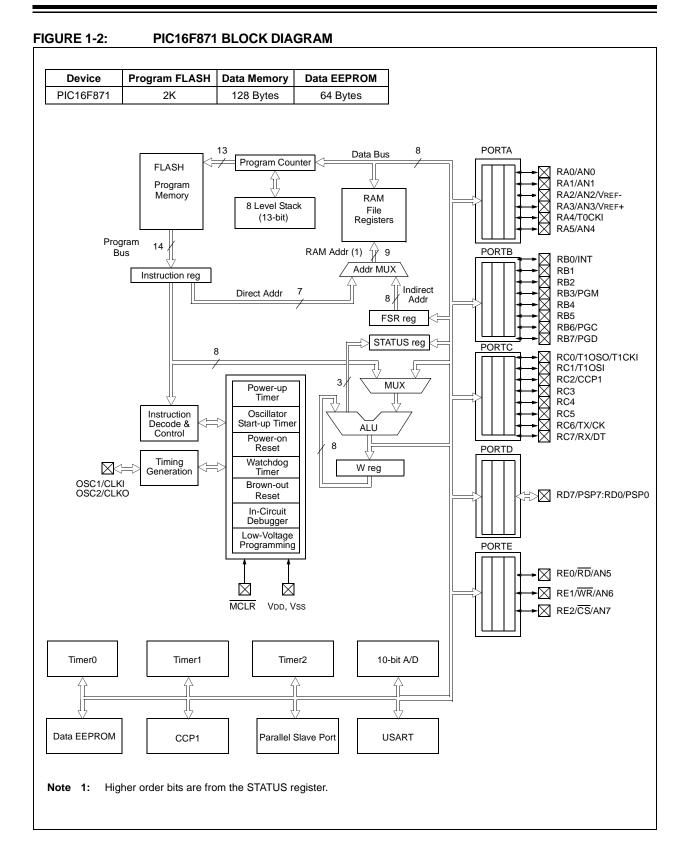


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf870-i-sp

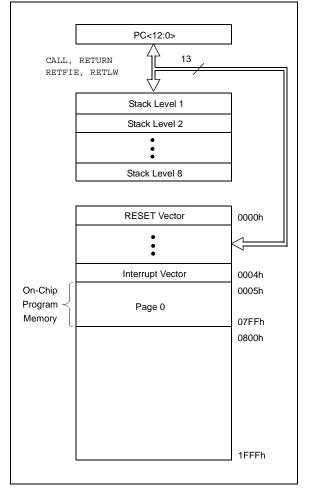
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.0 MEMORY ORGANIZATION

The PIC16F870/871 devices have three memory blocks. The Program Memory and Data Memory have separate buses, so that concurrent access can occur, and is detailed in this section. The EEPROM data memory block is detailed in Section 3.0.


Additional information on device memory may be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

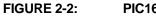
2.1 Program Memory Organization

The PIC16F870/871 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16F870/871 devices have 2K x 14 words of FLASH program memory. Accessing a location above the physically implemented address will cause a wraparound.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.


RP<1:0>	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some "high use" Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Note:	EEPROM Data Memory description can
	be found in Section 3.0 of this Data Sheet.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR.

PIC16F870/871 REGISTER FILE MAP

	File Address		File Address		File Address		File Addres
ndirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180ŀ
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181ŀ
PCL	02h	PCL	82h	PCL	102h	PCL	182ł
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183ł
FSR	04h	FSR	84h	FSR	104h	FSR	184ł
PORTA	05h	TRISA	85h		105h		185ł
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186ł
PORTC	07h	TRISC	87h		107h		187ł
PORTD ⁽²⁾	08h	TRISD ⁽²⁾	88h		108h		188ł
PORTE ⁽²⁾	09h	TRISE ⁽²⁾	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18B
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18C
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18D
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18E
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18F
T1CON	10h		90h		110h		190
TMR2	11h		91h				
T2CON	12h	PR2	92h				
	13h		93h				
	14h		94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
	1Bh		9Bh				
	1Ch		9Ch				
	1Dh		9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		1005		1 4 01
	20h	General Purpose	A0h	accesses	120h	accesses	1A0
General		Register		20h-7Fh		A0h - BFh	
Purpose Register		32 Bytes	BFh C0h				1BF 1C0
96 Bytes			EFh F0h		16Fh 170h		1EF
	7Fh	accesses 70h-7Fh	FFh	accesses 70h-7Fh	17Fh	accesses 70h-7Fh	1F0I 1FF
Bank 0		Bank 1		Bank 2		Bank 3	

* Not a physical register.

Note 1: These registers are reserved; maintain these registers clear.

2: These registers are not implemented on the PIC16F870.

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other RESET, except by the CCP1 special event trigger.

T1CON register is reset to 00h on a Power-on Reset, or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

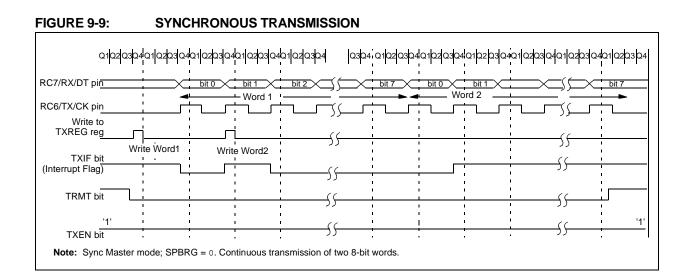
6.8 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		all c	e on other SETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
0Eh	TMR1L	Holding R	egister fo	r the Least	Significant	Byte of the	16-bit TM	R1 Registe	er	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding R	lolding Register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.


Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	9h SPBRG Baud Rate Generator Register										0000 0000

 TABLE 9-8:
 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

FIGURE 9-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

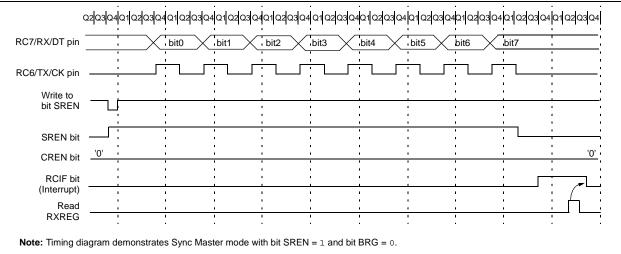

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG		0000 0000	0000 0000							
Logond	unkno		malamant	od rood	20 '0' SH	adad ca	lle ara not	upped for a	nchronour	montor recent	ion

 TABLE 9-9:
 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

9.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Reception, follow these steps:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

TABLE 9-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera		0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870, always maintain these bits clear.

10.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note:	For the A/D module to operate in SLEEP,
	the A/D clock source must be set to RC
	(ADCS1:ADCS0 = 11). To allow the con-
	version to occur during SLEEP, ensure the
	SLEEP instruction immediately follows the
	instruction that sets the GO/DONE bit.

10.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	V <u>alue o</u> n MCLR, WDT
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
1Eh	ADRESH	A/D Resul	t Register		xxxx xxxx	uuuu uuuu					
9Eh	ADRESL	A/D Resul	t Register	Low Byte	e					xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	—	_	—	PCFG3	PCFG2	PCFG1	PCFG0	0-0000	0- 0000
85h	TRISA	—	_	PORTA	Data Directio	n Register				11 1111	11 1111
05h	PORTA	_	_	PORTA	Data Latch w	ad	0x 0000	Ou 0000			
89h ⁽¹⁾	TRISE	IBF	OBF	IBOV	PSPMODE	—	n bits	0000 -111	0000 -111		
09h ⁽¹⁾	PORTE	—	_	_	—	_	RE2	RE1	RE0	xxx	uuu

TABLE 10-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers/bits are not available on the 28-pin devices.

POR	BOR	то	PD						
0	x	1	1	Power-on Reset					
0	х	0	x	egal, TO is set on POR					
0	x	x	0	egal, PD is set on POR					
1	0	1	1	Brown-out Reset					
1	1	0	1	WDT Reset					
1	1	0	0	WDT Wake-up					
1	1	u	u	MCLR Reset during normal operation					
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP					

TABLE 11-4: STATUS BITS AND THEIR SIGNIFICANCE

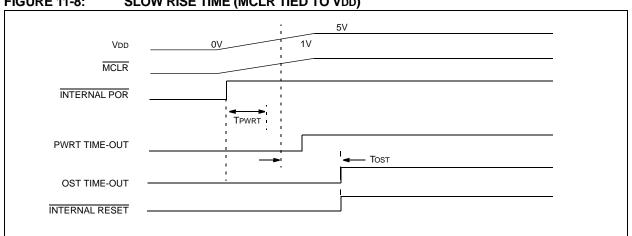
Legend: x = don't care, u = unchanged

TABLE 11-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).


TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt	
W	PIC16F870	PIC16F871	XXXX XXXX	uuuu uuuu	սսսս սսսս	
INDF	PIC16F870	PIC16F871	N/A	N/A	N/A	
TMR0	PIC16F870	PIC16F871	xxxx xxxx	uuuu uuuu	սսսս սսսս	
PCL	PIC16F870	PIC16F871	0000h	0000h	PC + 1 ⁽²⁾	
STATUS	PIC16F870	PIC16F871	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾	
FSR	PIC16F870	PIC16F871	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTA	PIC16F870	PIC16F871	0x 0000	0u 0000	uu uuuu	
PORTB	PIC16F870	PIC16F871	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTC	PIC16F870	PIC16F871	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTD	PIC16F870	PIC16F871	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTE	PIC16F870	PIC16F871	xxx	uuu	uuu	
PCLATH	PIC16F870	PIC16F871	0 0000	0 0000	u uuuu	
INTCON	PIC16F870	PIC16F871	0000 000x	0000 000u	uuuu uuuu (1)	

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

- **2:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
- **3:** See Table 11-5 for RESET value for specific condition.

SLOW RISE TIME (MCLR TIED TO VDD) **FIGURE 11-8:**

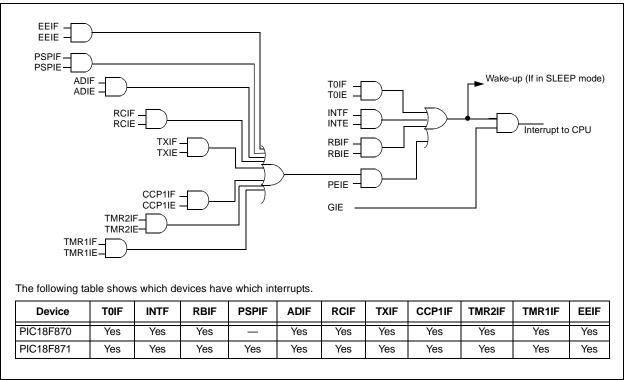
11.10 Interrupts

The PIC16F870/871 family has up to 14 sources of interrupt. The Interrupt Control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual	interru	pt fla	ag	bits	are	set,
	regardless	of	the	stat	tus	of	their
	correspond	ling ma	sk bit	t, or	the G	SIE b	it.

A global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.


The RB0/INT pin interrupt, the RB port change interrupt, and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register, INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or GIE bit.

FIGURE 11-9: INTERRUPT LOGIC

11.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit, GIE, decides whether or not the processor branches to the interrupt vector following wake-up. See Section 11.13 for details on SLEEP mode.

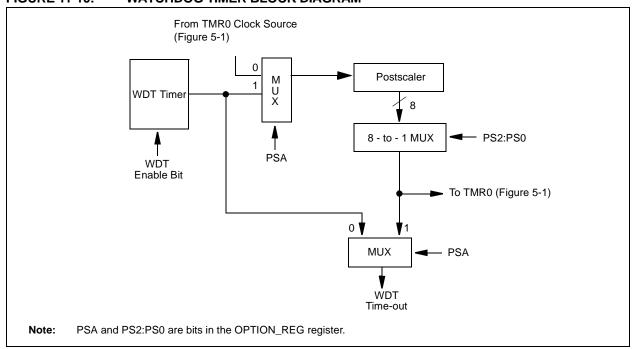
11.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 5.0).

11.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 4.2).

11.12 Watchdog Timer (WDT)


The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTEN (Section 11.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 11-10: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 11-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BOREN ⁽¹⁾	CP1	CP0	PWRTEN ⁽¹⁾	WDTEN	FOSC1	FOSC0
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

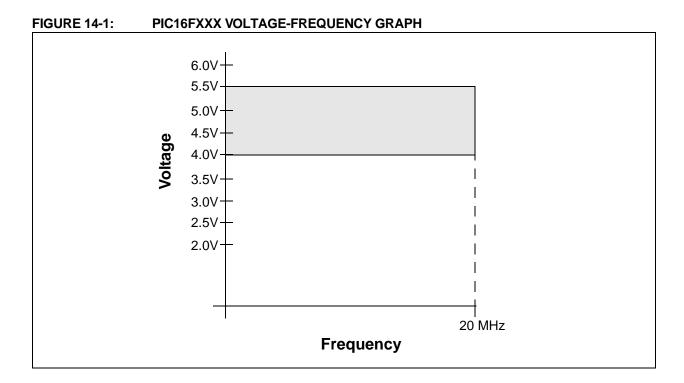
Legend: Shaded cells are not used by the Watchdog Timer.

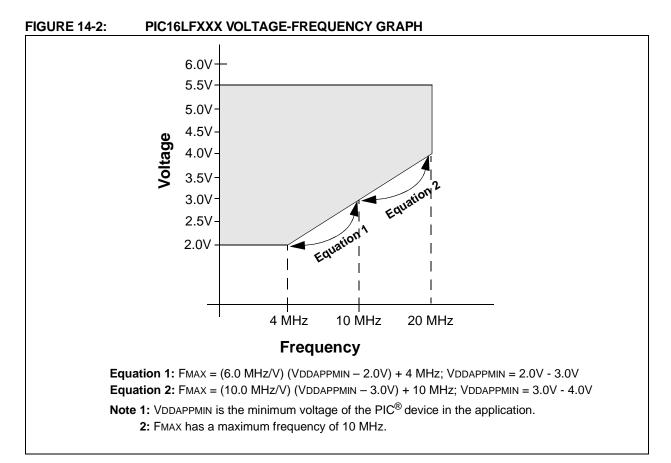
Note 1: See Register 11-1 for operation of these bits.

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.


BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.


ANDLW	AND Literal with W		
Syntax:	[<i>label</i>] ANDLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	(W) .AND. (k) \rightarrow (W)		
Status Affected:	Z		
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.		

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

ANDWF	AND W with f			
Syntax:	[label] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2 TCY instruction.

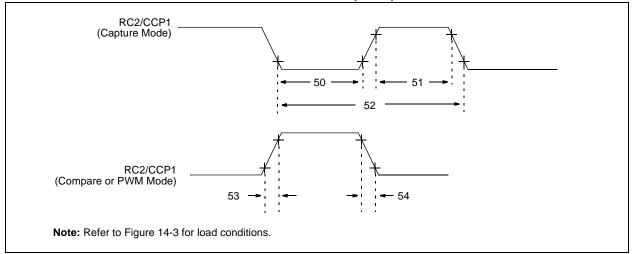


TABLE 14-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	* CCP1 input low time	No Prescaler		0.5 TCY + 20	_		ns	
			With Prescaler	Standard(F)	10		_	ns	
				Extended(LF)	20	_	_	ns	
51*	TccH	CCP1 input high time	No Prescaler		0.5 TCY + 20	_	_	ns	
			With Prescaler	Standard(F)	10		_	ns	
				Extended(LF)	20	_	_	ns	
52*	TccP	CCP1 input period			<u>3 Tcy + 40</u> N	—	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 output fall time		Standard(F)	—	10	25	ns	
				Extended(LF)	_	25	45	ns	

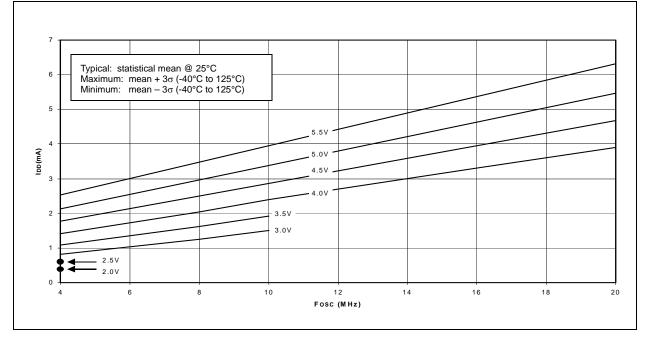
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.



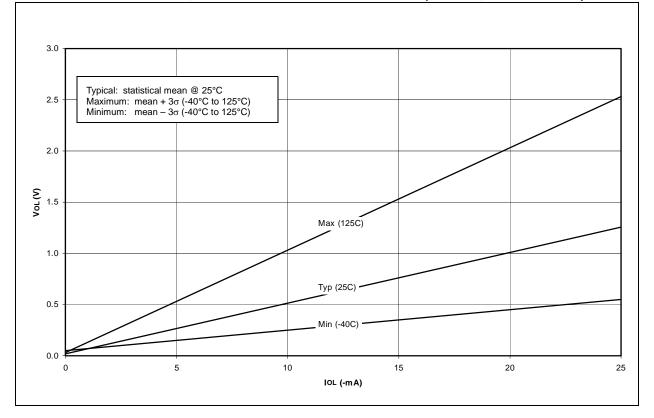
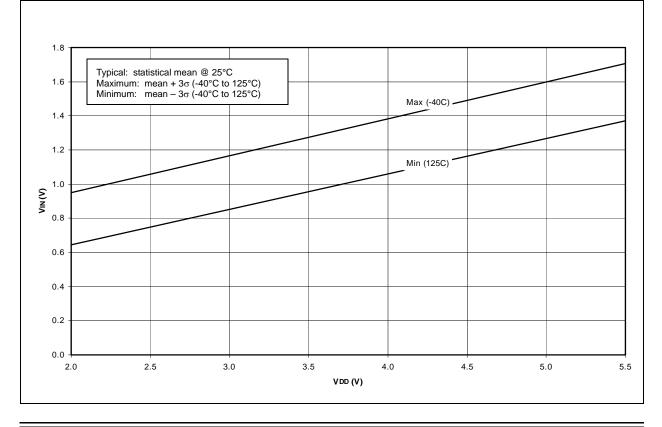


FIGURE 15-2: MAXIMUM IDD vs. Fosc OVER VDD (HS MODE)



© 2000-2013 Microchip Technology Inc.

APPENDIX A: REVISION HISTORY

Revision A (December 1999)

Original data sheet for the PIC16F870/871 family.

Revision B (April 2003)

This revision includes the DC and AC Characteristics Graphs and Tables. The Electrical Specifications in Section 14.0 have been updated and there have been minor corrections to the data sheet text.

Revision C (January 2013)

Added a note to each package outline drawing.

TABLE B-1: DEVICE DIFFERENCES

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Feature	PIC16F870	PIC16F871		
On-chip Program Memory (Kbytes)	2K	2K		
Data Memory (bytes)	128	128		
Boot Block (bytes)	2048	512		
Timer1 Low Power Option	Yes	No		
I/O Ports	Ports A, B, C	Ports A, B, C, D, E		
A/D Channels	5	8		
External Memory Interface	No	No		
Package Types	28-pin DIP, SOIC, SSOP	40-pin PDIP, 44-pin PLCC, TQFP		

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC17C756 to a PIC18F8720.

Not Applicable

APPENDIX D: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442." The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.