

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f871-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	11
3.0	Data EEPROM and Flash Program Memory	27
4.0	I/O Ports	33
5.0	Timer0 Module	45
6.0	Timer1 Module	49
7.0	Timer2 Module	53
8.0	Capture/Compare/PWM Modules	
9.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	61
10.0	Analog-to-Digital (A/D) Converter Module	79
11.0	Special Features of the CPU	87
12.0	Instruction Set Summary	103
13.0	Development Support	111
14.0	Electrical Characteristics	117
15.0	DC and AC Characteristics Graphs and Tables	
16.0	Packaging Information	149
Appe	ndix A: Revision History	157
Appe	ndix B: Device Differences	157
Appe	ndix C: Conversion Considerations	158
Appe	ndix D: Migration from Mid-Range to Enhanced Devices	158
Appe	ndix E: Migration from High-End to Enhanced Devices	159
Index	۲	161
On-L	ine Support	167
Syste	ems Information and Upgrade Hot Line	167
Read	ler Response	168
PIC1	6F870/871 Product Identification System	169

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

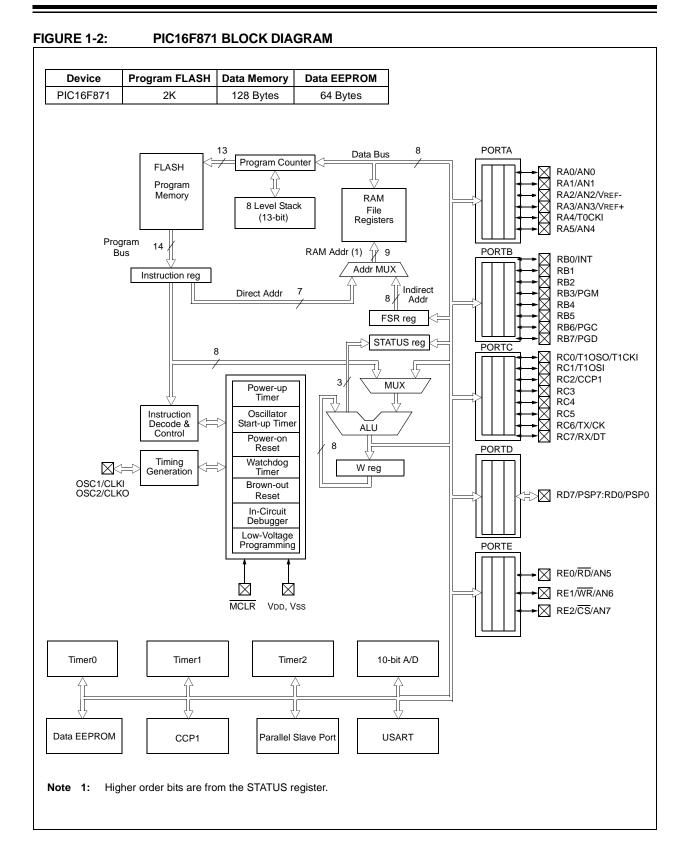
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.


To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description		
						PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.		
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾			
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽³⁾			
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽³⁾			
RD3/PSP3	22	24	41	I/O	ST/TTL ⁽³⁾			
RD4/PSP4	27	30	2	I/O	ST/TTL ⁽³⁾			
RD5/PSP5	28	31	3	I/O	ST/TTL ⁽³⁾			
RD6/PSP6	29	32	4	I/O	ST/TTL ⁽³⁾			
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽³⁾			
						PORTE is a bi-directional I/O port.		
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input 5.		
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input 6.		
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input 7.		
Vss	12,31	13,34	6,29	Р	_	Ground reference for logic and I/O pins.		
Vdd	11,32	12,35	7,28	Р		Positive supply for logic and I/O pins.		
NC	-	1,17,28, 40	12,13, 33,34		_	These pins are not internally connected. These pins should be left unconnected.		
Legend: I = input O = output I/O = input/output P = power — = Not used TTL = TTL input ST = Schmitt Trigger input								

TABLE 1-2: PIC16F871 PINOUT DESCRIPTION (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt or LVP mode.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

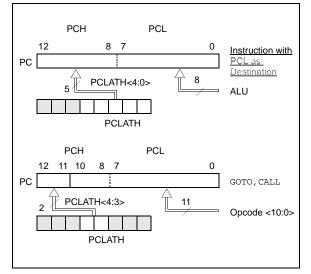
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS ⁽²⁾	
Bank 2					•		•	•	•	•	•	
100h ⁽⁴⁾	INDF	Addressing	this location	uses conte	ents of FSR t	o address dat	a memory (n	ot a physica	l register)	0000 0000	0000 0000	
101h	TMR0	Timer0 Mod	0 Module's Register xxxx xxx									
102h ⁽⁴⁾	PCL	Program Co	ounter's (PC) Least Sigr	nificant Byte					0000 0000	0000 0000	
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	000q quuu	
104h ⁽⁴⁾	FSR	Indirect Dat	a Memory A	ddress Poir	nter					XXXX XXXX	uuuu uuuu	
105h	_	Unimpleme	nted							_	—	
106h	PORTB	PORTB Da	ta Latch whe	en written: F	ORTB pins	when read				XXXX XXXX	uuuu uuuu	
107h	—	Unimpleme	nted							_	_	
108h	—	Unimpleme	nted							_	_	
109h	—	Unimpleme	nted							_	_	
10Ah ^(1,4)	PCLATH	_	_	_	Write Buffe	for the upper	r 5 bits of the	Program Co	ounter	0 0000	0 0000	
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u	
10Ch	EEDATA	EEPROM D	Data Registe	r						XXXX XXXX	uuuu uuuu	
10Dh	EEADR	EEPROM A	ddress Reg	ister						XXXX XXXX	uuuu uuuu	
10Eh	EEDATH	_	_	EEPROM	Data Registe	r High Byte				XXXX XXXX	uuuu uuuu	
10Fh	EEADRH	_	_	_	EEPROM A	ddress Regis	ter High Byte)		XXXX XXXX	uuuu uuuu	
Bank 3												
180h ⁽⁴⁾	INDF	Addressing	this location	uses conte	ents of FSR t	o address dat	a memory (n	ot a physica	l register)	0000 0000	0000 0000	
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
182h ⁽⁴⁾	PCL	Program Co	ounter's (PC) Least Sigr	nificant Byte					0000 0000	0000 0000	
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	000q quuu	
184h ⁽⁴⁾	FSR	Indirect Dat	a Memory A	ddress Poir	nter					XXXX XXXX	uuuu uuuu	
185h	_	Unimpleme	nted							_	—	
186h	TRISB	PORTB Da	ta Direction	Register						1111 1111	1111 1111	
187h	_	Unimpleme	nted							_	—	
188h	_	Unimpleme	nted							_	—	
189h	_	Unimplemented								_	—	
18Ah ^(1,4)	PCLATH	— — — Write Buffer for the upper 5 bits of the Program Counter								0 0000	0 0000	
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u	
18Ch	EECON1	EEPGD	—	—	—	WRERR	WREN	WR	RD	x x000	x u000	
18Dh	EECON2	EEPROM (Control Regis	ster2 (not a	physical reg	ster)						
18Eh	—	Reserved n	naintain clea	r						0000 0000	0000 0000	
18Fh	_	Reserved n	naintain clea	r						0000 0000	0000 0000	

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)
------------	-------------------------------------	-------------

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.


4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

2.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC16FXXX family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Program Memory Paging

The PIC16FXXX architecture is capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide 11 bits of the address, which allows branches within any 2K program memory page. Therefore, the 8K words of program memory are broken into four pages. Since the PIC16F872 has only 2K words of program memory or one page, additional code is not required to ensure that the correct page is selected before a CALL or GOTO instruction is executed. The PCLATH<4:3> bits should always be maintained as zeros. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Manipulation of the PCLATH is not required for the return instructions.

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select register, FSR. Reading the INDF register itself indirectly (FSR = 0) will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-4.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: IND	IRECT ADDRESSING
------------------	------------------

NEXT	movlw movwf clrf incf btfss goto	0x20 FSR INDF FSR,F FSR,4 NEXT	;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next
CONTIN	UE		
:			;yes continue

NOTES:

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2 Tosc (and a small RC delay of 20 ns) and low for at least 2 Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

5.3 Prescaler

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. This prescaler is not readable or writable (see Figure 5-1).

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF1, MOVWF1, BSF1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note:	Writing to TMR0 when the prescaler is								
	assigned to Timer0, will clear the								
	prescaler count, but will not change the								
	prescaler assignment.								

REGISTER 5-1: OPTION_REG REGISTER

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0		
	bit 7							bit 0		
bit 7	RBPU									
bit 6	INTEDG									
bit 5	TOCS: TMR0 Clock Source Select bit									
	1 = Transi	tion on T0CK	l pin							
	0 = Interna	al instruction	cycle clock	(CLKO)						
bit 4	TOSE: TM	R0 Source E	dge Select	bit						
		nent on high-t								
	0 = Increm	nent on low-to	o-high trans	sition on TOC	CKI pin					
bit 3	PSA: Pres	scaler Assign	ment bit							
		aler is assign aler is assign								
bit 2-0		Prescaler Ra								
	Bit Value	TMR0 Rate	WD1 Rate	e						
	000	1:2	1:1							
	001 010	1:4 1:8	1:2 1:4							
	010	1:16	1:8							
	100	1:32	1:16							
	101	1:64	1:32							
	110	1:128	1:64							
	111	1 : 256	1 : 128							
	Legend:									
	R = Reada	able bit	VV = V	Vritable bit	U = Unimpl	lemented b	it, read as ')'		
	- n = Value		'1' = E	Bit is set	'0' = Bit is o		x = Bit is ur			
- · ·					uence shown ir					

Note: To avoid an unintended device RESET, the instruction sequence shown in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

6.4 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt-on-overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 6.4.1).

In Asynchronous Counter mode, Timer1 cannot be used as a time base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

6.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low power oscillator, rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Typ	е	Freq.	C1	C2				
LP		32 kHz	33 pF	33 pF				
		100 kHz	15 pF	15 pF				
		200 kHz	200 kHz 15 pF 15 pl					
These	va	lues are for	design guida	nce only.				
Crystals Tested:								
32.768 kl	1R32.768K-A	± 20 PPM						
100 kH:	00 kHz Epson C-2 100.00 KC-P ± 20 PP							
200 kH:	Z	STD XTL	± 20 PPM					
Note 1: 2:	of tim Sii ch res	oscillator, but ne. nce each reso aracteristics, t sonator/crysta	nce increases also increases nator/crystal h he user should I manufactured es of external	as its own d consult the for				

6.6 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP	י1								
	module will not set interrupt flag bi									
	TMR1IF (PIR1<0>).									

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRH:CCPRL register pair effectively becomes the period register for Timer1.

When setting up an Asynchronous Reception, follow these steps:

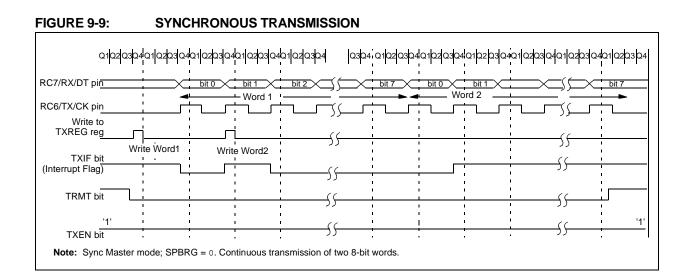
- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 9.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

TABLE 9-	ABLE 9-6: REGISTERS ASSOCIATED WITH ASTNCHRONOUS RECEPTION										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive Reg	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Generato	r Register						0000 0000	0000 0000

 TABLE 9-6:
 REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.


Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	USART Transmit Register							0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register									0000 0000	0000 0000

 TABLE 9-8:
 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

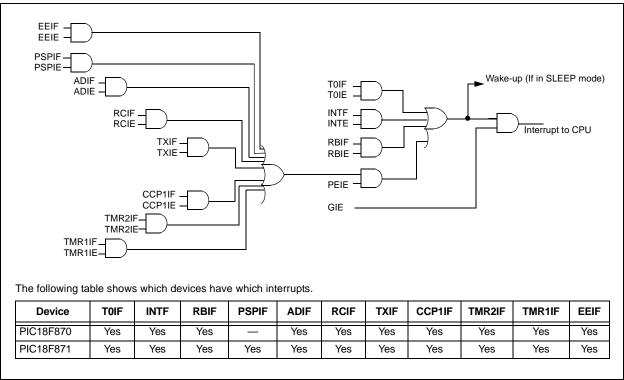

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

FIGURE 9-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

FIGURE 11-9: INTERRUPT LOGIC

11.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit, GIE, decides whether or not the processor branches to the interrupt vector following wake-up. See Section 11.13 for details on SLEEP mode.

11.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 5.0).

11.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 4.2).

TABLE 12-2:	PIC16F870/871 INSTRUCTION SET
-------------	-------------------------------

Mnemonic, Operands		Description	Cycles		14-Bit	Status	Notes		
		Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE	E REGISTER OPE	RATIC	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		-
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110		ffff	-, -,	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE	REGISTER OPER	RATIO	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CO	NTROL OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	2	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11		kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11		kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1:		I/O register is modified as a function of itse							proces

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \ \overline{PD} \end{array}$					
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.					

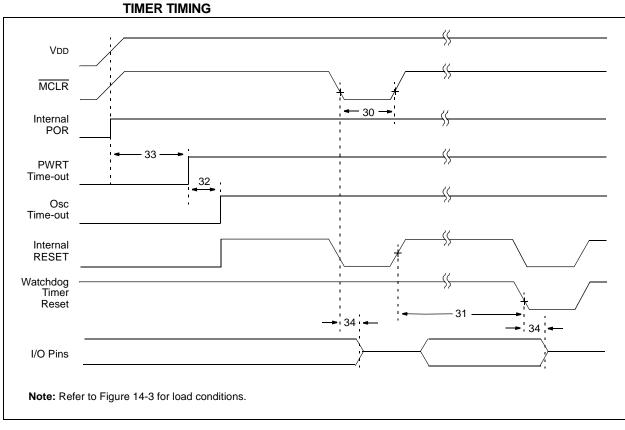
CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

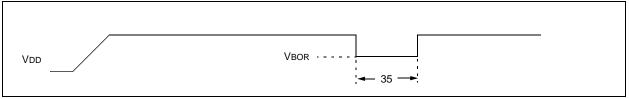
DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

DC CHA	RACTI	ERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating voltage VDD range as described in DC specification (Section)					
Param No.	Sym	n Characteristic Min Typ† Max Units			Units	Conditions		
	VIL	Input Low Voltage						
		I/O ports:						
D030		with TTL buffer	Vss	—	0.15 Vdd	V	For entire VDD range	
D030A			Vss	—	0.8V	V	$4.5V \le VDD \le 5.5V$	
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V		
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2 Vdd	V		
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3 Vdd	V	(Note 1)	
		Ports RC3 and RC4:						
D034		with Schmitt Trigger buffer	Vss	—	0.3 Vdd	V	For entire VDD range	
D034A		with SMBus	-0.5	—	0.6	V	For VDD = 4.5 to 5.5V	
	Vih	Input High Voltage						
		I/O ports:		—				
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$	
D040A			0.25 VDD + 0.8V		Vdd	V	For entire VDD range	
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	For entire VDD range	
D042		MCLR	0.8 Vdd	—	Vdd	V		
D042A		OSC1 (XT, HS and LP)	0.7 Vdd	—	Vdd	V	(Note 1)	
D043		OSC1 (in RC mode)	0.9 Vdd	—	Vdd	V		
		Ports RC3 and RC4:						
D044		with Schmitt Trigger buffer	0.7 Vdd	—	Vdd	V	For entire VDD range	
D044A		with SMBus	1.4	—	5.5	V	For VDD = 4.5 to 5.5V	
D070A	Ipurb	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5V, VPIN = VSS	
	lı∟	Input Leakage Current ^(2,3)						
D060		I/O ports	—	-	±1	μA	$Vss \le VPIN \le VDD,$ Pin at hi-impedance	
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$Vss \le VPIN \le VDD$	
D063		OSC1	—	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	


14.3 DC Characteristics: PIC16F870/871 (Extended)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.

FIGURE 14-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

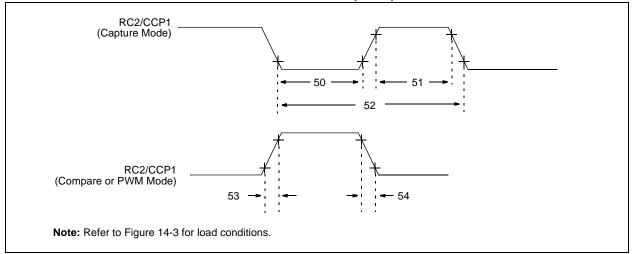
FIGURE 14-7: BROWN-OUT RESET TIMING

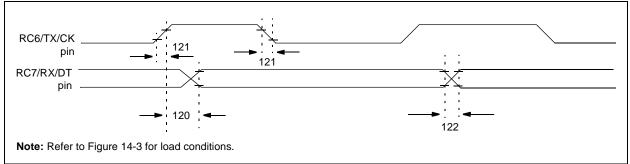
TABLE 14-3:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	_	μS	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	—		Tosc = OSC1 period
33*	TPWRT	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μS	
35	TBOR	Brown-out Reset pulse width	100	—	—	μS	$VDD \leq VBOR (D005)$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.




TABLE 14-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	* CCP1	No Prescaler	Prescaler		_		ns	
		input low		Standard(F)	10		_	ns	
		time	With Prescaler	Extended(LF)	20	_	_	ns	
51*	TccH	CCP1 input high time	No Prescaler		0.5 TCY + 20	_	_	ns	
			Standard(F)	10		_	ns		
			With Prescaler	Extended(LF)	20	_	_	ns	
52*	TccP	CCP1 input period			<u>3 Tcy + 40</u> N	—	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 output fall time		Standard(F)	—	10	25	ns	
				Extended(LF)	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

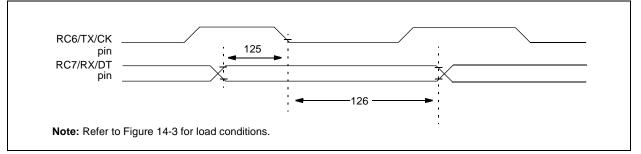


TABLE 14-7: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	Standard(F)		_	80	ns	
			Extended(LF)	_		100	ns	
121	Tckrf	Clock out rise time and fall time (Master mode)	Standard(F)	_	_	45	ns	
			Extended(LF)	_	_	50	ns	
122	Tdtrf	Data out rise time and fall time	Standard(F)	_	—	45	ns	
			Extended(LF)		—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 14-8: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TdtV2ckL	<u>SYNC RCV (MASTER & SLAVE)</u> Data setup before CK ↓ (DT setup time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—		ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

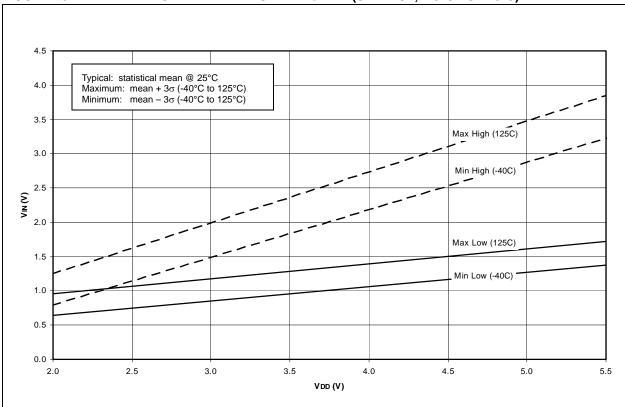
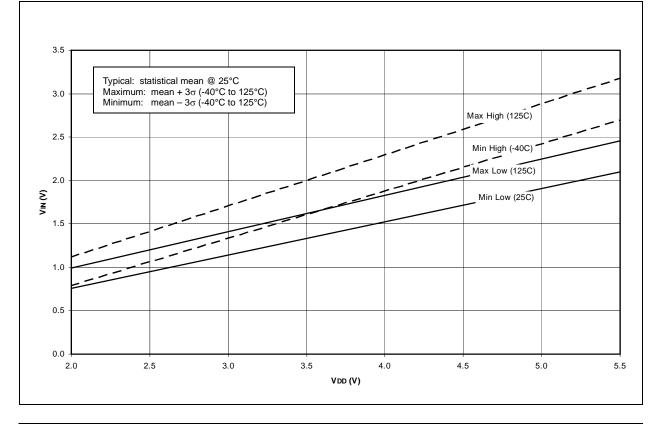



FIGURE 15-21: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO 125°C)

© 2000-2013 Microchip Technology Inc.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2000-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769379

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.