

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	3750
Number of Logic Elements/Cells	15000
Total RAM Bits	1054720
Number of I/O	139
Number of Gates	-
Voltage - Supply	0.95V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfsc3ga15e-6fn256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PFU Modes of Operation

Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Table 2-4. PFU Modes of Operation

Logic	Ripple	RAM	ROM
LUT 4x8 or MUX 2x1 x 8	2-bit Add x 4	SPR 16x2 x 4 DPR 16x2 x 2	ROM 16x1 x 8
LUT 5x4 or MUX 4x1 x 4	2-bit Sub x 4	SPR 16x4 x 2 DPR 16x4 x 1	ROM 16x2 x 4
LUT 6x2 or MUX 8x1 x 2	2-bit Counter x 4	SPR 16x8 x 1	ROM 16x4 x 2
LUT 7x1 or MUX 16x1 x 1	2-bit Comp x 4		ROM 16x8 x1

Routing

There are many resources provided in the LatticeSC devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU) resources. The x1 and x2 connections provide fast and efficient connections in horizontal, vertical and diagonal directions. All connections are buffered to ensure high-speed operation even with long high-fanout connections.

The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

sysCLOCK Network

The LatticeSC devices have three distinct clock networks for use in distributing high-performance clocks within the device: primary clocks, secondary clocks and edge clocks. In addition to these dedicated clock networks, users are free to route clocks within the device using the general purpose routing. Figure 2-4 shows the clock resources available to each slice.

Figure 2-4. Slice Clock Selection

Note: GND is available to switch off the network.

Primary Clock Sources

LatticeSC devices have a wide variety of primary clock sources available. Primary clocks sources consists of the following:

- Primary clock input pins
- Edge clock input pins
- Two outputs per DLL

Figure 2-13. DLL to PLL

Figure 2-14 shows a shift of only CLKOP out in time.

Figure 2-15 shows a shift of only CLKOS out in time.

Figure 2-15. PLL to DLL

For further information on the DLL, please see details of additional technical documentation at the end of this data sheet.

sysMEM Memory Block

The sysMEM block can implement single port, true dual port, pseudo dual port or FIFO memories. Dedicated FIFO support logic allows the LatticeSC devices to efficiently implement FIFOs without consuming LUTs or routing resources for flag generation. Each block can be used in a variety of depths and widths as shown in Table 2-5. Memory with ranges from x1 to x18 in all modes: single port, pseudo-dual port and FIFO also providing x36.

Adaptive Input Logic (AIL) Overview

The Adaptive Input Logic (AIL) provides the ability of the input logic to dynamically find a solution by monitoring multiple samples of the input data. The input data signal from the input buffer is run through a delay chain. Data, transitions, jitter, noise are all contained inside of the delay chain. The AIL will then search the delay chain for a clean sampling point for data. Once found the AIL will monitor and walk with the data dynamically. This novel approach of using a delay chain to create multiple copies of the data provides a lower power solution than oversampling data with a higher speed clock. Figure 2-19 provides a high level view of the AIL methodology.

AIL Acquisition Window

The AIL slides the acquisition window through the delay chain searching for stable data based solely on data transitions. A specific training pattern is not required to perform this bit alignment, simply data transitions. The size of the acquisition window is user-selectable allowing the AIL to operate over the full range of the PURESPEED I/O range. Based on dynamic user control the AIL can either continuously adjust the window location based on data edge detection or it can be locked to a specific delay.

The AIL operates on single data and double data rate interfaces and is available on most FPGA input pins on the LatticeSC device and all buffer types. The AIL block is low power using only 0.003 mW/MHz typical (6 mW @ 2 Gbps) for PRBS 2⁷ data. Multiple AIL inputs can be used to create a bus with a FPGA circuit to realign the bus to a common clock cycle. The FPGA circuit to realign the bus is required and is provided by Lattice as a reference design.

For more information on the LatticeSC AIL please refer to TN1158 <u>LatticeSC PURESPEED I/O Adaptive Input</u> <u>Logic User's Guide</u>.

Input DDR/Shift Block

The DDR/Shift block contains registers and associated logic that support DDR and shift register functions using the high-speed clock and the associated transfer to the low-speed clock domain. It functions as a gearbox allowing high-speed incoming data to be passed into the FPGA fabric. Each PIO supports DDR and x2 shift functions. If desired PIOs A and B or C and D can be combined to form x4 shift functions. The PIOs A and C on the left, right and bottom of the device also contain an optional Adaptive Input Logic (AIL) element. This logic automatically aligns incoming data with the clock allowing for easy design of high-speed interfaces. Figure 2-21 shows a simplified block diagram of the shift register block. The shift block in conjunction with the update and clock divider blocks automatically handles the hand off between the low-speed and high-speed clock domains.

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the PURESPEED I/O buffers. The block contains a register for SDR operation and a group of three registers for DDR and shift register operation. The output signal tri-state control signal (TO) can be derived directly from one of the inputs (bypass mode), the SDR shift register, the DDR registers or the data associated with the buffer (for open drain emulation). Figure 2-24 shows the diagram of the Tristate Register Block.

Tristate SDR Register/Latch Block

The SDR register operates on the positive edge of the high-speed clock. In it has a variety of programmable options for set/reset including, set or reset, asynchronous or synchronous Local Set Reset LSR and Global Set Reset GSR enable or disable. The register LSR input is driven from LSRO, which is generated from the PIO control MUX. The GSR input is driven from the GSR output of the PIO control MUX, which allows the global set-reset to be disabled on a PIO basis.

Tristate DDR/Shift Register Block

The DDR/Shift block is shared with the output block allowing DDR support using the high-speed clock and the associated transfer from the low-speed clock domain. It functions as a gearbox allowing low-speed parallel data from the FPGA fabric to provide a high-speed tri-state control stream.

There is a special mode for DDR-II memory interfaces where the termination is controlled by the output tristate signal. During WRITE cycle when the FPGA is driving the lines, the parallel terminations are turned off. During READ cycle when the FPGA is receiving data, the parallel terminations are turned on.

Figure 2-24. Tristate Register Block¹

I/O Architecture Rules

Table 2-6 shows the PIO usage for x1, x2, x4 gearing. The checkmarks in the columns show the specific PIOs that are used for each gearing mode. When using x2 or x4 gearing, any PIO which is not used for gearing can still be used as an output.

Density Shifting

The LatticeSC family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

LatticeSC/M Family Timing Adders

-7		7	-	-6		-5		
Buffer Type	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Adjusters								
LVDS	LVDS	-0.031	-0.031	-0.011	-0.011	0.009	0.009	ns
RSDS	RSDS	-0.031	-0.031	-0.011	-0.011	0.009	0.009	ns
BLVDS25	BLVDS	-0.031	-0.031	-0.011	-0.011	0.009	0.009	ns
MLVDS25	MLVDS	-0.031	-0.031	-0.011	-0.011	0.009	0.009	ns
LVPECL33	LVPECL	-0.031	-0.031	-0.011	-0.011	0.009	0.009	ns
HSTL18_I	HSTL_18 class I	-0.013	-0.015	0.015	0.007	0.042	0.029	ns
HSTL18_II	HSTL_18 class II	-0.013	-0.015	0.015	0.007	0.042	0.029	ns
HSTL18_III	HSTL_18 class III	-0.016	-0.018	0.008	0.003	0.032	0.023	ns
HSTL18_IV	HSTL_18 class IV	-0.016	-0.018	0.008	0.003	0.032	0.023	ns
HSTL18D_I	Differential HSTL 18 class I	0.006	0.001	0.029	0.024	0.052	0.046	ns
HSTL18D_II	Differential HSTL 18 class II	0.006	0.001	0.029	0.024	0.052	0.046	ns
HSTL15_I	HSTL_15 class I	-0.005	-0.016	0.026	-0.001	0.057	0.014	ns
HSTL15_II	HSTL_15 class II	-0.005	-0.016	0.026	-0.001	0.057	0.014	ns
HSTL15_III	HSTL_15 class III	-0.013	-0.015	0.015	0.007	0.042	0.029	ns
HSTL15_IV	HSTL_15 class IV	-0.013	-0.015	0.015	0.007	0.042	0.029	ns
HSTL15D_I	Differential HSTL 15 class I	-0.021	-0.022	0.001	-0.009	0.022	0.003	ns
HSTL15D_II	Differential HSTL 15 class II	-0.021	-0.022	0.001	-0.009	0.022	0.003	ns
SSTL33_I	SSTL_3 class I	-0.036	-0.061	-0.181	-0.313	-0.326	-0.565	ns
SSTL33_II	SSTL_3 class II	-0.036	-0.061	-0.181	-0.313	-0.326	-0.565	ns
SSTL33D_I	Differential SSTL_3 class I	0.012	0.012	0.034	0.028	0.055	0.043	ns
SSTL33D_II	Differential SSTL_3 class II	0.012	0.012	0.034	0.028	0.055	0.043	ns
SSTL25_I	SSTL_2 class I	0.003	-0.008	0.03	0.011	0.058	0.03	ns
SSTL25_II	SSTL_2 class II	0.003	-0.008	0.03	0.011	0.058	0.03	ns
SSTL25D_I	Differential SSTL_2 class I	0.006	0	0.031	0.023	0.056	0.046	ns
SSTL25D_II	Differential SSTL_2 class II	0.006	0	0.031	0.023	0.056	0.046	ns
SSTL18_I	SSTL_18 class I	-0.013	-0.015	0.015	0.007	0.042	0.029	ns
SSTL18_II	SSTL_18 class II	-0.013	-0.015	0.015	0.007	0.042	0.029	ns
SSTL18D_I	Differential SSTL_18 class I	0.006	0.001	0.029	0.024	0.052	0.046	ns
SSTL18D_II	Differential SSTL_18 class II	0.006	0.001	0.029	0.024	0.052	0.046	ns
LVTTL33	LVTTL	0.034	0.034	-0.05	-0.05	-0.134	-0.134	ns
LVCMOS33	LVCMOS 3.3	0.034	0.034	-0.05	-0.05	-0.134	-0.134	ns
LVCMOS25	LVCMOS 2.5	0	0	0	0	0	0	ns
LVCMOS18	LVCMOS 1.8	-0.068	-0.068	-0.087	-0.087	-0.105	-0.105	ns
LVCMOS15	LVCMOS 1.5	-0.131	-0.131	-0.186	-0.186	-0.241	-0.241	ns
LVCMOS12	LVCMOS 1.2	-0.238	-0.238	-0.364	-0.364	-0.49	-0.49	ns
PCI33	PCI	0.034	0.034	-0.05	-0.05	-0.134	-0.134	ns
PCIX33	PCI-X 3.3	0.034	0.034	-0.05	-0.05	-0.134	-0.134	ns
PCIX15	PCI-X 1.5	-0.005	-0.016	0.026	-0.001	0.057	0.014	ns
AGP1X33	AGP-1X 3.3	0.034	0.034	-0.05	-0.05	-0.134	-0.134	ns
AGP2X33	AGP-2X	-0.036	-0.061	-0.181	-0.313	-0.326	-0.565	ns

Over Recommended Operating Conditions at VCC = 1.2V +/- 5%

LatticeSC/M Family Timing Adders (Continued)

		-7		-	6	-5		
Buffer Type	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVCMOS18_12mA	LVCMOS 1.8 12mA drive	0.024	-0.106	0.019	-0.004	0.016	0.099	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive	0.074	-0.134	0.08	-0.022	0.088	0.089	ns
LVCMOS18_OD	LVCMOS 1.8 open drain	0.002	-0.206	0	-0.196	-0.002	-0.221	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive	-0.344	-0.164	-0.379	-0.186	-0.412	-0.209	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive	-0.125	-0.137	-0.145	-0.157	-0.164	-0.176	ns
LVCMOS15_12mA	LVCMOS 1.5 12mA drive	-0.027	-0.166	-0.043	-0.07	-0.059	0.026	ns
LVCMOS15_16mA	LVCMOS 1.5 16mA drive	0.025	-0.195	0.013	-0.089	0.003	0.017	ns
LVCMOS15_OD	LVCMOS 1.5 open drain	-0.047	-0.267	-0.067	-0.267	-0.087	-0.299	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive	-0.473	-0.293	-0.505	-0.317	-0.537	-0.34	ns
LVCMOS12_4mA	LVCMOS 1.2 4mA drive	-0.218	-0.239	-0.25	-0.271	-0.28	-0.303	ns
LVCMOS12_8mA	LVCMOS 1.2 8mA drive	-0.109	-0.269	-0.143	-0.181	-0.176	-0.093	ns
LVCMOS12_12mA	LVCMOS 1.2 12mA drive	-0.054	-0.3	-0.085	-0.203	-0.114	-0.106	ns
LVCMOS12_OD	LVCMOS 1.2 open drain	-0.126	-0.371	-0.166	-0.398	-0.204	-0.43	ns
PCI33	PCI	-0.216	-0.791	-0.417	-1.263	-0.618	-1.735	ns
PCIX33	PCI-X 3.3	-0.216	-0.791	-0.417	-1.263	-0.618	-1.735	ns
PCIX15	PCI-X 1.5	0.208	0.227	0.233	0.312	0.259	0.398	ns
AGP1X33	AGP-1X 3.3	-0.216	-0.791	-0.417	-1.263	-0.618	-1.735	ns
AGP2X33	AGP-2X	-0.216	-0.791	-0.417	-1.263	-0.618	-1.735	ns

Over Recommended Operating Conditions at VCC = 1.2V +/- 5%

LatticeSC/M Family Data Sheet Pinout Information

January 2008

Data Sheet DS1004

Signal Descriptions

Signal Name	I/O	Description		
General Purpose		•		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).		
		[Row/Column Number] indicates the PIC row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.		
P[Edge] [Row/Column Number*]_[A/B/C/D]	I/O	[A/B/C/D] indicates the PIO within the PIC to which the pad is connected.		
		Some of these user programmable pins are shared with special func- tion pins. These pin when not used as special purpose pins can be programmed as I/Os for user logic.		
		During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.		
VREF1_x, VREF2_x	_	The reference supply pins for I/O bank x. Any I/O pin in a bank can be assigned as a reference supply pin, but software defaults use designated pin.		
NC	_	No connect. NC pins should not be connected to any active signals, VCC or GND.		
Non-SERDES Power Supplies		•		
VCCIOx	_	VCCIO - The power supply pins for I/O bank x. Dedicated pins.		
VCC12 ¹	_	1.2V supply for configuration logic, PLLs and SERDES Rx, Tx and PLL. All VCC12 pins must be connected. As VCC12 supplies power for analog circuitry, VCC12 should be quiet and isolated from noisy digital board supplies.		
VTT_x	_	Termination voltage for bank x. When VTT termination is not required, or used to provide the common mode termination voltage (VCMT), these pins can be left unconnected on the device. VCMT function is not used in the bank. If the internal or external VCMT function for differential input termination is used, the VTT pins should be unconnected and allowed to float.		
GND	_	GND - Ground. Dedicated pins. All grounds must be electrically connected at the board level.		
VCC	_	VCC - The power supply pins for core logic. Dedicated pins (1.2V/ 1.0V).		
VCCAUX	_	VCCAUX - Auxiliary power supply pin - powers all differential and referenced input buffers. Dedicated pins (2.5V).		
VCCJ		VCCJ - The power supply pin for JTAG Test Access Port.		
PROBE_VCC	—	VCC signal - Connected to internal VCC node. Can be used for feed- back to control an external board power converter. Can be uncon- nected if not used.		

^{© 2008} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Descriptions (Cont.)

Signal Name	I/O	Description
PROBE_GND	_	GND signal - Connected to internal VSS node. Can be used for feed- back to control an external board power converter. Can be uncon- nected if not used.
PLL and Clock Functions (Used as user-	programma	ble I/O pins when not in use for PLL, DLL or clock pins.)
[LOC]_PLL[T, C]_FB_[A/B]	I	PLL feedback input. Pull-ups are enabled on input pins during configu- ration. [LOC] indicates the corner the PLL is located in: ULC (upper left), URC (upper right), LLC (lower left) and LRC (lower right). [T, C] indicates whether input is true or complement. [A, B] indicates PLL ref- erence within the corner.
[LOC]_DLL[T, C]_FB_[C, D, E, F]	I	DLL feedback input. Pull-ups are enabled on input pins during configu- ration. [LOC] indicates the corner the DLL is located in: ULC (upper left), URC (upper right), LLC (lower left) and LRC (lower right). [T/C] indicates whether input is true or complement. [C, D, E, F] indicates DLL reference within a corner. Note: E and F are only available on the lower corners.
[LOC]_PLL[T, C]_IN[A/B]	I	PLL reference clock input. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the PLL is located in: ULC (upper left corner), URC (upper right corner), LLC (lower left corner) and LRC (lower right corner). [T, C] indicates whether input is true or complement.[A, B] indicates PLL reference within the corner.
[LOC]_DLL[T, C]_IN[C, D, E, F]		DLL reference clock inputs. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the DLL is located in: ULC (upper left corner), URC (upper right corner), LLC (lower left corner) and LRC (lower right corner). [T/C] indicates whether input is true or complement. [C, D, E, F] indicates DLL reference within a corner. Note: E and F are only available on the lower corners. PCKLxy_[0:3] can drive primary clocks, edge clocks, and CLKDIVs. PCLKxy_[4:7] can only drive edge clocks.
PCLKxy_z		General clock inputs. x indicates whether T (true) or C (complement). y indicates the I/O bank the clock is associated with. z indicates the clock number within a bank.
Test and Programming (Dedicated pins. I	Pull-up is e	nabled on input pins during configuration.)
TMS	I	Test Mode Select input, used to control the 1149.1 state machine.
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.
тді	I	Test Data in pin, used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configura- tion by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence).
TDO	0	Output pin -Test Data out pin used to shift data out of device using 1149.1.
Configuration Pads (Dedicated pins. Use	d during sy	/sCONFIG.)
M[3:0]	I	Mode pins used to specify configuration modes values latched on rising edge of INITN.
INITN	I/O	Open Drain pin - Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled that will pull the I/O above 1.5V.
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up.
DONE	I/O	Open Drain pin - Indicates that the configuration sequence is com- plete, and the startup sequence is in progress.
CCLK	I/O	Configuration Clock for configuring an FPGA in sysCONFIG mode.

LFSC/M15 Logic Signal Connections: 256 fpBGA^{1,2} (Cont.)

	LFSC/M15						
Ball Number	Ball Function	VCCIO Bank	Dual Function				
N12	PB39C	4					
T15	PB40A	4	PCLKT4_3				
R16	PB40B	4	PCLKC4_3				
L12	PB43A	4					
M12	PB43B	4					
P16	PB44A	4					
N16	PB44B	4					
R14	PB47C	4	VREF1_4				
P15	PB48A	4	LRC_DLLT_IN_C/LRC_DLLT_FB_D				
M13	PB48B	4	LRC_DLLC_IN_C/LRC_DLLC_FB_D				
N13	PB49A	4	LRC_PLLT_IN_A/LRC_PLLT_FB_B				
P14	PB49B	4	LRC_PLLC_IN_A/LRC_PLLC_FB_B				
M16	PR45B	3	LRC_DLLC_IN_F/LRC_DLLC_FB_E				
L16	PR45A	3	LRC_DLLT_IN_F/LRC_DLLT_FB_E				
M14	PR43B	3					
M15	PR43A	3					
K16	PR41D	3	VREF2_3				
J16	PR37B	3					
H16	PR37A	3					
L13	PR35D	3	DIFFR_3				
L14	PR35B	3					
L15	PR35A	3					
K12	PR31C	3	VREF1_3				
J13	PR28D	3	PCLKC3_2				
K13	PR28C	3	PCLKT3_2				
H15	PR28B	3					
F16	PR28A	3					
J11	PR26D	3	PCLKC3_1				
J12	PR26C	3	PCLKT3_1				
J15	PR26B	3	PCLKC3_0				
J14	PR26A	3	PCLKT3_0				
E16	PR24D	2	PCLKC2_2				
D16	PR24C	2	PCLKT2_2				
H11	PR24B	2	PCLKC2_0				
H12	PR24A	2	PCLKT2_0				
H13	PR23B	2	PCLKC2_1				
H14	PR23A	2	PCLKT2_1				
G12	PR22D	2	DIFFR_2				
G13	PR22C	2	VREF1_2				
F8	PR22B	2					
F9	PR22A	2					
G16	PR18D	2	VREF2_2				
F15	PR17B	2	URC_DLLC_IN_C/URC_DLLC_FB_D				

LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA^{1, 2} (Cont.)

			LFSC/M15	LFSC/M25			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
AF4	PB3C	5	LLC_DLLT_IN_C/LLC_DLLT_FB_D	PB3C	5	LLC_DLLT_IN_C/LLC_DLLT_FB_D	
AE5	PB3D	5	LLC_DLLC_IN_C/LLC_DLLC_FB_D	PB3D	5	LLC_DLLC_IN_C/LLC_DLLC_FB_D	
AG3	PB4A	5	LLC_DLLT_IN_D/LLC_DLLT_FB_C	PB4A	5	LLC_DLLT_IN_D/LLC_DLLT_FB_C	
AH2	PB4B	5	LLC_DLLC_IN_D/LLC_DLLC_FB_C	PB4B	5	LLC_DLLC_IN_D/LLC_DLLC_FB_C	
AD6	PB4C	5		PB4C	5		
AJ2	PB5A	5		PB5A	5		
AK2	PB5B	5		PB5B	5		
AD7	PB5C	5		PB5C	5		
AD8	PB5D	5	VREF1_5	PB5D	5	VREF1_5	
AH3	PB7A	5		PB11A	5		
AJ3	PB7B	5		PB11B	5		
AF9	PB7C	5		PB11C	5		
AE10	PB7D	5		PB11D	5		
AK3	PB8A	5		PB12A	5		
AJ4	PB8B	5		PB12B	5		
AE11	PB9A	5		PB13A	5		
AF10	PB9B	5		PB13B	5		
AK4	PB11A	5		PB16A	5		
AK5	PB11B	5		PB16B	5		
AH10	PB12A	5	PCLKT5_3	PB20A	5	PCLKT5_3	
AH11	PB12B	5	PCLKC5_3	PB20B	5	PCLKC5_3	
AF13	PB12C	5	PCLKT5_4	PB20C	5	PCLKT5_4	
AE14	PB12D	5	PCLKC5_4	PB20D	5	PCLKC5_4	
AK6	PB13A	5	PCLKT5_5	PB21A	5	PCLKT5_5	
AK7	PB13B	5	PCLKC5_5	PB21B	5	PCLKC5_5	
AF14	PB13C	5		PB21C	5		
AJ11	PB15A	5	PCLKT5_0	PB23A	5	PCLKT5_0	
AJ12	PB15B	5	PCLKC5_0	PB23B	5	PCLKC5_0	
AH13	PB15D	5	VREF2_5	PB23D	5	VREF2_5	
AK8	PB16A	5	PCLKT5_1	PB24A	5	PCLKT5_1	
AK9	PB16B	5	PCLKC5_1	PB24B	5	PCLKC5_1	
AH14	PB17A	5	PCLKT5_2	PB25A	5	PCLKT5_2	
AG14	PB17B	5	PCLKC5_2	PB25B	5	PCLKC5_2	
AK10	PB19A	5		PB28A	5		
AK11	PB19B	5		PB28B	5		
AH15	PB20A	5		PB29A	5		
AG15	PB20B	5		PB29B	5		
AH12	PB21A	5		PB31A	5		
AJ13	PB21B	5		PB31B	5		
AD15	PB21C	5		PB31C	5		
AE15	PB21D	5		PB31D	5		
AK12	PB23A	5		PB32A	5		
AK13	PB23B	5		PB32B	5		
AJ14	PB24A	5		PB33A	5		
AJ15	PB24B	5		PB33B	5		

LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA^{1, 2} (Cont.)

Ball		LFS	С/М25	LFSC/M40			
Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
U12	VCC12	-		VCC12	-		
U21	VCC12	-		VCC12	-		
AA16	VCC12	-		VCC12	-		
AA17	VCC12	-		VCC12	-		
M14	VCC12	-		VCC12	-		
P12	VCC12	-		VCC12	-		
W12	VCC12	-		VCC12	-		
AA14	VCC12	-		VCC12	-		
AA19	VCC12	-		VCC12	-		
W21	VCC12	-		VCC12	-		
P21	VCC12	-		VCC12	-		
M19	VCC12	-		VCC12	-		
A2	GND	-		GND	-		
A10	GND	-		GND	-		
E28	NC	-		NC	-		
E5	NC	-		NC	-		
F10	NC	-		NC	-		
E10	NC	-		NC	-		
E23	NC	-		NC	-		
F23	NC	-		NC	-		

1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement).

2. The LatticeSC/M25 and LatticeSC/M40 in a 1020-pin package support a 16-bit MPI interface.

LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA^{1, 2} (Cont.)

			LFSC/M40			LFSC/M80
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
R7	NC	-		PR39D	2	
P7	NC	-		PR39C	2	
N3	NC	-		PR39B	2	
M3	NC	-		PR39A	2	
H1	NC	-		PR26B	2	
G1	NC	-		PR26A	2	
L5	NC	-		PR25B	2	
K5	NC	-		PR25A	2	
G2	NC	-		PR24B	2	
F2	NC	-		PR24A	2	
F1	NC	-		PR22B	2	
E1	NC	-		PR22A	2	
A2	GND	-		GND	-	
A33	GND	-		GND	-	
AA15	GND	-		GND	-	
AA20	GND	-		GND	-	
AA32	GND	-		GND	-	
AA4	GND	-		GND	-	
AB28	GND	-		GND	-	
AB6	GND	-		GND	-	
AC11	GND	-		GND	-	
AC18	GND	-		GND	-	
AC25	GND	-		GND	-	
AD23	GND	-		GND	-	
AD3	GND	-		GND	-	
AD31	GND	-		GND	-	
AE12	GND	-		GND	-	
AE15	GND	-		GND	-	
AE29	GND	-		GND	-	
AE7	GND	-		GND	-	
AE9	GND	-		GND	-	
AF20	GND	-		GND	-	
AF26	GND	-		GND	-	
AG32	GND	-		GND	-	
AG4	GND	-		GND	-	
AH13	GND	-		GND	-	
AH19	GND	-		GND	-	
AH25	GND	-		GND	-	
AH7	GND	-		GND	-	
AJ10	GND	-		GND	-	
AJ16	GND	-		GND	-	
AJ22	GND	-		GND	-	
AJ28	GND	-		GND	-	
AK3	GND	-		GND	-	
AK31	GND	-		GND	-	

LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA^{1, 2} (Cont.)

			LFSC/M40	LFSC/M80		
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
W7	GND	-		GND	-	
AA14	VCC	-		VCC	-	
AA16	VCC	-		VCC	-	
AA17	VCC	-		VCC	-	
AA18	VCC	-		VCC	-	
AA19	VCC	-		VCC	-	
AA21	VCC	-		VCC	-	
AB13	VCC	-		VCC	-	
AB22	VCC	-		VCC	-	
N13	VCC	-		VCC	-	
N22	VCC	-		VCC	-	
P14	VCC	-		VCC	-	
P10	VCC	-		VCC	-	
P17	VCC	-		VCC	-	
P10	VCC	-		VCC	-	
P21	VCC	-		VCC	-	
P21	VCC	-		VCC	-	
B17	VCC	_		VCC	_	
B18	VCC	_		VCC	_	
B20	VCC	_		VCC	_	
T14	VCC	-		VCC	-	
T16	VCC	-		VCC	-	
T19	VCC	-		VCC	-	
T21	VCC	-		VCC	-	
U14	VCC	-		VCC	-	
U15	VCC	-		VCC	-	
U17	VCC	-		VCC	-	
U18	VCC	-		VCC	-	
U20	VCC	-		VCC	-	
U21	VCC	-		VCC	-	
V14	VCC	-		VCC	-	
V15	VCC	-		VCC	-	
V17	VCC	-		VCC	-	
V18	VCC	-		VCC	-	
V20	VCC	-		VCC	-	
V21	VCC	-		VCC	-	
W14	VCC	-		VCC	-	
W16	VCC	-		VCC	-	
W19	VCC	-		VCC	-	
W21	VCC	-		VCC	-	
Y15	VCC	-		VCC	-	
Y17	VCC	-		VCC	-	
Y18	VCC	-		VCC	-	
Y20	VCC	-		VCC	-	

LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA^{1, 2} (Cont.)

	LFSC/M80			LFSC/M115			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
AP26	PB41C	5		PB43C	5		
AN26	PB41D	5		PB43D	5		
AY30	PB43A	5		PB45A	5		
AY29	PB43B	5		PB45B	5		
AU30	PB43C	5		PB45C	5		
AU31	PB43D	5		PB45D	5		
AV27	PB44A	5		PB46A	5		
AV26	PB44B	5		PB46B	5		
AT28	PB44C	5		PB46C	5		
AT27	PB44D	5		PB46D	5		
BA29	PB45A	5		PB47A	5		
BA28	PB45B	5		PB47B	5		
AL25	PB45C	5		PB47C	5		
AM25	PB45D	5		PB47D	5		
BB29	PB47A	5		PB49A	5		
BB28	PB47B	5		PB49B	5		
AN25	PB47C	5		PB49C	5		
AP25	PB47D	5		PB49D	5		
AY27	PB48A	5	PCLKT5_3	PB50A	5	PCLKT5_3	
AY26	PB48B	5	PCLKC5_3	PB50B	5	PCLKC5_3	
AT25	PB48C	5	PCLKT5_4	PB50C	5	PCLKT5_4	
AT24	PB48D	5	PCLKC5_4	PB50D	5	PCLKC5_4	
AW27	PB49A	5	PCLKT5_5	PB51A	5	PCLKT5_5	
AW26	PB49B	5	PCLKC5_5	PB51B	5	PCLKC5_5	
AU29	PB49C	5		PB51C	5		
AU28	PB49D	5		PB51D	5		
BB27	PB51A	5	PCLK15_0	PB53A	5	PCLK15_0	
BB26	PB51B	5	PCLKC5_0	PB53B	5	PCLKC5_0	
AR25	PB51C	5		PB53C	5		
AR24	PB51D	5	VREF2_5	PB53D	5	VREF2_5	
BA27	PB52A	5	PCLK15_1	PB54A	5	PCLKI5_1	
BA26	PB52B	5		PB54B	5		
AP24	PB52C	5		PB54C	5	PCLKI5_6	
AN24	PB52D	5		PB54D	5		
AV25	PB53A	5		PB55A	5	PCLK15_2	
AV24	PB33B	5 F		PBOOD	5		
AU27	PB53C	5	POLKI5_7	PBOOU	5		
AU20	PB33D	5	PCERC5_7	PD00D	5	PCLRC5_7	
DA23	PDSSA	5		PD37A	5		
		5			5		
AU24		5			5		
RP24	PREA	5			5		
BB25	PREE	5			5		
AM22	PREAC	5			5		
AIVI23	PD300	5		PD580	5		

LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA^{1, 2} (Cont.)

			LFSC/M80	LFSC/M115			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
B22	PT61B	1	A3/MPI_ADDR17	PT69B	1	A3/MPI_ADDR17	
B23	PT61A	1	A4/MPI_ADDR18	PT69A	1	A4/MPI_ADDR18	
K23	PT60D	1	D25/PCLKC1_5/MPI_DATA25	PT66D	1	D25/PCLKC1_5/MPI_DATA25	
J23	PT60C	1	D26/PCLKT1_5/MPI_DATA26	PT66C	1	D26/PCLKT1_5/MPI_DATA26	
D22	PT60B	1	A5/MPI_ADDR19	PT66B	1	A5/MPI_ADDR19	
E22	PT60A	1	A6/MPI_ADDR20	PT66A	1	A6/MPI_ADDR20	
K22	PT59D	1	D27/MPI_DATA27	PT63D	1	D27/MPI_DATA27	
J22	PT59C	1	VREF1_1	PT63C	1	VREF1_1	
D23	PT59B	1	A7/MPI_ADDR21	PT63B	1	A7/MPI_ADDR21	
C23	PT59A	1	A8/MPI_ADDR22	PT63A	1	A8/MPI_ADDR22	
L23	PT57D	1	D28/PCLKC1_6/MPI_DATA28	PT61D	1	D28/PCLKC1_6/MPI_DATA28	
M23	PT57C	1	D29/PCLKT1_6/MPI_DATA29	PT61C	1	D29/PCLKT1_6/MPI_DATA29	
A24	PT57B	1	A9/MPI_ADDR23	PT61B	1	A9/MPI_ADDR23	
B24	PT57A	1	A10/MPI_ADDR24	PT61A	1	A10/MPI_ADDR24	
K25	PT56D	1	D30/PCLKC1_7/MPI_DATA30	PT58D	1	D30/PCLKC1_7/MPI_DATA30	
J25	PT56C	1	D31/PCLKT1_7/MPI_DATA31	PT58C	1	D31/PCLKT1_7/MPI_DATA31	
F23	PT56B	1	A11/MPI_ADDR25	PT58B	1	A11/MPI_ADDR25	
F22	PT56A	1	A12/MPI_ADDR26	PT58A	1	A12/MPI_ADDR26	
J26	PT55D	1	D11/MPI_DATA11	PT57D	1	D11/MPI_DATA11	
K26	PT55C	1	D12/MPI_DATA12	PT57C	1	D12/MPI_DATA12	
E23	PT55B	1	A13/MPI_ADDR27	PT57B	1	A13/MPI_ADDR27	
E24	PT55A	1	A14/MPI_ADDR28	PT57A	1	A14/MPI_ADDR28	
G23	PT53D	1	A16/MPI_ADDR30	PT55D	1	A16/MPI_ADDR30	
G24	PT53C	1	D13/MPI_DATA13	PT55C	1	D13/MPI_DATA13	
F26	PT53B	1	A15/MPI_ADDR29	PT55B	1	A15/MPI_ADDR29	
F27	PT53A	1	A17/MPI_ADDR31	PT55A	1	A17/MPI_ADDR31	
H25	PT52D	1	A19/MPI_TSIZ1	PT54D	1	A19/MPI_TSIZ1	
H24	PT52C	1	A20/MPI_BDIP	PT54C	1	A20/MPI_BDIP	
C25	PT52B	1	A18/MPI_TSIZ0	PT54B	1	A18/MPI_TSIZ0	
C26	PT52A	1	MPI_TEA	PT54A	1	MPI_TEA	
K24	PT51D	1	D14/MPI_DATA14	PT51D	1	D14/MPI_DATA14	
J24	PT51C	1	DP1/MPI_PAR1	PT51C	1	DP1/MPI_PAR1	
F24	PT51B	1	A21/MPI_BURST	PT51B	1	A21/MPI_BURST	
F25	PT51A	1	D15/MPI_DATA15	PT51A	1	D15/MPI_DATA15	
L26	D_REFCLKP_L	-		D_REFCLKP_L	-		
M26	D_REFCLKN_L	-		D_REFCLKN_L	-		
G27	VCC12	-		VCC12	-		
C29	D_VDDIB3_L	-		D_VDDIB3_L	-		
F28	VCC12	-		VCC12	-		
D26	D_HDINP3_L	-	PCS 363 CH 3 IN P	D_HDINP3_L	-	PCS 363 CH 3 IN P	
E26	D_HDINN3_L	-	PCS 363 CH 3 IN N	D_HDINN3_L	-	PCS 363 CH 3 IN N	
B25	D_HDOUTP3_L	-	PCS 363 CH 3 OUT P	D_HDOUTP3_L	-	PCS 363 CH 3 OUT P	
D24	VCC12			VCC12			
A25	D_HDOUTN3_L	-	PCS 363 CH 3 OUT N	D_HDOUTN3_L	-	PCS 363 CH 3 OUT N	
E25	D_VDDOB3_L	-		D_VDDOB3_L	-		

Lead-Free Packaging

Co	m	m	er	ci	al
		•••	•••	•••	~

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSC3GA15E-7FN256C	-7	Lead-Free fpBGA	256	COM	15.2
LFSC3GA15E-6FN256C	-6	Lead-Free fpBGA	256	COM	15.2
LFSC3GA15E-5FN256C	-5	Lead-Free fpBGA	256	COM	15.2
LFSC3GA15E-7FN900C	-7	Lead-Free fpBGA	900	COM	15.2
LFSC3GA15E-6FN900C	-6	Lead-Free fpBGA	900	COM	15.2
LFSC3GA15E-5FN900C	-5	Lead-Free fpBGA	900	COM	15.2

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA15EP1-7FN256C	-7	Lead-Free fpBGA	256	COM	15.2
LFSCM3GA15EP1-6FN256C	-6	Lead-Free fpBGA	256	COM	15.2
LFSCM3GA15EP1-5FN256C	-5	Lead-Free fpBGA	256	COM	15.2
LFSCM3GA15EP1-7FN900C	-7	Lead-Free fpBGA	900	COM	15.2
LFSCM3GA15EP1-6FN900C	-6	Lead-Free fpBGA	900	COM	15.2
LFSCM3GA15EP1-5FN900C	-5	Lead-Free fpBGA	900	COM	15.2

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSC3GA25E-7FN900C	-7	Lead-Free fpBGA	900	COM	25.4
LFSC3GA25E-6FN900C	-6	Lead-Free fpBGA	900	COM	25.4
LFSC3GA25E-5FN900C	-5	Lead-Free fpBGA	900	COM	25.4
LFSC3GA25E-7FFN1020C1	-7	Lead-Free Organic fcBGA	1020	COM	25.4
LFSC3GA25E-6FFN1020C1	-6	Lead-Free Organic fcBGA	1020	COM	25.4
LFSC3GA25E-5FFN1020C1	-5	Lead-Free Organic fcBGA	1020	COM	25.4
LFSC3GA25E-7FFAN1020C	-7	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4
LFSC3GA25E-6FFAN1020C	-6	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4
LFSC3GA25E-5FFAN1020C	-5	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4

1. Converted to organic flip-chip BGA package revision 2 per PCN #02A-10.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA25EP1-7FN900C	-7	Lead-Free fpBGA	900	COM	25.4
LFSCM3GA25EP1-6FN900C	-6	Lead-Free fpBGA	900	COM	25.4
LFSCM3GA25EP1-5FN900C	-5	Lead-Free fpBGA	900	COM	25.4
LFSCM3GA25EP1-7FFN1020C1	-7	Lead-Free Organic fcBGA	1020	COM	25.4
LFSCM3GA25EP1-6FFN1020C1	-6	Lead-Free Organic fcBGA	1020	COM	25.4
LFSCM3GA25EP1-5FFN1020C1	-5	Lead-Free Organic fcBGA	1020	COM	25.4
LFSCM3GA25EP1-7FFAN1020C	-7	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4
LFSCM3GA25EP1-6FFAN1020C	-6	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4
LFSCM3GA25EP1-5FFAN1020C	-5	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4

1. Converted to organic flip-chip BGA package revision 2 per PCN #02A-10.

Industrial

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSC3GA15E-6FN256I	-6	Lead-Free fpBGA	256	IND	15.2
LFSC3GA15E-5FN256I	-5	Lead-Free fpBGA	256	IND	15.2
LFSC3GA15E-6FN900I	-6	Lead-Free fpBGA	900	IND	15.2
LFSC3GA15E-5FN900I	-5	Lead-Free fpBGA	900	IND	15.2

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA15EP1-6FN256I	-6	Lead-Free fpBGA	256	IND	15.2
LFSCM3GA15EP1-5FN256I	-5	Lead-Free fpBGA	256	IND	15.2
LFSCM3GA15EP1-6FN900I	-6	Lead-Free fpBGA	900	IND	15.2
LFSCM3GA15EP1-5FN900I	-5	Lead-Free fpBGA	900	IND	15.2

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSC3GA25E-6FN900I	-6	Lead-Free fpBGA	900	IND	25.4
LFSC3GA25E-5FN900I	-5	Lead-Free fpBGA	900	IND	25.4
LFSC3GA25E-6FFN1020I ¹	-6	Lead-Free Organic fcBGA	1020	IND	25.4
LFSC3GA25E-5FFN1020I ¹	-5	Lead-Free Organic fcBGA	1020	IND	25.4
LFSC3GA25E-6FFAN1020I	-6	Lead-Free Organic fcBGA Revision 2	1020	IND	25.4
LFSC3GA25E-5FFAN1020I	-5	Lead-Free Organic fcBGA Revision 2	1020	IND	25.4

1. Converted to organic flip-chip BGA package revision 2 per PCN #02A-10.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA25EP1-6FN900I	-6	Lead-Free fpBGA	900	IND	25.4
LFSCM3GA25EP1-5FN900I	-5	Lead-Free fpBGA	900	IND	25.4
LFSCM3GA25EP1-6FFN1020I ¹	-6	Lead-Free Organic fcBGA	1020	IND	25.4
LFSCM3GA25EP1-5FFN1020I ¹	-5	Lead-Free Organic fcBGA	1020	IND	25.4
LFSCM3GA25EP1-6FFAN1020I	-6	Lead-Free Organic fcBGA Revision 2	1020	IND	25.4
LFSCM3GA25EP1-5FFAN1020I	-5	Lead-Free Organic fcBGA Revision 2	1020	IND	25.4

1. Converted to organic flip-chip BGA package revision 2 per PCN #02A-10.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSC3GA40E-6FFN1020I ¹	-6	Lead-Free Organic fcBGA	1020	IND	40.4
LFSC3GA40E-5FFN1020I ¹	-5	Lead-Free Organic fcBGA	1020	IND	40.4
LFSC3GA40E-6FFAN1020I	-6	Lead-Free Organic fcBGA Revision 2	1020	IND	40.4
LFSC3GA40E-5FFAN1020I	-5	Lead-Free Organic fcBGA Revision 2	1020	IND	40.4
LFSC3GA40E-6FCN1152I ²	-6	Lead-Free Ceramic fcBGA	1152	IND	40.4
LFSC3GA40E-5FCN1152I ²	-5	Lead-Free Ceramic fcBGA	1152	IND	40.4
LFSC3GA40E-6FFN1152I	-6	Lead-Free Organic fcBGA	1152	IND	40.4
LFSC3GA40E-5FFN1152I	-5	Lead-Free Organic fcBGA	1152	IND	40.4

1. Converted to organic flip-chip BGA package revision 2 per PCN #02A-10.

2. Converted to organic flip-chip BGA package per PCN #01A-10.

LatticeSC/M Family Data Sheet Revision History

December 2011

Data Sheet DS1004

Date	Version	Section	Change Summary
February 2006	01.0	—	Initial release.
March 2006	01.1	Introduction	SC25 1020 I/O count changed to 476.
		Architecture	Changed ROM 16X4 to ROM 16X2.
			Changed "X2 or X4" to "DIV2 or DIV4".
			Added Global Set/Reset Section.
		DC and Switching	Added notes 5 and 6 to Recommended Operating Conditions table.
		Characteristics	Added Power Supply Ramp Rates table.
			Removed -5 and -6 speed grades from Typical Building Block Performance table.
			Added Input Delay Timing table.
			Added Synchronous GSR Timing table.
		Pinout Information	Expanded PROBE_VCC and PROBE_GND description.
			Removed A-RXREFCLKP_[L/R] from Signal Description table.
			Added RESP_[ULC/URC] to Signal Description table.
			Added notes 1 and 2 to Signal Description table.
			Changed number of NCs to 28.
			Changed number of SERDES (signal + power supply) to 74.
			Removed RESP balls from NC list (B2, C2, B29, C29).
			Added note to VTT table.
			Changed RxRefclk (B2 and C2) to NC.
			Added RESP_ULC.
			Added RESP_URC.
			Changed RxRefclk (B29 and C29) to NC.
June 2006	01.2	Introduction	Changed SERDES min bandwidth from 622 Mbps to 600 Mbps.
			Changed max SERDES bandwidth from 3.4 Gbps to 3.8 Gbps.
			Corrected number of package I/Os for the SC80 and SC115 1704 pin packages.
			Updated speed performance for typical functions with ispLEVER 6.0 values.
		Architecture	Changed "When these pins are not used they should be left uncon- nected." with "Unused VTT pins should be connected to GND if the internal or external VCMT function is not used in the bank. If the internal or external VCMT function for differential input termination is used, the VTT pins should be unconnected and allowed to float."
			Added "SERDES Power Supply Sequencing Requirements" section.
			Changed total bandwidth per quad from 13.6 Gbps to 15.2 Gbps.
			Added the accuracy of the temperature-sensing diode to be typically +/- 10 °C. Also referred to a temperature-sensing diode application note for more information.
		DC and Switching Characteristics	Changed "CTAP" to "internal or external VCMT".
			Changed VCC12 parameter to include VDDP, VDDTX and VDDRX.
			Changed typical values to match ispLEVER 6.0 Power Calculator.

© 2011 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
December 2011	02.4	DC and Switching Characteristics	Updated JTAG Port Timing Specifications table.