

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf871-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bit for the EEPROM write operation interrupt.

```
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.
```

REGISTER 2-7: PIR2 REGISTER (ADDRESS: 0Dh)

U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
—	—	—	EEIF	—	—	—	—
bit 7							bit 0

bit 7-5 Unimplemented: Read as '0'

bit 4 **EEIF**: EEPROM Write Operation Interrupt Flag bit

- 1 = The write operation completed (must be cleared in software)
- 0 = The write operation is not complete or has not been started

bit 3-0 Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC16F870/871

NOTES:

Write operations have two control bits, WR and WREN, and two status bits, WRERR and EEIF. The WREN bit is used to enable or disable the write operation. When WREN is clear, the write operation will be disabled. Therefore, the WREN bit must be set before executing a write operation. The WR bit is used to initiate the write operation. It also is automatically cleared at the end of the write operation. The interrupt flag EEIF is used to determine when the memory write completes. This flag must be cleared in software before setting the WR bit. For EEPROM data memory, once the WREN bit and the WR bit have been set, the desired memory address in EEADR will be erased, followed by a write of the data in EEDATA. This operation takes place in parallel with the microcontroller continuing to execute normally. When the write is complete, the EEIF flag bit will be set. For program memory, once the WREN bit and the WR bit have been set, the microcontroller will cease to execute instructions. The desired memory location pointed to by EEADRH:EEADR will be erased. Then, the data value in EEDATH:EEDATA will be programmed. When complete, the EEIF flag bit will be set and the microcontroller will continue to execute code.

The WRERR bit is used to indicate when the PIC16F870/871 devices have been reset during a write operation. WRERR should be cleared after Power-on Reset. Thereafter, it should be checked on any other RESET. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset, during normal operation. In these situations, following a RESET, the user should check the WRERR bit and rewrite the memory location, if set. The contents of the data registers, address registers and EEPGD bit are not affected by either MCLR Reset, or WDT Time-out Reset, during normal operation.

REGISTER 3-1: EECON1 REGISTER (ADDRESS: 18Ch)

- n = Value at POR

	R/W-x	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0				
	EEPGD	—	—	—	WRERR	WREN	WR	RD				
	bit 7							bit 0				
bit 7	EEPGD: P	rogram/Data	a EEPROM	Select bit								
	1 = Access	ses program	memory									
	0 = Access	ses data me	mory	a read ar w	rita anaratian ia	in progras	~)					
h:+ C 4				a read of w	nie operation is	in progres	s.)					
DIL 0-4	Unimpiem											
bit 3	WRERR: E	/RERR : EEPROM Error Flag bit										
	1 = A write	e operation	is prematur	ely terminat	ed (any MCLR	Reset or a	ny WDT Re	set during				
	norma ∩ – The w	ii operation) rite operatio	n complete	Ч								
hit 2			o Enablo bi	t								
		write cycles		ι								
	0 = Inhibits	write to the	EEPROM									
bit 1	WR: Write	Control bit										
	1 = Initiate	es a write cy	cle. (The bi	t is cleared	by hardware on	ce write is	complete. 7	The WR bit				
	can or	nly be set (n	ot cleared) i	in software.)			·					
	0 = Write of	cycle to the	EEPROM is	s complete								
bit 0	RD: Read	Control bit										
	1 = Initiates an EEPROM read. (RD is cleared in hardware. The RD bit can only be set (not cleared) in software.)											
	0 = Does I	not initiate a	n EEPRON	l read								
	Legend:											
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimple	emented b	it, read as '	נ'				

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

4.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 4-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as the destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

FIGURE 4-5:

PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/ PWM1 output.
RC3	bit3	ST	Input/output port pin.
RC4	bit4	ST	Input/output port pin.
RC5	bit5	ST	Input/output port pin.
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive or Synchronous Data.

TABLE 4-5:PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 4-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC Data Direction Register							1111 1111	1111 1111	

Legend: x = unknown, u = unchanged

8.4.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFFh	0xFFh	0xFFh	0x3Fh	0x1Fh	0x17h
Maximum Resolution (bits)	10	10	10	8	7	6.5

TABLE 8-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

TABLE 8-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,	e on: BOR	Valu all o RES	e on ther ETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
87h	TRISC	PORTC [Data Dire	ection Regis	ster					1111	1111	1111	1111
0Eh	TMR1L	Holding F	Register	for the Leas	st Significa	nt Byte of th	e 16-bit TN	/IR1 Regist	ter	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding F	Register	for the Mos	t Significan	t Byte of the	e 16-bit TM	IR1 Regist	er	xxxx	xxxx	uuuu	uuuu
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture/0	Capture/Compare/PWM Register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM Register1 (MSB)							xxxx	xxxx	uuuu	uuuu	
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: The PSP is not implemented on the PIC16F870; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,	e on: BOR	Valu all o RES	e on ther ETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
87h	TRISC	PORTC [PORTC Data Direction Register									1111	1111
11h	TMR2	Timer2 M	odule's Reg	ister						0000	0000	0000	0000
92h	PR2	Timer2 M	odule's Peri	od Register						1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/0	Compare/PV	VM Register	r1 (LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM Register1 (MSB)								xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

TABLE 8-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

DAUD	F	osc = 20 M	Hz	F	osc = 16 M	Hz	F	osc = 10 M	Hz
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-
1.2	-	-	-	-	-	-	-	-	-
2.4	-	-	-	-	-	-	2.441	1.71	255
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	-	255	3.906	-	255	2.441	-	255
LOW	1250.000	-	0	1000.000		0	625.000	-	0

TABLE 9-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	F	osc = 4 MI	łz	Fos	c = 3.6864	MHz
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-
1.2	1.202	0.17	207	1.2	0	191
2.4	2.404	0.17	103	2.4	0	95
9.6	9.615	0.16	25	9.6	0	23
19.2	19.231	0.16	12	19.2	0	11
28.8	27.798	3.55	8	28.8	0	7
33.6	35.714	6.29	6	32.9	2.04	6
57.6	62.500	8.51	3	57.6	0	3
HIGH	0.977	-	255	0.9	-	255
LOW	250.000	-	0	230.4	-	0

9.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

9.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Transmission, follow these steps:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
19h	TXREG	USART Tr	ansmit R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

TABLE 9-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F870; always maintain these bits clear.

These steps should be followed for doing an A/D Conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - Set GIE bit

- 3. Wait the required acquisition time.
- 4. Start conversion:
 Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts enabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

10.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 10-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 10-2. **The maximum recommended impedance for analog sources is 10 k** Ω . As the impedance is decreased, the acquisition time may

be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 10-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

EQUATION 10-1: ACQUISITION TIME

TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient = TAMP + TC + TCOFF $= 2 \ \mu s + TC + [(Temperature - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$ TC = CHOLD (RIC + RSs + Rs) In(1/2047) $= -120 \ pF (1 \ k\Omega + 7 \ k\Omega + 10 \ k\Omega) In(0.0004885)$ $= 16.47 \ \mu s$ $TACQ = 2 \ \mu s + 16.47 \ \mu s + [(50^{\circ}C - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$ $= 19.72 \ \mu s$

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

POR	BOR	то	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 11-4: STATUS BITS AND THEIR SIGNIFICANCE

Legend: x = don't care, u = unchanged

TABLE 11-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt	
W	PIC16F870	PIC16F871	XXXX XXXX	uuuu uuuu	սսսս սսսս	
INDF	PIC16F870	PIC16F871	N/A	N/A	N/A	
TMR0	PIC16F870	PIC16F871	XXXX XXXX	uuuu uuuu	սսսս սսսս	
PCL	PIC16F870	PIC16F871	0000h	0000h	PC + 1 (2)	
STATUS	PIC16F870	PIC16F871	0001 1xxx	000q quuu (3)	uuuq quuu (3)	
FSR	PIC16F870	PIC16F871	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTA	PIC16F870	PIC16F871	0x 0000	0u 0000	uu uuuu	
PORTB	PIC16F870	PIC16F871	XXXX XXXX	uuuu uuuu	սսսս սսսս	
PORTC	PIC16F870	PIC16F871	xxxx xxxx	սսսս սսսս	սսսս սսսս	
PORTD	PIC16F870	PIC16F871	XXXX XXXX	uuuu uuuu	սսսս սսսս	
PORTE	PIC16F870	PIC16F871	xxx	uuu	uuu	
PCLATH	PIC16F870	PIC16F871	0 0000	0 0000	u uuuu	
INTCON	PIC16F870	PIC16F871	0000 000x	0000 000u	uuuu uuuu (1)	

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

- **2:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
- **3:** See Table 11-5 for RESET value for specific condition.

11.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and STATUS register). This will have to be implemented in software.

For the PIC16F870/871 devices, the register W_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., If W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1). The registers, PCLATH_TEMP and STATUS_TEMP, are only defined in bank 0.

Since the upper 16 bytes of each bank are common in the PIC16F870/871 devices, temporary holding registers W_TEMP, STATUS_TEMP, and PCLATH_TEMP should be placed in here. These 16 locations don't require banking and therefore, make it easier for context save and restore. The same code shown in Example 11-1 can be used.

EXAMPLE 11-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOTUT		
MOVWE	M_IEME	; copy w to immr register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
:		
:(ISR)		;(Insert user code here)
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

; Q1 Q2 Q3 Q4; Q1 Q2 Q3 Q OSC1 ////////////////////////////////////		Q1 Q2 Q3 Q4	; Q1 Q2 Q3 Q4; ;/~_/~_/~_/ ;//	011 021 031 04; 	Q1 Q2 Q3 Q4 \/\/\/\
INTF Flag (INTCON<1>)			Interrupt Latency	2)	
GIE bit (INTCON<7>)	Processor in SLEEP	<u> </u> 		i	1 1 1
INSTRUCTION FLOW		l l	1 I 1 I	1	I I
PC X PC X PC+1	X PC+2	PC+2	X PC + 2 X	<u> 0004h X</u>	0005h
$ \begin{array}{l} \text{Instruction} \\ \text{Fetched} \end{array} \Big\{ \begin{array}{l} \text{Inst}(\text{PC}) = \text{SLEEP} & \text{Inst}(\text{PC}+1) \end{array} \Big\} \\ \end{array} \\$		Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction Executed { Inst(PC - 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, HS or LP Oscillator mode assume 2: Tost = 1024 Tosc (drawing not to sca	d. le). This delay will not be	e there for RC Os	c mode.		

3: GIE = 1 assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.

4: CLKO is not available in these Osc modes, but shown here for timing reference.

11.14 In-Circuit Debugger

When the DEBUG bit in the configuration word is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] ICD. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 11-8 shows which features are consumed by the background debugger.

TABLE 11-8: DEBUGGER RESO

I/O pins	RB6, RB7
Stack	1 level
Program Memory	Address 0000h must be NOP
	Last 100h words
Data Memory	0x070 (0x0F0, 0x170, 0x1F0) 0x1EB - 0x1EF

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, GND, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip, or one of the third party development tool companies.

11.15 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

11.16 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

13.14 PICDEM 1 PIC MCU Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs.

13.15 PICDEM.net Internet/Ethernet Demonstration Board

The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham

13.16 PICDEM 2 Plus Demonstration Board

The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessarv hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 FLASH microcontrollers.

13.17 PICDEM 3 PIC16C92X Demonstration Board

The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.

13.18 PICDEM 4 8/14/18-Pin Demonstration Board

The PICDEM 4 can be used to demonstrate the capabilities of the 8-, 14-, and 18-pin PIC16XXXX and PIC18XXXX MCUs, including the PIC16F818/819, PIC16F87/88, PIC16F62XA and the PIC18F1320 family of microcontrollers. PICDEM 4 is intended to showcase the many features of these low pin count parts, including LIN and Motor Control using ECCP. Special provisions are made for low power operation with the supercapacitor circuit, and jumpers allow on-board hardware to be disabled to eliminate current draw in this mode. Included on the demo board are provisions for Crystal, RC or Canned Oscillator modes, a five volt regulator for use with a nine volt wall adapter or battery, DB-9 RS-232 interface. ICD connector for programming via ICSP and development with MPLAB ICD 2, 2x16 liquid crystal display, PCB footprints for H-Bridge motor driver, LIN transceiver and EEPROM. Also included are: header for expansion, eight LEDs, four potentiometers, three push buttons and a prototyping area. Included with the kit is a PIC16F627A and a PIC18F1320. Tutorial firmware is included along with the User's Guide.

13.19 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board FLASH memory. A generous prototype area is available for user hardware expansion.

PIC16F870/871

DC Characteristics: PIC16F870/871 (Extended) (Continued) 14.3

Param No.SymCharacteristicMinTyp†MaxUnitsConditionD080AVOLOutput Low Voltage I/O ports0.6VIOL = 7.0 mA, VDD =D083AOSC2/CLKO (RC osc config)0.6VIOL = 1.2 mA, VDD =D090AVOHOutput High Voltage I/O ports ⁽³⁾ VDD - 0.7VIOH = -2.5 mA, VDD =D092AOSC2/CLKO (RC osc config)VDD - 0.7VIOH = -1.0 mA, VDD =D150*VODOpen Drain High Voltage IIGH Secs on Output Pins8.5VRA4 pin	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C \leq TA \leq +125°C Operating voltage VDD range as described in DC specification (Section)				
VOLOutput Low Voltage0.6VIOL = 7.0 mA, VDD =D080AI/O ports0.6VIOL = 7.0 mA, VDD =D083AOSC2/CLKO (RC osc config)0.6VIOL = 1.2 mA, VDD =VOHOutput High VoltageVIOH = -2.5 mA, VDDD090AI/O ports ⁽³⁾ VDD - 0.7VIOH = -2.5 mA, VDDD092AOSC2/CLKO (RC osc config)VDD - 0.7VIOH = -1.0 mA, VDDD150*VODOpen Drain High Voltage8.5VRA4 pinCapacitive Loading Specs on Output PinsOutput Pins8.5V	ns				
D080AI/O ports $ 0.6$ VIOL = 7.0 mA, VDD =D083AOSC2/CLKO (RC osc config) $ 0.6$ VIOL = 1.2 mA, VDD =VOHOutput High Voltage $ 0.6$ VIOL = 1.2 mA, VDD =D090AI/O ports ⁽³⁾ VDD - 0.7 $ -$ VIOH = -2.5 mA, VDDD092AOSC2/CLKO (RC osc config)VDD - 0.7 $ -$ VIOH = -1.0 mA, VDDD150*VodOpen Drain High Voltage $ 8.5$ VRA4 pinCapacitive Loading Specs on Output PinsOutput Pins $ -$					
D083AOSC2/CLKO (RC osc config)0.6VIoL = 1.2 mA, VDD =V0HOutput High Voltage I/O ports ⁽³⁾ VDD - 0.7VIOH = -2.5 mA, VDDD092AOSC2/CLKO (RC osc config)VDD - 0.7VIOH = -1.0 mA, VDDD150*VODOpen Drain High Voltage Capacitive Loading Specs on Output Pins8.5VRA4 pin	= 4.5V				
VOH D090AOutput High Voltage I/O ports(3)VDD - 0.7VIOH = -2.5 mA, VDDD092AOSC2/CLKO (RC osc config)VDD - 0.7VIOH = -1.0 mA, VDDD150*VodOpen Drain High Voltage8.5VRA4 pinCapacitive Loading Specs on Output PinsOutput Pins	= 4.5V				
D090A I/O ports ⁽³⁾ VDD - 0.7 V IOH = -2.5 mA, VDD D092A OSC2/CLKO (RC osc config) VDD - 0.7 V IOH = -1.0 mA, VDD D150* VOD Open Drain High Voltage 8.5 V RA4 pin Capacitive Loading Specs on Output Pins Output Pins 8.5 V RA4 pin					
D092A OSC2/CLKO (RC osc config) VDD - 0.7 - - V IOH = -1.0 mA, VDD D150* Vod Open Drain High Voltage - - 8.5 V RA4 pin Capacitive Loading Specs on Output Pins -	= 4.5V				
D150* Vod Open Drain High Voltage — — 8.5 V RA4 pin Capacitive Loading Specs on Output Pins Output Pins Image: Capacitive Loading Spece	= 4.5V				
Capacitive Loading Specs on Output Pins					
D100 Cosc2 OSC2 pin 15 pF In XT, HS and LP m external clock is use OSC1	odes when ed to drive				
D101 CIO All I/O pins and OSC2 — — 50 pF (RC mode)					
D102 CB SCL, SDA (l ² C mode) — — 400 pF					
Data EEPROM Memory					
D120 ED Endurance 100K — E/W 25°C at 5V					
D121 VDRW VDD for read/write VMIN — 5.5 V Using EECON to re VMIN = min. operativ	ad/write, ng voltage				
D122 TDEW Erase/write cycle time — 4 8 ms					
Program FLASH Memory					
D130 EP Endurance 1000 — E/W 25°C at 5V					
D131 VPR VDD for read VMIN — 5.5 V VMIN = min operation	ng voltage				
D132A VDD for erase/write VMIN — 5.5 V Using EECON to re VMIN = min. operating	ad/write, ng voltage				
D133 TPEW Erase/Write cycle time — 4 8 ms					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 14-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Param No.	Sym	Ch	aracteristic		Min	Тур†	Max	Units	Conditions
50*	TccL	* CCP1 No Prescaler			0.5 Tcy + 20	—	—	ns	
		input low	With Prescaler	Standard(F)	10			ns	
		time		Extended(LF)	20	_		ns	
51*	ТссН	CCP1 input high time No Prescaler			0.5 TCY + 20	_		ns	
				Standard(F)	10			ns	
			With Prescaler	Extended(LF)	20	_		ns	
52*	TccP	CCP1 input period		<u>3 Tcy + 40</u> N	_		ns	N = prescale value (1,4 or 16)	
53*	TccR	CCP1 output rise time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 output fall time		Standard(F)	—	10	25	ns	
			Extended(LF)	—	25	45	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16F870/871

NOTES:

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*			MILLIMETERS			
Dimensior	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06	
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26	
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49	
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65	
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56	
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

JEDEC Equivalent: MO-09 Drawing No. C04-070

PIC16F870/871 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-x /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC16F870-I/SP 301 = Industrial temp., PDIP package, 20 MHz, normal VDD limits, QTP pattern #301. b) PIC46F971 //PT industrial tamp. TOFP
Device	PIC16F870, PIC16F870T; VDD range 4.0V to 5.5V PIC16F871, PIC16F871T; VDD range 4.0V to 5.5V PIC16LF870X, PIC16LF870T; VDD range 2.0V to 5.5V PIC16LF871X, PIC16LF871T; VDD range 2.0V to 5.5V F = Normal VDD limits LP = Extended VDD limits T = In Tape and Reel - SOIC, SSOP, TQFP and PLCC packages only.	 b) PIC16/67/17/17 = Industrial temp., PDP package, 20 MHz, Extended VDD limits. c) PIC16F871-I/P = Industrial temp., PDIP package, 20 MHz, normal VDD limits. d) PIC16LF870-I/SS = Industrial temp., SSOP package, DC - 20 MHz, extended VDD limits.
Temperature Range	blank(3) = 0° C to +70°C (Commercial) I = -40° C to +85°C (Industrial)	
Package	$\begin{array}{rcl} PQ &= &MQFP (Metric \; PQFP) \\ PT &= &TQFP (Thin \; Quad \; Flatpack) \\ SO &= &SOIC \\ SP &= &Skinny \; Plastic \; Dip \\ SS &= &SSOP \\ P &= &PDIP \\ L &= &PLCC \end{array}$	
Pattern	QTP, Code or Special Requirements (blank otherwise)	

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- Your local Microchip sales office
- 1. 2. The Microchip Worldwide Site (www.microchip.com)