc based, VREF $\geq 2.0V$
			Standard(F)	2.0	4.0	6.0	μS	A/D RC Mode
			Extended(LF)	3.0	6.0	9.0	μS	A/D RC Mode
131	TCNV	Conversion time (not including S/H time) (Note 1)			-	12	TAD	
132	TACQ	Acquisition time		(Note 2)	40	_	μS	
				10*	_	_	μS	The minimum time is the ampli- fier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

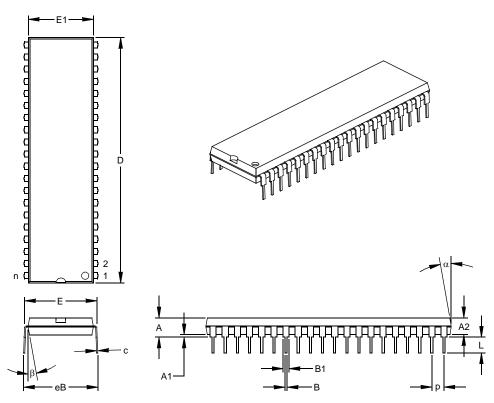
These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.


Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 10.1 for min conditions.



40-Lead Plastic Dual In-line (P) – 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-011

Drawing No. C04-016

NOTES:

PIC16F870/871 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-x /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC16F870-I/SP 301 = Industrial temp., PDIP package, 20 MHz, normal VDD limits, QTP pattern #301.
Device	PIC16F870, PIC16F870T; VDD range 4.0V to 5.5V PIC16F871, PIC16F870T; VDD range 4.0V to 5.5V PIC16LF870X, PIC16LF870T; VDD range 2.0V to 5.5V PIC16LF871X, PIC16LF871T; VDD range 2.0V to 5.5V F = Normal VDD limits LP = Extended VDD limits T = In Tape and Reel - SOIC, SSOP, TQFP and PLCC packages only.	 b) PIC16F871-I/PT = Industrial temp., TQFP package, 20 MHz, Extended VDD limits. c) PIC16F871-I/P = Industrial temp., PDIP package, 20 MHz, normal VDD limits. d) PIC16LF870-I/SS = Industrial temp., SSOP package, DC - 20 MHz, extended VDD limits.
Temperature Range	blank(3) = 0°C to +70°C (Commercial) I = -40°C to +85°C (Industrial)	
Package	$\begin{array}{rcl} PQ &= & MQFP \mbox{ (Metric PQFP)} \\ PT &= & TQFP \mbox{ (Thin Quad Flatpack)} \\ SO &= & SOIC \\ SP &= & Skinny \mbox{ Plastic Dip} \\ SS &= & SSOP \\ P &= & PDIP \\ L &= & PLCC \end{array}$	
Pattern	QTP, Code or Special Requirements (blank otherwise)	

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- Your local Microchip sales office
- 1. 2. The Microchip Worldwide Site (www.microchip.com)