
E · / Fattice Semiconductor Corporation - <u>LFSC3GA40E-7FFN1152C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	10000
Number of Logic Elements/Cells	40000
Total RAM Bits	4075520
Number of I/O	604
Number of Gates	-
Voltage - Supply	0.95V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA
Supplier Device Package	1152-FPBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfsc3ga40e-7ffn1152c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PFU Modes of Operation

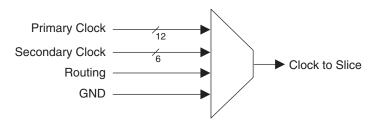
Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Table 2-4. PFU Modes of Operation

Logic	Ripple	RAM	ROM
LUT 4x8 or MUX 2x1 x 8	2-bit Add x 4	SPR 16x2 x 4 DPR 16x2 x 2	ROM 16x1 x 8
LUT 5x4 or MUX 4x1 x 4	2-bit Sub x 4	SPR 16x4 x 2 DPR 16x4 x 1	ROM 16x2 x 4
LUT 6x2 or MUX 8x1 x 2	2-bit Counter x 4	SPR 16x8 x 1	ROM 16x4 x 2
LUT 7x1 or MUX 16x1 x 1	2-bit Comp x 4		ROM 16x8 x1

Routing

There are many resources provided in the LatticeSC devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.


The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU) resources. The x1 and x2 connections provide fast and efficient connections in horizontal, vertical and diagonal directions. All connections are buffered to ensure high-speed operation even with long high-fanout connections.

The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

sysCLOCK Network

The LatticeSC devices have three distinct clock networks for use in distributing high-performance clocks within the device: primary clocks, secondary clocks and edge clocks. In addition to these dedicated clock networks, users are free to route clocks within the device using the general purpose routing. Figure 2-4 shows the clock resources available to each slice.

Figure 2-4. Slice Clock Selection

Note: GND is available to switch off the network.

Primary Clock Sources

LatticeSC devices have a wide variety of primary clock sources available. Primary clocks sources consists of the following:

- Primary clock input pins
- Edge clock input pins
- Two outputs per DLL

Lattice Semiconductor

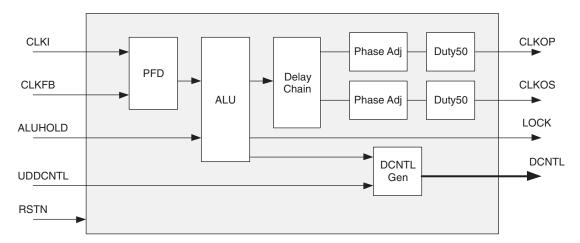

There is a Digital Control (DCNTL) bus available from the DLL block. This Digital Control bus is available to the delay lines in the PIC blocks in the adjacent banks. The UDDCNTL signal allows the user to latch the current value on the digital control bus.

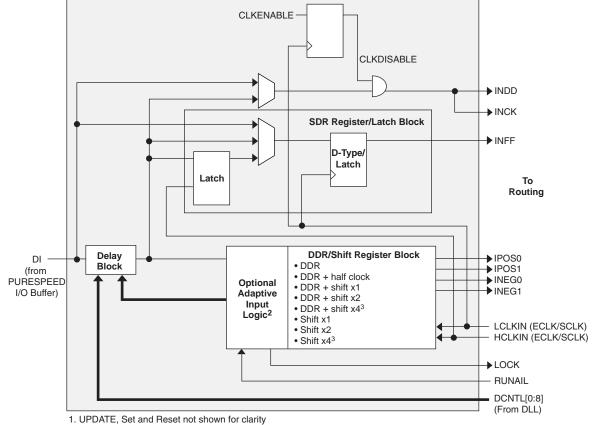
Figure 2-12 shows the DLL block diagram of the DLL inputs and outputs. The output of the phase frequency detector controls an arithmetic logic unit (ALU) to add or subtract one delay tap. The digital output of this ALU is used to control the delay value of the delay chain and this digital code is transmitted via the DCNTL bus.

The sysCLOCK DLL can be configured at power-up, then, if desired, reconfigured dynamically through the Serial Memory Interface bus which interfaces with the on-chip Microprocessor Interface (MPI) bus. In addition, users can drive the SMI interface from routing if desired.

The user can configure the DLL for many common functions such as clock injection match and single delay cell. Lattice provides primitives in its design for time reference delay (DDR memory) and clock injection delay removal.

Figure 2-12. DLL Diagram

PLL/DLL Cascading


The LatticeSC devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable combinations are as follows:

- PLL to PLL
- PLL to DLL
- DLL to DLL
- DLL to PLL

DLLs are used to shift the clock in relation to the data for source synchronous inputs. PLLs are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL blocks allows applications to utilize the unique benefits of both DLL and PLLs.

When cascading the DLL to the PLL, the DLL can be used to drive the PLL to create fine phase shifts of an input clock signal. Figure 2-13 shows a shift of all outputs for CLKOP and CLKOS out in time.

Figure 2-20. Input Register Block¹

Adaptive input logic is only available in selected PIO

3. By four shift modes utilize DDR/shift register block from paired PIO.

4. CLKDISABLE is used to block the transitions on the DQS pin during post-amble. Its main use is to disable DQS (typically found in DDR memory interfaces) or other clock signals. It can also be used to disable any/all input signals to save power.

this allows for easy integration with the rest of the system. These capabilities make the LatticeSC ideal for many multiple power supply and hot-swap applications. The maximum current during hot socketing is 4mA. See Hot Socketing Specifications in Chapter 3 of this data sheet.

Power-Up Requirements

To prevent high power supply and input pin currents, each VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies must have a monotonic ramp up time of 75 ms or less to reach its minimum operating voltage. Apart from VCC and VCC12, which have an additional requirement, and VCCIO and VCCAUX, which also have an additional requirement, the VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies can ramp up in any order, with no restriction on the time between them. However, the ramp time for each must be 75 ms or less. Configuration of the device will not proceed until the last power supply has reached its minimum operating voltage.

Additional Requirement for VCC and VCC12:

VCC12 must always be higher than VCC. This condition must be maintained at ALL times, including during powerup and power-down. Note that for 1.2V only operation, it is advisable to source both of these supplies from the same power supply.

Additional Requirement for VCCIO and VCCAUX:

If any VCCIOs are 1.2/1.5/1.8V, then VCCAUX MUST be applied before them. If any VCCIO is 1.2/1.5/1.8V and is powered up before VCCAUX, then when VCCAUX is powered up, it may drag VCCIO up with it as it crosses through the VCCIO value. (Note: If the VCCIO supply is capable of sinking current, as well as the more usual sourcing capability, this behavior is eliminated. However, the amount of current that the supply needs to sink is unknown and is likely to be in the hundreds of milliamps range).

Power-Down Requirements

To prevent high power supply and input pin currents, power must be removed monotonically from either VCC or VCCAUX (and must reach the power-down trip point of 0.5V for VCC, 0.95V for VCCAUX) before power is removed monotonically from VCC12, any of the VCCIOs, or VCCJ. Note that VCC12 can be removed at the same time as VCC, but it cannot be removed earlier. In many applications, VCC and VCC12 will be sourced from the same power supply and so will be removed together. For systems where disturbance of the user pins is a don't care condition, the power supplies can be removed in any order as long as they power down monotonically within 200ms of each other.

Additionally, if any banks have VCCIO=3.3V nominal (potentially banks 1, 4, 5) then VCCIO for those banks must not be lower than VCCAUX during power-down. The normal variation in ramp-up times of power supplies and voltage regulators is not a concern here.

Note: The SERDES power supplies are NOT included in these requirements and have no specific sequencing requirements. However, when using the SERDES with VDDIB or VDDOB that is greater than 1.2V (1.5V nominal for example), the SERDES should not be left in a steady state condition with the 1.5V power applied and the 1.2V power not applied. Both the 1.2V and 1.5V power should be applied to the SERDES at nominally the same time. The normal variation in the ramp-up times of power supplies and voltage regulators is not a concern here.

SERDES Power Supply Sequencing Requirements

When using the SERDES with 1.5V VDDIB or VDDOB supplies, the SERDES should not be left in a steady state condition with the 1.5V power applied and the 1.2V power not applied. Both the 1.2V and the 1.5V power should be applied to the SERDES at nominally the same time. The normal variation in ramp-up times of power supples and voltage regulators is not a concern.

Additional Requirement for SERDES Power Supply

All VCC12 pins need to be connected on all devices independent of functionality used on the device. This analog supply is used by both the RX and TX portions of the SERDES and is used to control the core SERDES logic regardless of the SERDES being used in the design. VDDIB and VDDOB are used as supplies for the terminations on the CML input and output buffers. If a particular channel is not used, these can be UNCONNECTED (floating).

VDDAX25 needs to be connected independent of the use of the SERDES. This supply is used to control the SERDES CML I/O regardless of the SERDES being used in the design.

Supported Source Synchronous Interfaces

The LatticeSC devices contain a variety of hardware, such as delay elements, DDR registers and PLLs, to simplify the implementation of Source Synchronous interfaces. Table 2-11 lists Source Synchronous and DDR/QDR standards supported in the LatticeSC. For additional detail refer to technical information at the end of the data sheet.

Source Synchronous Standard Clocking Speeds (MHz) Data Rate (Mbps) RapidIO DDR 500 1000 SPI4.2 (POS-PHY4)/NPSI DDR 1000 500 DDR 334 667 SFI4/XSBI SDR 667 DDR XGMII 156.25 312 CSIX SDR 250 250 QDRII/QDRII+ memory interface DDR 300 600 DDR memory interface DDR 240 480 DDR 333 667 DDRII memory interface DDR 400 800 **RLDRAM** memory interface

Table 2-11. Source Synchronous Standards Table¹

1. Memory width is dependent on the system design and limited by the number of I/Os in the device.

flexiPCS[™] (Physical Coding Sublayer Block)

flexiPCS Functionality

The LatticeSC family combines a high-performance FPGA fabric, high-performance I/Os and large embedded RAM in a single industry leading architecture. LatticeSC devices also feature up to 32 channels of embedded SERDES with associated Physical Coding Sublayer (PCS) logic. The flexiPCS logic can be configured to support numerous industry standard high-speed data transfer protocols.

Each channel of flexiPCS logic contains dedicated transmit and receive SERDES for high-speed, full-duplex serial data transfers at data rates up to 3.8 Gbps. The PCS logic in each channel can be configured to support an array of popular data protocols including SONET (STS-12/STS-12c, STS-48/STS-48c, and TFI-5 support of 10 Gbps or above), Gigabit Ethernet (compliant to the IEEE 1000BASE-X specification), 1.02 or 2.04 Gbps Fibre Channel, PCI-Express, and Serial RapidIO. In addition, the protocol based logic can be fully or partially bypassed in a number of configurations to allow users flexibility in designing their own high-speed data interface.

Protocols requiring data rates above 3.8 Gbps can be accommodated by dedicating either one pair or all four channels in one flexiPCS quad block to one data link. One quad can support full-duplex serial data transfers at data rates up to 15.2 Gbps. A single flexiPCS quad can be configured to support 10Gb Ethernet (with a fully compliant XAUI interface), 10Gb Fibre Channel, and x4 PCI-Express and 4x RapidIO.

The flexiPCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic which can also be geared to run at 1/2 speed for a 16-bit or 20-bit interface to the FPGA logic. Each SERDES pin can be DC coupled independently and can allow for both high-speed and low-speed operation down to DC rates on the same SERDES pin, as required by some Serial Digital Video applications.

The ispLEVER design tools from Lattice support all modes of the flexiPCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow a user to define their own operation. With ispLEVER, the user can define the mode for each quad in a design. Nine modes are currently supported by the ispLEVER design flow:

Switching Characteristics

All devices are 100% functionally tested. Listed below are representative values of internal and external timing parameters. For more specific, more precise, and worst-case guaranteed data at a particular temperature and volt-age, use the values reported by the static timing analyzer in the ispLEVER design tool from Lattice and back-annotate to the simulation net list.

LatticeSC/M Family Timing Adders (Continued)

		-	7	-	6	-	5	
Buffer Type	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
GTLPLUS15	GTLPLUS15	-0.013	-0.017	0.012	0.004	0.037	0.024	ns
GTL12	GTL12	-0.063	-0.071	-0.007	-0.048	0.056	-0.032	ns
Output Adjusters								
LVDS	LVDS	0.708	0.854	0.856	1.021	1.005	1.189	ns
RSDS	RSDS	0.708	0.854	0.856	1.021	1.005	1.189	ns
BLVDS25	BLVDS	-0.129	0.05	-0.136	0.069	-0.136	0.083	ns
MLVDS25	MLVDS	-0.059	0.059	-0.057	0.096	-0.054	0.133	ns
LVPECL33	LVPECL	-0.334	-0.181	-0.325	-1.389	-0.315	-2.598	ns
HSTL18_I	HSTL_18 class I	0.132	0.209	0.153	0.24	0.175	0.272	ns
HSTL18_II	HSTL_18 class II	0.24	0.176	0.268	0.255	0.298	0.333	ns
HSTL18D_I	Differential HSTL 18 class I	0.132	0.209	0.153	0.24	0.175	0.272	ns
HSTL18D_II	Differential HSTL 18 class II	0.24	0.176	0.268	0.255	0.298	0.333	ns
HSTL15_I	HSTL_15 class I	0.096	0.172	0.112	0.198	0.129	0.224	ns
HSTL15_II	HSTL_15 class II	0.208	0.131	0.233	0.203	0.259	0.275	ns
HSTL15D_I	Differential HSTL 15 class I	0.096	0.172	0.112	0.198	0.129	0.224	ns
HSTL15D_II	Differential HSTL 15 class II	0.208	0.131	0.233	0.203	0.259	0.275	ns
SSTL33_I	SSTL_3 class I	0.133	0.177	0.11	0.166	0.088	0.154	ns
SSTL33_II	SSTL_3 class II	0.173	0.247	0.164	0.253	0.156	0.258	ns
SSTL33D_I	Differential SSTL_3 class I	0.133	0.177	0.11	0.166	0.088	0.154	ns
SSTL33D_II	Differential SSTL_3 class II	0.173	0.247	0.164	0.253	0.156	0.258	ns
SSTL25_I	SSTL_2 class I	0.215	0.125	0.239	0.228	0.264	0.331	ns
SSTL25_II	SSTL_2 class II	0.277	0.181	0.311	0.284	0.345	0.387	ns
SSTL25D_I	Differential SSTL_2 class I	0.215	0.125	0.239	0.228	0.264	0.331	ns
SSTL25D_II	Differential SSTL_2 class II	0.277	0.181	0.311	0.284	0.345	0.387	ns
SSTL18_I	SSTL_2 class I	0.16	0.081	0.179	0.173	0.199	0.265	ns
SSTL18_II	SSTL_2 class II	0.238	0.15	0.263	0.244	0.295	0.338	ns
SSTL18D_I	Differential SSTL_2 class I	0.16	0.081	0.179	0.173	0.199	0.265	ns
SSTL18D_II	Differential SSTL_2 class II	0.238	0.15	0.263	0.244	0.295	0.338	ns
LVTTL33_8mA	LVTTL 8mA drive	-0.346	-0.165	-0.496	-0.296	-0.646	-0.428	ns
LVTTL33_16mA	LVTTL 16mA drive	-0.11	-0.18	-0.218	-0.32	-0.325	-0.46	ns
LVTTL33_24mA	LVTTL 24mA drive	-0.012	-0.18	-0.099	-0.321	-0.185	-0.463	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive	-0.346	-0.165	-0.496	-0.296	-0.646	-0.428	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive	-0.11	-0.18	-0.218	-0.32	-0.325	-0.46	ns
LVCMOS33_24mA	LVCMOS 3.3 24mA drive	-0.012	-0.18	-0.099	-0.321	-0.185	-0.463	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive	-0.174	0.004	-0.195	0.002	-0.215	0	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive	0	0	0	0	0	0	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive	0.094	-0.025	0.107	0.096	0.12	0.216	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive	0.145	-0.054	0.162	0.063	0.181	0.179	ns
LVCMOS25_OD	LVCMOS 2.5 open drain	0.073	-0.125	0.081	-0.081	0.091	-0.09	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive	-0.278	-0.099	-0.312	-0.115	-0.345	-0.131	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive	-0.073	-0.078	-0.078	-0.084	-0.083	-0.089	ns

Over Recommended Operating Conditions at VCC = 1.2V +/- 5%

LatticeSC/M Family Timing Adders (Continued)

		-	7	-	6	-	5	
Buffer Type	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVCMOS18_12mA	LVCMOS 1.8 12mA drive	0.024	-0.106	0.019	-0.004	0.016	0.099	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive	0.074	-0.134	0.08	-0.022	0.088	0.089	ns
LVCMOS18_OD	LVCMOS 1.8 open drain	0.002	-0.206	0	-0.196	-0.002	-0.221	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive	-0.344	-0.164	-0.379	-0.186	-0.412	-0.209	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive	-0.125	-0.137	-0.145	-0.157	-0.164	-0.176	ns
LVCMOS15_12mA	LVCMOS 1.5 12mA drive	-0.027	-0.166	-0.043	-0.07	-0.059	0.026	ns
LVCMOS15_16mA	LVCMOS 1.5 16mA drive	0.025	-0.195	0.013	-0.089	0.003	0.017	ns
LVCMOS15_OD	LVCMOS 1.5 open drain	-0.047	-0.267	-0.067	-0.267	-0.087	-0.299	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive	-0.473	-0.293	-0.505	-0.317	-0.537	-0.34	ns
LVCMOS12_4mA	LVCMOS 1.2 4mA drive	-0.218	-0.239	-0.25	-0.271	-0.28	-0.303	ns
LVCMOS12_8mA	LVCMOS 1.2 8mA drive	-0.109	-0.269	-0.143	-0.181	-0.176	-0.093	ns
LVCMOS12_12mA	LVCMOS 1.2 12mA drive	-0.054	-0.3	-0.085	-0.203	-0.114	-0.106	ns
LVCMOS12_OD	LVCMOS 1.2 open drain	-0.126	-0.371	-0.166	-0.398	-0.204	-0.43	ns
PCI33	PCI	-0.216	-0.791	-0.417	-1.263	-0.618	-1.735	ns
PCIX33	PCI-X 3.3	-0.216	-0.791	-0.417	-1.263	-0.618	-1.735	ns
PCIX15	PCI-X 1.5	0.208	0.227	0.233	0.312	0.259	0.398	ns
AGP1X33	AGP-1X 3.3	-0.216	-0.791	-0.417	-1.263	-0.618	-1.735	ns
AGP2X33	AGP-2X	-0.216	-0.791	-0.417	-1.263	-0.618	-1.735	ns

Over Recommended Operating Conditions at VCC = 1.2V +/- 5%

LFSC/M15 Logic Signal Connections: 256 fpBGA^{1,2} (Cont.)

	LFSC/M15						
Ball Number	Ball Function	VCCIO Bank	Dual Function				
J9	VCC	-					
K8	VCC	-					
F6	VCC12	-					
F11	VCC12	-					
L11	VCC12	-					
L6	VCC12	-					
K7	VCC12	-					
K10	VCC12	-					
F10	VCCAUX	-					
F7	VCCAUX	-					
T1	GND	-					
G11	VCCAUX	-					
K11	VCCAUX	-					
L10	VCCAUX	-					
L9	VCCAUX	-					
L7	VCCAUX	-					
L8	VCCAUX	-					
T16	GND	-					
G6	VCCAUX	-					
K6	VCCAUX	-					
B13	VCCIO1	-					
D11	VCCIO1	-					
D14	VCCIO1	-					
F12	VCCIO2	-					
G15	VCCIO2	-					
K14	VCCIO3	-					
N15	VCCIO3	-					
M11	VCCIO4	-					
P13	VCCIO4	-					
R10	VCCIO4	-					
N6	VCCIO5	-					
P7	VCCIO5	-					
R4	VCCIO5	-					
K2	VCCIO6	-					
N3	VCCIO6	-					
F4	VCCIO7	-					
G3	VCCI07	-					
D4	VCC12	-					
D7	VCC12	-					
D5	VCC12	-					
D6	VCC12	-					

1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement).

2. The LatticeSC/M15 in a 256-pin package does not support an MPI interface.

LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA^{1, 2} (Cont.)

			C/M15		LFSC/M25			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function		
AB10	VCC	-		VCC	-			
AB21	VCC	-		VCC	-			
J10	VCC	-		VCC	-			
J21	VCC	-		VCC	-			
K10	VCC	-		VCC	-			
K11	VCC	-		VCC	-			
K12	VCC	-		VCC	-			
K13	VCC	-		VCC	-			
K14	VCC	-		VCC	-			
K17	VCC	-		VCC	-			
K18	VCC	-		VCC	-			
K19	VCC	-		VCC	-			
K20	VCC	-		VCC	-			
K21	VCC	-		VCC	-			
K22	VCC	-		VCC	-			
K9	VCC	-		VCC	-			
L10	VCC	-		VCC	-			
L21	VCC	-		VCC	-			
M10	VCC	-		VCC	-			
M21	VCC	-		VCC	-			
N10	VCC	-		VCC	-			
N21	VCC	-		VCC	-			
P10	VCC	-		VCC	-			
P21	VCC	-		VCC	-			
U10	VCC	-		VCC	-			
U21	VCC	-		VCC	-			
V10	VCC	-		VCC	-			
V21	VCC	-		VCC	-			
W10	VCC	-		VCC	-			
W21	VCC	-		VCC	-			
Y10	VCC	-		VCC	-			
Y21	VCC	-		VCC	-			
H11	VCCAUX	-		VCCAUX	-			
H12	VCCAUX	-		VCCAUX	-			
H19	VCCAUX	-		VCCAUX	-			
H20	VCCAUX	-		VCCAUX	-			
M23	VCCAUX	-		VCCAUX	-			
M24	VCCAUX	-		VCCAUX	-			
N23	VCCAUX	-		VCCAUX	-			
N24	VCCAUX	-		VCCAUX	-			
U23	VCCAUX	-		VCCAUX	-			
U24	VCCAUX	-		VCCAUX	-			
V23	VCCAUX	-		VCCAUX	-			
V24	VCCAUX	-		VCCAUX	-			
W23	VCCAUX	-		VCCAUX	-			

LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA^{1, 2} (Cont.)

	LFSC/M15				LFSC/M25			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function		
AG11	VCCIO5	-		VCCIO5	-			
AJ9	VCCIO5	-		VCCIO5	-			
AJ23	VCCIO4	-		VCCIO4	-			
AG20	VCCIO4	-		VCCIO4	-			
AJ26	VCCIO4	-		VCCIO4	-			
AG23	VCCIO4	-		VCCIO4	-			
AC29	VCCIO3	-		VCCIO3	-			
AA26	VCCIO3	-		VCCIO3	-			
Y28	VCCIO3	-		VCCIO3	-			
AA29	VCCIO3	-		VCCIO3	-			
G30	VCCIO2	-		VCCIO2	-			
J29	VCCIO2	-		VCCIO2	-			
K27	VCCIO2	-		VCCIO2	-			
N25	VCCIO2	-		VCCIO2	-			
F20	VCCIO1	-		VCCIO1	-			
C19	VCCIO1	-		VCCIO1	-			
C12	VCCIO1	-		VCCIO1	-			
F11	VCCIO1	-		VCCIO1	-			
H1	GND	-		GND	-			
L4	GND	-		GND	-			
M3	GND	-		GND	-			
N5	GND	-		GND	-			
K2	GND	-		GND	-			
M2	GND	-		GND	-			
P6	GND	-		GND	-			
G4	GND	-		GND	-			
H3	GND	-		GND	-			
AC2	GND	-		GND	-			
AA3	GND	-		GND	-			
AE1	GND	-		GND	-			
Y4	GND	-		GND	-			
AB4	GND	-		GND	-			
AA5	GND	-		GND	-			
AE6	GND	-		GND	-			
AE8	GND	-		GND	-			
AH5	GND	-		GND	-			
AG9	GND	-		GND	-			
AG6	GND	-		GND	-			
AF11	GND	-		GND	-			
AG12	GND	-		GND	-			
AJ10	GND	-		GND	-			
AK26	GND	-		GND	-			
AJ22	GND	-		GND	-			
AF20	GND	-		GND	-			
AJ25	GND	-		GND	-			

LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA^{1, 2} (Cont.)

	LFSC/M15					LFSC/M25
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
B29	NC	-		NC	-	

1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement).

2. The LatticeSC/M15 and LatticeSC/M25 in a 900-pin package supports a 16-bit MPI interface.

LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA^{1, 2} (Cont.)

Ball		LFSC/M	25		LFSC/M40			
Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function		
U12	VCC12	-		VCC12	-			
U21	VCC12	-		VCC12	-			
AA16	VCC12	-		VCC12	-			
AA17	VCC12	-		VCC12	-			
M14	VCC12	-		VCC12	-			
P12	VCC12	-		VCC12	-			
W12	VCC12	-		VCC12	-			
AA14	VCC12	-		VCC12	-			
AA19	VCC12	-		VCC12	-			
W21	VCC12	-		VCC12	-			
P21	VCC12	-		VCC12	-			
M19	VCC12	-		VCC12	-			
A2	GND	-		GND	-			
A10	GND	-		GND	-			
E28	NC	-		NC	-			
E5	NC	-		NC	-			
F10	NC	-		NC	-			
E10	NC	-		NC	-			
E23	NC	-		NC	-			
F23	NC	-		NC	-			

1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement).

2. The LatticeSC/M25 and LatticeSC/M40 in a 1020-pin package support a 16-bit MPI interface.

LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA^{1, 2} (Cont.)

				LFSC/M80			
			LFSC/M40				
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
AC19	VTT_5	5		VTT_5	5		
AC20	VTT_5	5		VTT_5	5		
AD22	VTT_5	5		VTT_5	5		
AB24	VTT_6	6		VTT_6	6		
W23	VTT_6	6		VTT_6	6		
Y23	VTT_6	6		VTT_6	6		
N24	VTT_7	7		VTT_7	7		
R23	VTT_7	7		VTT_7	7		
T23	VTT_7	7		VTT_7	7		
M12	VDDAX25_R	-		VDDAX25_R	-		
M23	VDDAX25_L	-		VDDAX25_L	-		
Y16	GND	-		GND	-		
Y14	GND	-		GND	-		
N21	VCC12	-		VCC12	-		
P22	VCC12	-		VCC12	-		
AA22	VCC12	-		VCC12	-		
AB21	VCC12	-		VCC12	-		
AB14	VCC12	-		VCC12	-		
AA13	VCC12	-		VCC12	-		
P13	VCC12	-		VCC12	-		
N14	VCC12	-		VCC12	-		
G26	NC	-		NC	-		
G9	NC	-		NC	-		
J12	NC	-		NC	-		
H12	NC	-		NC	-		
H23	NC	-		NC	-		
J23	NC	-		NC	-		

1. Differential pair grouping within a PCI is A (True) and B (complement) and C (True) and D (Complement).

2. The LatticeSC/M40 and LatticeSC/M80 in an 1152-pin package support a 32-bit MPI interface.

LFSC/M115 Logic Signal Connections: 1152 fcBGA^{1, 2}

	LFSC/M115							
Ball Number	Ball Function	VCCIO Bank	Dual Function					
G27	A_REFCLKP_L	-						
H27	A_REFCLKN_L	-						
H25	VCC12	-						
H26	RESP_ULC	-						
B33	RESETN	1						
C34	TSALLN	1						
D34	DONE	1						
C33	INITN	1						
J27	MO	1						
K27	M1	1						
M26	M2	1						
L26	M3	1						
F30	PL15A	7	ULC_PLLT_IN_A/ULC_PLLT_FB					
G30	PL15B	7	ULC_PLLC_IN_A/ULC_PLLC_FB					
H28	PL15C	7						
J28	PL15D	7						
F31	PL17A	7	ULC_DLLT_IN_C/ULC_DLLT_FB					
G31	PL17B	7	ULC_DLLC_IN_C/ULC_DLLC_FB					
N25	PL17C	7	ULC_PLLT_IN_B/ULC_PLLT_FB					
P25	PL17D	7	ULC_PLLC_IN_B/ULC_PLLC_FB					
D33	PL18A	7	ULC_DLLT_IN_D/ULC_DLLT_FB					
E33	PL18B	7	ULC_DLLC_IN_D/ULC_DLLC_FB					
H29	PL18C	7						
J29	PL18D	7	VREF2_7					
F32	PL19A	7						
G32	PL19B	7						
P26	PL19C	7						
N26	PL19D	7						
H30	PL26A	7						
J30	PL26B	7						
L28	PL26C	7						
M28	PL26D	7						
J31	PL43A	7						
K31	PL43B	7						
L27	PL43C	7	VREF1_7					
M27	PL43D	7	 DIFFR_7					
J32	PL45A	7						
K32	PL45B	7						
L29	PL45C	7						
M29	PL45D	7						
H33	PL47A	7						
J33	PL47B	7						

LFSC/M115 Logic Signal Connections: 1152 fcBGA^{1, 2}

	LFSC/M115							
Ball Number	Ball Function	VCCIO Bank	Dual Function					
F6	A_VDDOB0_R	-						
B4	A_HDOUTN0_R	-	PCS 3E0 CH 0 OUT N					
F7	A_VDDOB1_R	-						
B5	A_HDOUTN1_R	-	PCS 3E0 CH 1 OUT N					
E6	VCC12	-						
A5	A_HDOUTP1_R	-	PCS 3E0 CH 1 OUT P					
B6	A_HDINN1_R	-	PCS 3E0 CH 1 IN N					
A6	A_HDINP1_R	-	PCS 3E0 CH 1 IN P					
C6	VCC12	-						
D4	A_VDDIB1_R	-						
C7	VCC12	-						
D5	A_VDDIB2_R	-						
A7	A_HDINP2_R	-	PCS 3E0 CH 2 IN P					
B7	A_HDINN2_R	-	PCS 3E0 CH 2 IN N					
E7	VCC12	-						
A8	A_HDOUTP2_R	-	PCS 3E0 CH 2 OUT P					
F8	A_VDDOB2_R	-						
B8	A_HDOUTN2_R	-	PCS 3E0 CH 2 OUT N					
F9	A_VDDOB3_R	-						
B9	A_HDOUTN3_R	-	PCS 3E0 CH 3 OUT N					
E8	VCC12	-						
A9	A_HDOUTP3_R	-	PCS 3E0 CH 3 OUT P					
B10	A_HDINN3_R	-	PCS 3E0 CH 3 IN N					
A10	A_HDINP3_R	-	PCS 3E0 CH 3 IN P					
C10	VCC12	-						
D6	A_VDDIB3_R	-						
G10	VCC12	-						
D7	B_VDDIB0_R	-						
E10	B_HDINP0_R	-	PCS 3E1 CH 0 IN P					
F10	B_HDINN0_R	-	PCS 3E1 CH 0 IN N					
K10	VCC12	-						
A11	B_HDOUTP0_R	-	PCS 3E1 CH 0 OUT P					
D10	B_VDDOB0_R	-						
B11	B_HDOUTN0_R	-	PCS 3E1 CH 0 OUT N					
D11	B_VDDOB1_R	-						
B12	B_HDOUTN1_R	-	PCS 3E1 CH 1 OUT N					
L10	VCC12	-						
A12	B_HDOUTP1_R	-	PCS 3E1 CH 1 OUT P					
F11	B_HDINN1_R	-	PCS 3E1 CH 1 IN N					
E11	B_HDINP1_R	-	PCS 3E1 CH 1 IN P					
G11	VCC12	-						
D8	B_VDDIB1_R	-						
G12	VCC12	-						

LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA^{1, 2} (Cont.)

			LFSC/M80	LFSC/M115			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
D1	A_HDINN0_R	-	PCS 3E0 CH 0 IN N	A_HDINN0_R	-	PCS 3E0 CH 0 IN N	
F1	VCC12	-		VCC12	-		
A3	A_HDOUTP0_R	-	PCS 3E0 CH 0 OUT P	A_HDOUTP0_R	-	PCS 3E0 CH 0 OUT P	
E1	A_VDDOB0_R	-		A_VDDOB0_R	-		
B3	A_HDOUTN0_R	-	PCS 3E0 CH 0 OUT N	A_HDOUTN0_R	-	PCS 3E0 CH 0 OUT N	
C2	A_VDDOB1_R	-		A_VDDOB1_R	-		
A4	A_HDOUTN1_R	-	PCS 3E0 CH 1 OUT N	A_HDOUTN1_R	-	PCS 3E0 CH 1 OUT N	
B2	VCC12	-		VCC12	-		
B4	A_HDOUTP1_R	-	PCS 3E0 CH 1 OUT P	A_HDOUTP1_R	-	PCS 3E0 CH 1 OUT P	
E3	A_HDINN1_R	-	PCS 3E0 CH 1 IN N	A_HDINN1_R	-	PCS 3E0 CH 1 IN N	
D3	A_HDINP1_R	-	PCS 3E0 CH 1 IN P	A_HDINP1_R	-	PCS 3E0 CH 1 IN P	
M10	VCC12	-		VCC12	-		
E2	A_VDDIB1_R	-		A_VDDIB1_R	-		
J11	VCC12	-		VCC12	-		
M11	A_VDDIB2_R	-		A_VDDIB2_R	-		
D4	A_HDINP2_R	-	PCS 3E0 CH 2 IN P	A_HDINP2_R	-	PCS 3E0 CH 2 IN P	
E4	A_HDINN2_R	-	PCS 3E0 CH 2 IN N	A_HDINN2_R	-	PCS 3E0 CH 2 IN N	
K9	VCC12	-		VCC12	-	1	
A5	A_HDOUTP2_R	-	PCS 3E0 CH 2 OUT P	A_HDOUTP2_R	-	PCS 3E0 CH 2 OUT P	
D2	A_VDDOB2_R	-		A_VDDOB2_R	-		
B5	A_HDOUTN2_R	-	PCS 3E0 CH 2 OUT N	A_HDOUTN2_R	-	PCS 3E0 CH 2 OUT N	
L10	A_VDDOB3_R	-		A_VDDOB3_R	-		
B6	A_HDOUTN3_R	-	PCS 3E0 CH 3 OUT N	A_HDOUTN3_R	-	PCS 3E0 CH 3 OUT N	
G6	VCC12	-		VCC12	-		
A6	A_HDOUTP3_R	-	PCS 3E0 CH 3 OUT P	PCS 3E0 CH 3 OUT P A_HDOUTP3_R -		PCS 3E0 CH 3 OUT P	
E5	A_HDINN3_R	-	PCS 3E0 CH 3 IN N	A_HDINN3_R	-	PCS 3E0 CH 3 IN N	
D5	A_HDINP3_R	-	PCS 3E0 CH 3 IN P	A_HDINP3_R	-	PCS 3E0 CH 3 IN P	
K12	VCC12	-		VCC12	-		
L13	A_VDDIB3_R	-		A_VDDIB3_R	-		
N14	VCC12	-		VCC12	-		
F9	B_VDDIB0_R	-		B_VDDIB0_R	-		
D6	B_HDINP0_R	-	PCS 3E1 CH 0 IN P	B_HDINP0_R	-	PCS 3E1 CH 0 IN P	
E6	B_HDINN0_R	-	PCS 3E1 CH 0 IN N	B_HDINN0_R	-	PCS 3E1 CH 0 IN N	
J8	VCC12	-		VCC12	-		
B7	B_HDOUTP0_R	-	PCS 3E1 CH 0 OUT P	B_HDOUTP0_R	-	PCS 3E1 CH 0 OUT P	
G4	B_VDDOB0_R	-		B_VDDOB0_R	-		
A7	B_HDOUTN0_R	-	PCS 3E1 CH 0 OUT N	B_HDOUTN0_R	-	PCS 3E1 CH 0 OUT N	
K8	B_VDDOB1_R	-		B_VDDOB1_R	-		
A8	B_HDOUTN1_R	-	PCS 3E1 CH 1 OUT N	B_HDOUTN1_R	-	PCS 3E1 CH 1 OUT N	
L9	VCC12	-		VCC12	-		
B8	B_HDOUTP1_R	-	PCS 3E1 CH 1 OUT P	B_HDOUTP1_R	-	PCS 3E1 CH 1 OUT P	
E7	B_HDINN1_R	-	PCS 3E1 CH 1 IN N	B_HDINN1_R	-	PCS 3E1 CH 1 IN N	
D7	B_HDINP1_R	-	PCS 3E1 CH 1 IN P	B_HDINP1_R	-	PCS 3E1 CH 1 IN P	
F10	VCC12	-		VCC12	-		
K13	B_VDDIB1_R	-		B_VDDIB1_R	-		

LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA^{1, 2} (Cont.)

		LFSC/M80	LFSC/M115				
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
B22	PT61B	1	A3/MPI_ADDR17	PT69B	1	A3/MPI_ADDR17	
B23	PT61A	1	A4/MPI_ADDR18	PT69A	1 A4/MPI_ADDR18		
K23	PT60D	1	D25/PCLKC1_5/MPI_DATA25	PT66D 1 D25/PCLKC1_		D25/PCLKC1_5/MPI_DATA25	
J23	PT60C	1	D26/PCLKT1_5/MPI_DATA26	PT66C	1	D26/PCLKT1_5/MPI_DATA26	
D22	PT60B	1	A5/MPI_ADDR19	PT66B	1	A5/MPI_ADDR19	
E22	PT60A	1	A6/MPI_ADDR20 PT66A		1	A6/MPI_ADDR20	
K22	PT59D	1	D27/MPI_DATA27	PT63D	1	D27/MPI_DATA27	
J22	PT59C	1	VREF1_1	PT63C	1	VREF1_1	
D23	PT59B	1	A7/MPI_ADDR21	PT63B	1	A7/MPI_ADDR21	
C23	PT59A	1	A8/MPI_ADDR22	PT63A	1	A8/MPI_ADDR22	
L23	PT57D	1	D28/PCLKC1_6/MPI_DATA28	PT61D	1	D28/PCLKC1_6/MPI_DATA28	
M23	PT57C	1	D29/PCLKT1_6/MPI_DATA29	PT61C	1	D29/PCLKT1_6/MPI_DATA29	
A24	PT57B	1	A9/MPI_ADDR23	PT61B	1	A9/MPI_ADDR23	
B24	PT57A	1	A10/MPI_ADDR24	PT61A	1	A10/MPI_ADDR24	
K25	PT56D	1	D30/PCLKC1_7/MPI_DATA30	PT58D	1	D30/PCLKC1_7/MPI_DATA30	
J25	PT56C	1	D31/PCLKT1_7/MPI_DATA31	PT58C	1	D31/PCLKT1_7/MPI_DATA31	
F23	PT56B	1	A11/MPI_ADDR25	PT58B	1	A11/MPI_ADDR25	
F22	PT56A	1	A12/MPI_ADDR26	PT58A	1	A12/MPI_ADDR26	
J26	PT55D	1	D11/MPI_DATA11	PT57D	1	D11/MPI_DATA11	
K26	PT55C	1	D12/MPI_DATA12	PT57C	1	D12/MPI_DATA12	
E23	PT55B	1	A13/MPI_ADDR27	PT57B	1	A13/MPI_ADDR27	
E24	PT55A	1	A14/MPI_ADDR28	PT57A	1	A14/MPI_ADDR28	
G23	PT53D	1	A16/MPI_ADDR30	PT55D	PT55D 1 A16/MPI		
G24	PT53C	1	D13/MPI_DATA13	PT55C	1	D13/MPI_DATA13	
F26	PT53B	1	A15/MPI_ADDR29	PT55B	1	A15/MPI_ADDR29	
F27	PT53A	1	A17/MPI_ADDR31	PT55A	1	A17/MPI_ADDR31	
H25	PT52D	1	A19/MPI_TSIZ1	PT54D	1	A19/MPI_TSIZ1	
H24	PT52C	1	A20/MPI_BDIP	PT54C	1	A20/MPI_BDIP	
C25	PT52B	1	A18/MPI_TSIZ0	PT54B	1	A18/MPI_TSIZ0	
C26	PT52A	1	MPI_TEA	PT54A	1	MPI_TEA	
K24	PT51D	1	D14/MPI_DATA14	PT51D	1	D14/MPI_DATA14	
J24	PT51C	1	DP1/MPI_PAR1	PT51C	1	DP1/MPI_PAR1	
F24	PT51B	1	A21/MPI_BURST	PT51B	1	A21/MPI_BURST	
F25	PT51A	1	D15/MPI_DATA15	PT51A	1	D15/MPI_DATA15	
L26	D_REFCLKP_L	-		D_REFCLKP_L	-		
M26	D_REFCLKN_L	-		D_REFCLKN_L	-		
G27	VCC12	-		VCC12	-		
C29	D_VDDIB3_L	-		D_VDDIB3_L	-		
F28	VCC12	-		VCC12	-		
D26	D_HDINP3_L	-	PCS 363 CH 3 IN P	D_HDINP3_L	-	PCS 363 CH 3 IN P	
E26	D_HDINN3_L	-	PCS 363 CH 3 IN N	D_HDINN3_L	-	PCS 363 CH 3 IN N	
B25	D_HDOUTP3_L	-	PCS 363 CH 3 OUT P	D_HDOUTP3_L	-	PCS 363 CH 3 OUT P	
D24	VCC12	-		VCC12	-		
A25	D_HDOUTN3_L	-	PCS 363 CH 3 OUT N	D_HDOUTN3_L	-	PCS 363 CH 3 OUT N	
E25	D_VDDOB3_L	-		D_VDDOB3_L	-		

Commercial, Cont.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA115EP1-6FC1152C ¹	-6	Ceramic fcBGA	1152	COM	115.2
LFSCM3GA115EP1-5FC1152C ¹	-5	Ceramic fcBGA	1152	COM	115.2
LFSCM3GA115EP1-6FF1152C	-6	Organic fcBGA	1152	COM	115.2
LFSCM3GA115EP1-5FF1152C	-5	Organic fcBGA	1152	COM	115.2
LFSCM3GA115EP1-6FC1704C ¹	-6	Ceramic fcBGA	1704	COM	115.2
LFSCM3GA115EP1-5FC1704C1	-5	Ceramic fcBGA	1704	COM	115.2
LFSCM3GA115EP1-6FF1704C	-6	Organic fcBGA	1704	COM	115.2
LFSCM3GA115EP1-5FF1704C	-5	Organic fcBGA	1704	COM	115.2

1. Converted to organic flip-chip BGA package per PCN #01A-10.

Date	Version	Section	Change Summary
March 2007 (cont.)	01.5 (cont.)	DC and Switching Characteristics (cont.)	Updated LatticeSC Internal Timing Parameters with ispLEVER 6.1 SP1 results.
			Updated t _{FDEL} and t _{CDEL} specifications.
			Updated LatticeSC Family Timing Adders with ispLEVER 6.1 SP1 results.
			Updated PLL specifications to expand frequency range down to 2 MHz and break out jitter for the different ranges.
			Added footnote to sysCLOCK PLL Timing table specifying the condi- tions for the jitter measurements.
			Added t _{DLL} specification to sysCLOCK DLL Timing table.
			Added footnote to sysCLOCK DLL Timing table specifying the condi- tions for the jitter measurements.
			Added sysCONFIG Master Parallel Configuration Mode and sysCON- FIG SPI Port to LatticeSC sysCONFIG Port Timing table.
		Pin Information	Updated Pin Information Summary with SC40 information.
			Updated LFSC25 Logic Signal Connections: FF1020 with SC40 infor- mation.
			Updated LFSC80 Logic Signal Connections: FC1152 with SC40 infor- mation.
August 2007	01.6	General	Changed references of "HDC" to "HDC/SI".
			Changed references of "LDCN" to "LDCN/SCS".
			Changed references of "BUSYN/RCLK" to "BUSYN/RCLK/SCK".
			Changed references of "RDCFGN" to "TSALLN".
			Changed references of "TDO/RDDATA" to "TDO".
		Architecture	Updated text in Ripple Mode section.
			Added information to Global Set/Reset.
			Added information for Spread Spectrum Clocking
			Modified information for PLL/DLL Cascading. DLL to PLL is now supported.
			Modified AIL Block text and figure.
			Modified Figure 2-20 DDR/Shift Register Block.
			Added Information to Hot Socketing.
			Added new information for I/O Architecture Rules.
			Added information to SERDES Power Supply Sequencing Require- ments.
		DC and Switching Characteristics	Added footnote to Hot Socketing Specifications table.
			Modified Initialization and Standby Supply Current table.
			Modified GSR Timing table.
			Modified sysCLOCK DLL Timing table to include I _{DUTY.}
			Deleted Readback Timing information from sysCONFIG Port Timing table.
			Modified data in External Switching Characteristics table.
		Pin Information	Added information to the Signal Descriptions table for HDC/SI, LDCN/SCS.
			Added footnote to Signal Descriptions table.
			Modified Description for signal BUSYN/RCLK/SCK.
			Modified data in Pin Information Summary and device-specific Pinout Information tables.